

Richmond Wastewater Treatment Facility 20 Year Evaluation 30% Submittal

October 2023

Prepared for: Town of Richmond, Vermont

Table of Contents

1.	١	PRO	JECT	PLANNING	1-1
	1.1	L	Back	ground	1-1
	1.2	<u>)</u>	Scop	pe of Services	1-1
	1.3	3	Loca	ition	1-2
	1.4	1	Envi	ronmental Resources	1-2
	:	1.4.2	1.	Winooski River	1-2
	:	1.4.2	2.	Floodplain	1-2
		1.4.3	3.	Wetlands	1-3
		1.4.4	1.	Rare and Endangered Species	1-3
		1.4.5	5.	Archeological Resources	1-3
	:	1.4.6	ŝ.	Historical Preservation	1-3
	1.5	5	Pop	ulation Trends	1-4
	1.6	5	Com	munity Engagement	1-4
	:	1.6.2	1.	Public Participation	1-4
2.	١	EXIS	TING	FACILITIES	2-1
	2.1	L	Loca	ition Map	2-1
	2.2	2	Hist	ory	2-1
	2.3	3	Exist	ting Discharge Permit	2-1
	2.4	ļ	Orig	inal Design Criteria	2-2
	2.5	5	Hist	orical Operating Data	2-3
	:	2.5.2	1.	Flow	2-3
	:	2.5.2	2.	Biochemical Oxygen Demand (BOD)	2-4
	:	2.5.3	3.	Total Suspended Solids (TSS)	2-6
	:	2.5.4	1.	Total Nitrogen (TN)	2-7
	:	2.5.5	5.	Phosphorus	2-8

	2.5.	6.	E. Coli	.2-10
	2.5.	7.	Septage Received	.2-11
	2.6	Con	dition of Existing Wastewater Treatment Facility	.2-13
	2.6.	1.	Influent Pumping	.2-13
	2.6.	2.	Headworks Assessment	.2-15
	2.6.3	3.	Biological Process	.2-18
	2.6.	4.	Coagulant Chemical Feed and Storage	.2-21
	2.6.	5.	Secondary Clarification	.2-23
	2.6.	6.	Return and Waste Activated Sludge Pump System	.2-26
	2.6.	7.	Filtration	.2-27
	2.6.	8.	Ultraviolet Disinfection	.2-30
	2.6.9	9.	Effluent Flow Measurement	.2-32
	2.6.	10.	Outfall	.2-34
	2.6.	11.	Septage Receiving Facilities	.2-35
	2.6.	12.	Aerobic Sludge Holding Tank	.2-38
	2.6.	13.	Dewatering Facilities	.2-39
	2.6.	14.	Operations Building	.2-44
	2.6.	15.	Site	.2-45
	2.6.	16.	WWTF Electrical System and Instrumentation	.2-46
	2.6.	17.	Existing Conditions	.2-47
	2.7	Con	dition of Collection System	.2-47
	2.8	Con	dition of Pump Station	.2-47
	2.9	Fina	ncial Status of Any Existing Facilities	.2-48
	2.10	Wat	er/Energy/Waste Audits	.2-49
3.	NEE	D FO	R PROJECT	3-1
	3.1	Hea	lth, Sanitation and Security	3-1
	3.2	Agir	ng Infrastructure	3-1
	3 3	Rea	sonable Growth	3-2

Woodstock Main Wastewater Treatment Facility Upgrade Preliminary Engineering Report

3.4	Des	ign Criteria	3-3
3.4.	1.	Influent	3-3
3.4.	2.	Effluent	3-4

List of Appendices

Appendix A – Figures

Appendix B – Fournier Rotary Press Evaluation – September 30, 2023

Appendix C – Town of Richmond Fiscal Year 2024 Water and Sewer Budget

1. PROJECT PLANNING

1.1 Background

The Richmond Wastewater Treatment Facility (WWTF) operates under NPDES Permit No. 3-1173 effective December 21, 2020. The Richmond Wastewater Treatment Facility is a 0.222 MGD activated sludge treatment facility that incorporates the use of an anoxic selector. In general, the treatment processes at the facility involve the use of screening, grit removal, anoxic selectors, aeration basins, secondary clarification, filtration, and disinfection. The solids train includes septage receiving, aerated sludge holding, and dewatering. A process flow diagram is located below in Figure 1-1.

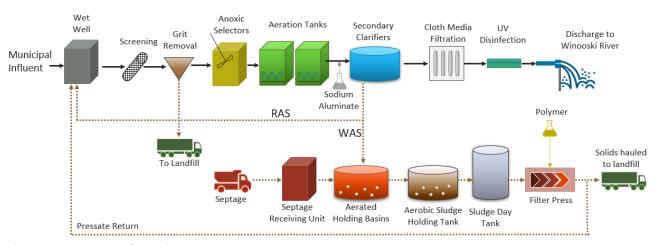


Figure 1-1. Process Flow Diagram

The following is a history of the facility:

- 1972: Original Facility Constructed
- 2005: Major Facility Upgrade (New Headworks Building w/ Grit Removal, Anoxic Selectors, Aeration Tank Diffusers, New Process Building w/ Filtration & UV Disinfection, New Aerated Septage Holding Tank)
- 2023: One influent pump replaced with used emergency pump

This 20-Year Evaluation will assess the existing facility and collection system to identify needs, develop alternatives to address the needs, and select a recommended alternative.

1.2 Scope of Services

Hoyle, Tanner's scope of services for this study is summarized in the following:

The 20-Year Evaluation will be prepared to incorporate the following information. The report will follow the State Water Investment Division (WID) format.

- Project Planning (Section 1)
- Existing Wastewater Facilities (Section 2)

- Existing Collection System (Section 3)
- Need for Project (Section 4)
- Alternatives Considered (Section 5)
- Selection of Alternative (Section 6)
- Proposed Project (Recommended Alternative) (Section 7)
 - Proposed Hydraulic Profile
 - Proposed Process Flow Diagram
 - Proposed Site Plan
 - o Equipment selection details including design criteria
 - o Opinion of Probable Construction Cost
 - Opinion of Probable Total Project Cost
 - o Project phasing defined in a Sequence of Work
 - List of permits/approvals needed for State agencies
 - Proposed project schedule
 - Proposed next steps

1.3 Location

The Richmond WWTF is located on 281 Esplanade Street in Richmond, Vermont. The Richmond WWTF receives wastewater from residential, commercial, and industrial sources and discharges to the adjacent Winooski River through an outfall. An overall location map is provided in Figure A-1 in Appendix A.

1.4 Environmental Resources

The proposed project will not increase the hydraulic capacity of the Main WWTF as the improvements will be addressing age-related needs. All proposed work will occur within the Town property at the Main WWTF in previously disturbed areas.

1.4.1. Winooski River

The Richmond WWTF discharges through Outfall S/N 001 to a waste management zone in the Winooski River, a Class B (2) water, and a designated Cold Water Fish Habitat.

Class B waters are suitable for swimming and other primary contact recreation; irrigation and agricultural uses; aquatic biota and aquatic habitat; good aesthetic value; boating, fishing, and other recreational uses; and suitable for public water source with filtration and disinfection or other required treatment. A waste management zone is a specific reach of waters designated by a permit to accept the discharge of properly treated wastes that prior to treatment contained organisms pathogenic to human beings.

1.4.2. Floodplain

The record drawings from 2004 identify the 100-year flood elevation as 308.50 feet. In 2014, the FEMA Flood Insurance Study No. 50007CV002B for Chittenden County dated August 4, 2014, provided updated flood profiles for the Winooski River. Based on the 2014 Winooski River flood profiles and the facility's approximate distance of 1,300 feet from cross-section "BO" on Flood Profile 65P, the 100-year and 500-year flood elevations at the location of the Richmond WWTF are 310.50 feet and 313.77 feet, respectively. New flood elevation determination resulted in a 2-foot increase in the 100-year flood elevation from 308.50 feet to 310.50 feet. See Figure A-2 in Appendix A for the river profile at the

Richmond Wastewater Treatment Facility
20-Year Evaluation
Section 1 – Project Planning

Richmond WWTF site and Figure A-3 for the FEMA FIRMette Map. The Richmond WWTF is not located within a regulatory floodway of the Winooski River as shown in Figure A-3 in Appendix A.

The ground elevation around the Process Building, which houses the chemical storage, UV disinfection, and filter units, is 313.50 feet. While the Process Building will be protected from a 100-year flood event, there is risk of flooding during a 500-year flood event.

During Tropical Storm Irene on August 28, 2011, the lower level of the Process Building flooded due to the Winooski River backing up the outfall pipe and overtopping the UV channel which has a top of wall elevation of 309.54 ft. After this flooding event, a check valve on the outfall and a pump was installed in the sump downstream of the effluent weir to discharge effluent flows to the outside grade during an emergency and prevent future flooding.

Inside the Process Building, the elevations of critical process components are as follows:

- Effluent wet well top of wall elevation = 313.30 ft
- Top of UV channel = 309.54 ft
- Top of filter tank wall = 313.22 ft

All of these critical component elevations are below the 500-year flood elevation and the UV channel walls are below the 100-year flood elevation. In the recent July 2023 flooding event, emergency use of a sump pump to lift flow to an external discharge point was used to prevent flooding of the Filter/UV Room.

The ground elevation of the Operations Building is at approximately 314.00 feet and is protected from the 100-year and 500-year flood events.

1.4.3. Wetlands

There are no classified wetlands located on the property as shown in Figure A-4 in Appendix A. A Wetlands Advisory Layer borders the north-west side of the property. The State of Vermont defines the Wetlands Advisory Layer to be wetland locations which have not been formally assessed for significance.

1.4.4. Rare and Endangered Species

No portions of the WWTF property are located in an area designated with the element occurrence of a rare or endangered animal or plant as shown in Figure A-5 of Appendix A.

1.4.5. Archeological Resources

Pending

1.4.6. Historical Preservation

Pending

1.5 Population Trends

The United States Census Bureau population data for the Town of Richmond from 1990, 2000, 2010, and 2020 were 3,729, 4,090, 4,081, and 4,167 respectively. Population data for the Town of Richmond is shown below in Table 1-1.

Table 1-1 United States Census Information, Richmond, Vermont

Census Year	Population	Previous 10-Year Growth (+/-)
1990	3,729	-
2000	4,090	9.68%
2010	4,081	-0.22%
2020	4,167	2.11%

^{1.} From US Census Data

Historical census data shows positive growth in the Town of Richmond from 1990 to 2020. The Town of Richmond's 2018 Town Plan states "population predictions show a relatively stable population over the next 10-15 years (ranged from a decline of about 180 people to an increase of about 35 people)". The Town of Richmond is well suited for population growth due to its proximity to the greater Burlington area and location along the I-89 corridor. Along with this steady population growth, the Town is looking to extend the municipal wastewater service area to zoned growth areas of the Town that are growth-limited by on-site wastewater systems.

1.6 Community Engagement

1.6.1. Public Participation

The Town of Richmond actively engages the community and promotes public participation through the following:

- Public Meetings
- Local Newspaper Advertisements
- Front Porch Forum Postings
- Direct Mailings

2. EXISTING FACILITIES

2.1 Location Map

A location map is shown in Figure A-1 in Appendix A.

2.2 History

The Town of Richmond owns and operates the Richmond Wastewater Treatment Facility and associated 4.14 miles (21,880 linear ft) of sewer mains and the Bridge Street pump station that make up the collection system serving the service area. The history of the facility is as follows:

- 1972: Original Facility Constructed
- 2005: Major Facility Upgrade (New Headworks Building w/ Grit Removal, Anoxic Selectors, Aeration Tank Diffusers, New Process Building w/ Filtration & UV Disinfection, New Aerated Septage Holding Tank)
- 2023: One influent pump replaced with interim pump

Although some specific equipment upgrades and replacements have occurred in the past, the majority of the facility has not been upgraded since the major upgrade in 2005. The existing WWTF site plan and hydraulic profile are provided in Figures A-6 and A-7 respectively in Appendix A.

2.3 Existing Discharge Permit

The Richmond WWTF is permitted under National Pollutant Discharge Elimination System (NPDES) Permit No. 3-1173, effective January 1, 2021, to discharge treated effluent from outfall S/N 001 to the Winooski River.

Table 2-1 summarizes the WWTF's existing discharge permit flow and effluent quality requirements. The current version of the NPDES permit and fact sheet are publicly available at:

https://dec.vermont.gov/watershed/wastewater/discharge-permits

Table 2-1 Richmond WWTF Current NPDES Discharge Permit

Effluent	Annual	Annual	Monthly	Weekly	Daily	Instantaneous
Parameter	Avg	Total	Average	Average	Maximum	Maximum
Flow	0.222					
TIOW	MGD					
BOD ₅			30 mg/L	45 mg/L	50 mg/L	
BOD5			55.5 lbs/day	55.5 lbs/day 83.3 lbs/day		
Total Phosphorus			0.8 mg/L			
(TP)		134 lbs/yr				
Total Nitrogen					Monitor Only	
(TN)	-				Widnitor Only	
Total Kjeldahl					Monitor Only	
Nitrogen (TKN)					Widnitor Only	
Nitrate/Nitrite					Monitor Only	
Nitrogen (NOx)	-				Widnitor Only	
Settleable Solids	1	-	-	-	1	1 ml/L
Total Suspended			30 mg/L	45 mg/L	50 mg/L	
Solids (TSS)			55.5 lbs/day	83.3 lbs/day		
E. Coli						77 col/100 mL
рН			Between 6	6.5 and 8.5 Star	ndard Units	

2.4 Original Design Criteria

Table 2-2 summarizes the original WWTF design criteria, as well as current loadings.

Table 2-2 Existing Influent Design Criteria and Current Loadings

Parameter	Design Criteria ¹	Current Loadings ²
Average Daily Flow	0.222 MGD	0.073 MGD
Peak Hourly Flow	1.152 MGD ³	0.660 MGD ⁴
Biachemical Owygan Damand (BOD)	324 mg/L	670.2 mg/L⁵
Biochemical Oxygen Demand (BOD)	600 lbs/day	461.7 lbs/day
Total Suspended Solids (TSS)	272.5 mg/L	932.0 mg/L⁵
Total Suspended Solids (TSS)	500 lbs/day	680.5 lbs/day
Total Phasphorus (TD)	10 mg/L	19.5 mg/L⁵
Total Phosphorus (TP)	18.5 lbs/day	14.0 lbs/day

Notes:

- 1. Basis of Final Design, 2003.
- 2. Based on historic operating data from January 2018 to February 2023.
- 3. Noted in 2003 Basis of Final Design as "based on influent pumping capacity."
- 4. Additional data is needed to verify current peak hourly flow.
- 5. Influent sampling is taken at the influent channel of the wet well, upstream of RAS and pressate side streams. Samples can, at times, include return activated sludge (RAS) & pressate, when the wet well is used for flow equalization and an isolated influent sample is not possible.

The original design criteria from the 2003 Basis of Final Design was established as a daily organic load (lb/day). These loads were converted to a concentration (mg/L) based on the design average daily flow of 0.222 MGD.

Historical influent data was analyzed and revealed that the current influent TSS load of 680.5 lb/day TSS exceeds the original design criteria of 500 lb/day TSS. While historical influent BOD and TP loads do not exceed the original design criteria, the historical influent concentrations are greater than the equivalent original design concentrations. Currently, Richmond is operating at an average daily flow of 0.073 MGD, which is approximately 33% of the design flow. Given that the current TSS load exceeds original design criteria, and that current BOD and TP concentrations are greater than the equivalent design criteria concentrations, a closer look needs to be taken into sources of these high influent concentrations and evaluate ways to reduce influent loading to the WWTF. If current influent concentrations were to remain constant at the design flow of 0.222 MGD, the original design criteria would be severely exceeded.

2.5 Historical Operating Data

Historical operating data was reviewed from January 2018 through February 2023.

2.5.1. Flow

The Richmond WWTF records effluent flow from the v-notch weir located on the effluent channel. The average monthly effluent flow from January 2018 to February 2023 ranged from 0.05 to 0.11 MGD with an average of 0.073 MGD which is 31.5% of the design influent average daily flow of 0.222 MGD.

The peak day effluent flow from January 2018 to February 2023 ranged from 0.07 to 0.59 MGD with an average of 0.14 MGD. The 2003 basis of design did not include design criteria for peak day flow.

The peak hour effluent flow from January 2018 to February 2023 ranged from 0.27 to 0.66 MGD with an average of 0.54 MGD. The effluent flow measurement has a maximum range of 0.66 MGD that likely has been exceeded. The 2003 basis of design peak hour flow design criteria was 1.152 MGD based on influent pumping capacity. The historic maximum peak hour flow of 0.66 MGD is approximately 57.3% of the existing peak hour flow design flow, although it is suspected that this has been exceeded. Further investigation or additional flow monitoring is necessary to determine the facility's peak instantaneous flow and establish a peaking factor. Determining an accurate peak hour flow is important for influent pump selection to ensure pumps can convey peak hour flows throughout the facility.

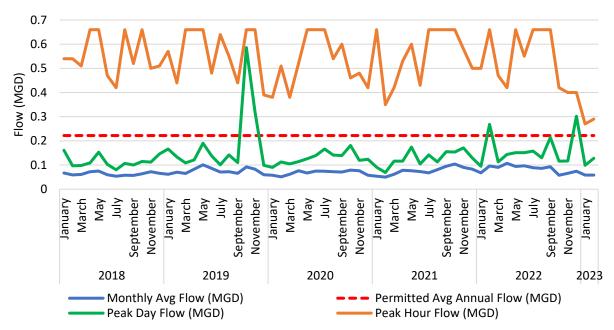


Figure 2-1 Historical Effluent Flow Data

While flow data includes the flow of pressate, there is no flow meter located on the dewatering pressate line that returns to the influent wet well. Therefore, it is difficult to understand the volume of pressate flow entering the biological process and the nutrient loads associated with pressate separate from municipal influent.

2.5.2. Biochemical Oxygen Demand (BOD)

Influent sample collection occurs at the influent wet well at the Richmond WWTF. Sample collection typically consists of combining grab samples over an 8-hour period to create a composite sample. The influent wet well receives flow from the collection system, return activated sludge (RAS), tertiary filter backwash, and pressate from the rotary press, however Richmond WWTF operators collect samples at the influent to the wet well, upstream of RAS and on days when dewatering is not running and pressate is not entering the wet well. While influent sampling does not necessarily isolate collection system quality from the RAS and pressate; historically, samples contain mostly municipal influent.

Influent BOD concentrations from January 2018 to February 2023 ranged from 170 to 1,700 mg/L with an average concentration of 670 mg/L, which is well above the 2003 influent BOD loading design criteria equivalent concentration of 324 mg/L. The variability in BOD concentration may be impacted by the volume of septage received and subsequently dewatered and when the grab sample is collected, however it is suspected that there may be significant industrial users on the collection system that are contributing to the high BOD concentration seen in the influent samples. The average historical BOD load associated with the influent concentration is 462 lbs/day, which is below the 2003 influent BOD loading design criteria of 600 lbs/day.

Influent BOD concentrations have been decreasing over this time period. The average influent BOD concentration from January 2018 through December 2020 was 754 compared to 554 mg/L from January 2021 to February 2023.

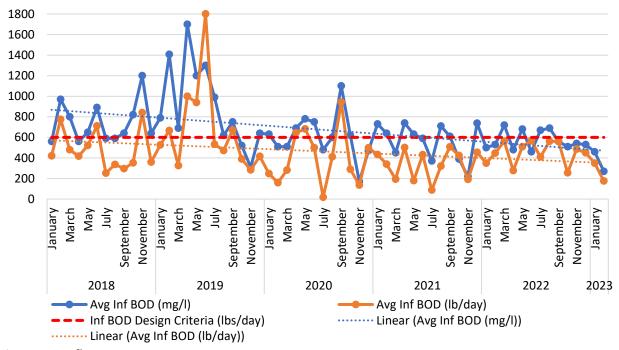


Figure 2-2 Influent BOD

Effluent BOD concentrations ranged from 1 to 17 mg/L with an average of 2.86 mg/L. The average effluent BOD load was 1.96 lb/day which is well below the permitted monthly average load of 55.5 lb/day. Based on this data, the existing biological process provides conditions that support effective BOD removal at current loadings. Over this period of time, BOD removal ranged from 98.53-99.90+% with an average of 99.60% removal.

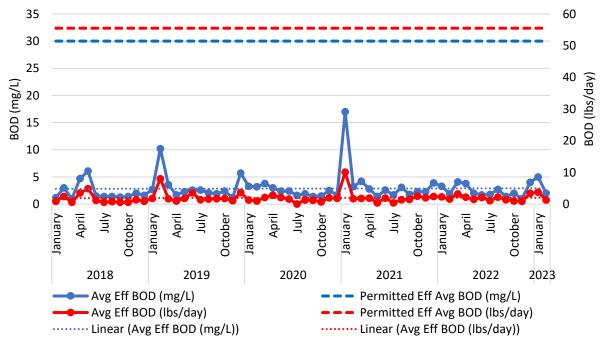


Figure 2-3 Historical Effluent BOD Data

2.5.3. Total Suspended Solids (TSS)

Influent TSS concentrations from January 2018 to February 2023 ranged from 271 to 4,120 mg/L with an average of 932 mg/L, which is well above the 2003 influent TSS loading design criteria concentration of 272.5 mg/L. The variability in TSS concentration may be impacted by the volume of septage received and subsequently dewatered when the grab sample is collected, however it is suspected that there may be significant industrial users on the collection system that are contributing to the high TSS concentration seen in the influent samples. The average TSS load was 680.5 lb/day TSS which is 1.36 times the 2003 design influent TSS load. Note, the influent TSS loading design criteria does not include side streams included in the influent sampling (RAS, pressate).

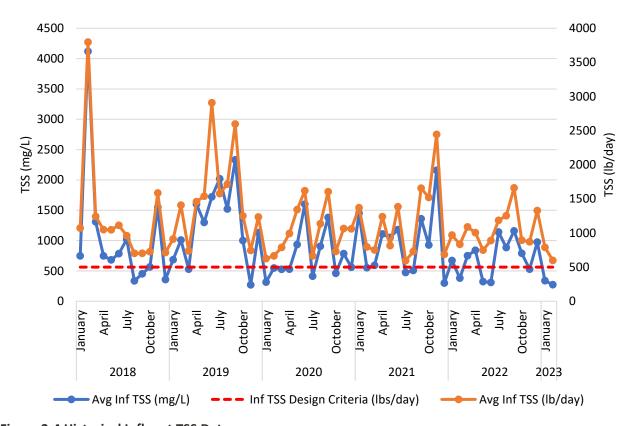


Figure 2-4 Historical Influent TSS Data

The Richmond WWTF has been performing well and removes between 98.15-99.95+% of TSS. From January 2018 to February 2023, the effluent TSS concentration ranged from 1.00 to 6.00 mg/L, with an average of 2.65 mg/L, which is well below the permitted monthly effluent TSS concentration of 30 mg/L. The average effluent TSS load from January 2018 to February 2023 was 1.86 lb/day which is also well below the permitted monthly effluent TSS load of 55.5 lb/day. Data indicates the WWTF has the capacity to treat the current TSS load.

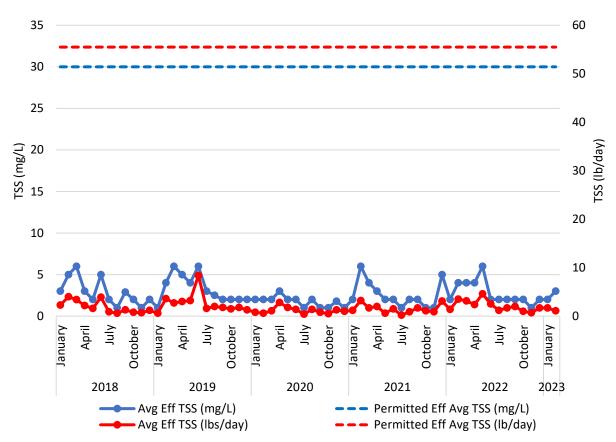
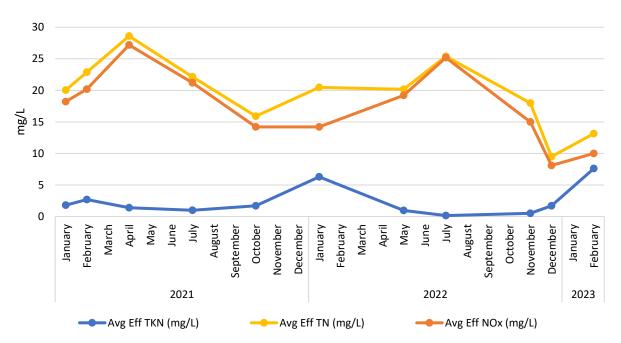


Figure 2-5 Historical Effluent TSS Data


2.5.4. Total Nitrogen (TN)

Historically, influent nitrogen samples have not been collected at the Richmond WWTF. However, a 24-hour sampling event took place from 9/20/2022 to 9/21/2022 which analyzed ammonia concentrations from composite samples taken at several different locations throughout the facility. Ammonia concentrations from the 24-hour sampling event are displayed in Table 2-3.

Table 2-3 Sampling Event Ammonia Data

Sampling Location	Ammonia Concentration (mg/L)
Influent Wet Well	30
Septage	74
Pressate	44.5

Richmond WWTF's permit requires quarterly reporting of effluent total nitrogen (TN), total Kjeldahl nitrogen (TKN), and nitrite and nitrate (NOx). In addition to these monitoring requirements, effluent ammonia is tested periodically. Data available for nitrogenous species monitoring is from January 2021 through February 2023.

Figure 2-6 Historical Effluent Nitrogen

Effluent TN concentrations ranged from 9.49 to 28.60 mg/L with an average of 19.66 mg/L indicating that the system has some potential for denitrification. Effluent NOx concentrations ranged from 8.10 to 27.20 mg/L with an average of 17.52 mg/L. Effluent TKN concentrations ranged from 0.15 to 7.60 mg/L with an average of 2.35 mg/L indicating the system maintains effective nitrification.

2.5.5. Phosphorus

Influent total phosphorus (TP) concentrations from January 2018 to February 2023 ranged from 4.8 to 73 mg/L with an average of 19.45 mg/L. Pressate total phosphorus concentrations can be high strength, which can contribute to the total phosphorus concentration in the wet well if samples were collected on days when the press was running, however it is suspected that there may be significant industrial users on the collection system that are contributing to high TP concentrations seen in the influent samples. The historical influent TP concentration of 19.45 mg/L exceeds the existing influent TP design criteria is 10 mg/L.

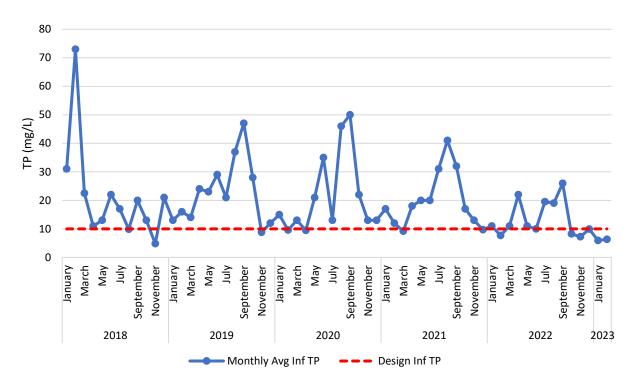
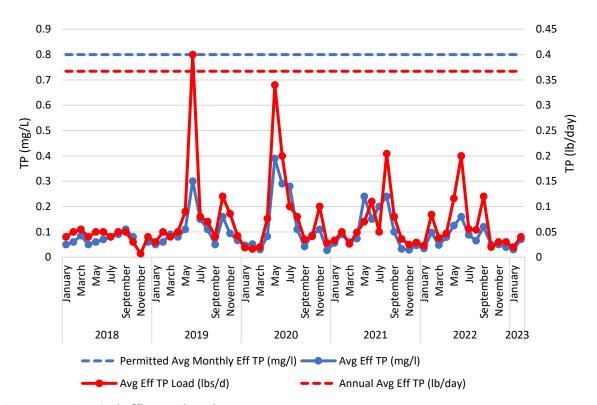



Figure 2-7 Historical Influent Phosphorus Data

Effluent TP concentrations from January 2018 to February 2023 ranged from 0.03 to 0.39 mg/L with an average of 0.10 mg/L which is well below the permitted average monthly effluent TP concentration of 0.80 mg/L. Monthly average effluent TP load ranged from 0.01 to 0.40 lbs/day with an average of 0.07 lbs/day. In addition to the permitted monthly average effluent TP limit, the facility has an annual permitted effluent TP load of 134 lbs/year, equivalent to approximately 0.37 lbs/day. The monthly average effluent TP load of 0.07 lbs/day is equivalent to 25.6 lbs/year. Over this time period, phosphorus removal ranged from 97.10-99.88+% with an average removal of 99.36%. Data indicates that the Richmond WWTF has the capacity to treat current the total phosphorus load. Overall, the facility achieves excellent TP removal.

Figure 2-8 Historical Effluent Phosphorus Data

2.5.6. E. Coli

The Richmond WWTF had no exceedances of the permitted instantaneous maximum e. coli limit of 77 counts per 100 mL as displayed in Figure 2-9. From January 2018 to February 2023, maximum effluent e. coli ranged from <0.10 to 16 counts per 100 mL.

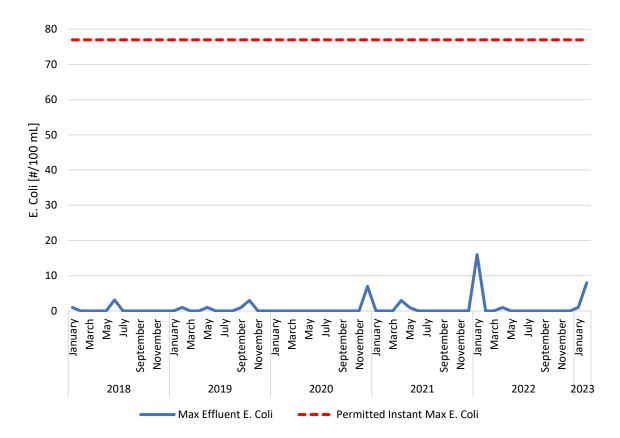


Figure 2-9 Effluent E. Coli

2.5.7. Septage Received

The monthly septage received from January 2018 to February 2023 ranged from 27,300 to 1,200,500 gallons per month with an average of 610,995 gallons per month. The Richmond WWTF was designed to accept 2,000,000 gallons of septage per year, or approximately 167,000 gallons per month. In 2021 and 2022, the Richmond WWTF received a total of 9,087,100 and 7,626,000 gallons per year, respectively. The facility is currently accepting significantly more septage than the original design, which is possible as significant available loading at the facility was freed up when the cheese production factory closed in 1999. Effluent quality continues to meet permit limits.

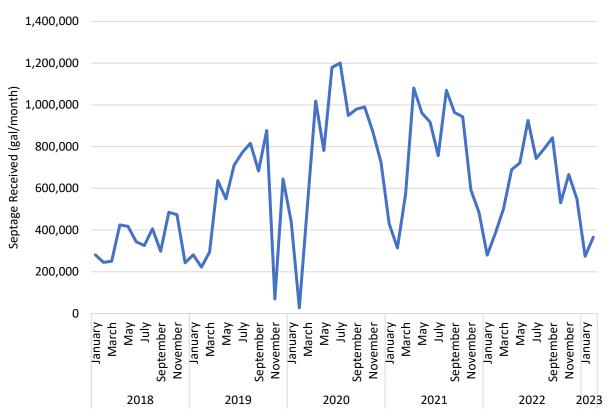


Figure 2-10 Historical Septage Receiving

Septage receiving is fed through a septage receiving unit prior to mixing with waste activated sludge (WAS). The combination of septage and WAS is then dewatered and pressate is directed to the influent wet well where it combines with municipal influent. Due to the lack of a flow meter and historical sampling of pressate, it can be difficult to draw conclusions on the impact of septage receiving and pressate return on the process. However, on 9/20/2022 through 9/21/2022, a sampling event took place at the Richmond WWTF as part of the plant's Phosphorus Optimization Plan study. Data was collected on both the raw septage and the pressate. Sampling results are located below in Table 2-4.

Table 2-4 Septage & Pressate Sampling Results

Location	BOD [mg/L]	TSS [mg/L]	VSS [% dry wt]	Orthophosphate [mg/L PO ₄ -P]
Septage	1,400	1,760	85.8	7.83
Pressate	110	458	77.5	4.50

2.5.8. Industrial Users

Stone Corral Brewery which discharges to the Richmond WWTF is considered a significant industrial user and is permitted under Pretreatment Discharge Permit No. 3-1560. The Richmond WWTF can receive a monthly average flow of up to 1,000 gpd from Stone Corral Brewery. The Brewery has a monthly average discharge effluent limit of 100 lb/day of BOD. They are required to test for BOD in their discharge 1x/week, TSS 2x/month, and TP 1x/month.

The Town of Richmond should consider evaluating local commercial and industrial users that may be discharging a significant load as one way to understand the influent nutrient load that is historically experienced at the WWTF.

2.6 Condition of Existing Wastewater Treatment Facility

Hoyle Tanner conducted a site visit on May 24, 2023, to the Richmond WWTF to assess the physical condition of WWTF process components and the site. The following section presents the findings of that assessment.

2.6.1. Influent Pumping

Raw wastewater from the collection system enters the Richmond WWTF at the influent wet well, located next to the Operations Building, where it is mixed with RAS, pressate, and filter backwash. The roof drains for the Operations Building also drain to the wet well. The wet well is divided into two cells and the operators indicated that only one side of the wet well is being used due to problems with rags, bricks and stones that make their way through the collection system. A level transmitter in the wet well controls the pumping speed of the influent pumps which are located inside the Operations Building basement. The concrete of the wet well structure was not inspected during the field visit and the condition of the structure is unknown.

The influent pumping system consists of two influent pumps located in the lower level of the Operations Building. Influent pumping transfers wastewater from the wet well to the

Figure 2-11 Influent Wet Well

Figure 2-12 Influent Pumping System

Headworks Building where it flows by gravity through the remaining treatment process. An in-line grinder that was part of the original design has been disconnected. There is a magnetic flow meter on the pump discharge header to measure flows. The operators indicated that they do not believe it accurately measures flow. Influent Pump #1 is driven by a 40 HP motor and was installed in 2023 as a temporary replacement for the existing Influent Pump #1 which had failed. Influent Pump #2 is a vertical mounted, flooded suction centrifugal pump driven by a 25 HP motor. Currently, Influent Pump #2 is not in use as it has a leaking seal and sprays the room when operating. The operators indicated that they have replaced both pump discharge check valves recently.

Both pumps are equipped with a variable frequency drive (VFD) which is controlled by the level transmitter in the influent wet well. The operators indicate that they let the wet well back up to the first landing during high flow events and use it for flow equalization. They indicated that they can use

the wet well up to this level and back up the influent sewer to within 1 foot of the rim of the upstream manholes in the park, which are elevated for flood proofing.

Access to the pumps is problematic with no overhead hatch to hoist pumps through. The operators noted that they have to bring equipment down three flights of stairs if maintenance is required.

The facility experiences significant large solids carried to the wet well through to the influent pumps including large rocks/bricks, large pieces of wood, rag balls greater in diameter than the pumps can pass. These materials often lead to pump clogging, damage to the pump impellers and emergency maintenance of the pumps. The operators indicated that the Town cleaned out the influent collection sewer up to Bridge Street in 2022 to try to mitigate the amount of debris that enters the wet well and pump suction.

Table 2-4 Influent Wet Well & Pump Existing Design Information

Description	Existing Design		
Influent Wet Well			
Dimensions	26′8″ L x 11′6″ W x 2′ D		
Operating Levels	Normal: 2'		
	Max: approx. 18'		
Operating Volume	1,032 gal (at normal operating level)		
Influent Pump #1			
Manufacturer/Model	Cornell Pump Co. GNHTA-CSV 40-4		
Motor	40 HP		
Nameplate RPM	1775 rpm		
Influent Pump #2			
Туре	Centrifugal, Vertical Mounted, Flood Suction		
Motor	25 HP, VFD Driven		
Capacity	800 gpm @ 65' TDH (each)		
Flow Meter			
Type/Manufacturer	Magnetic/Siemens/ MAG6000		
Max Flow Read	800 gpm		

Design Standards

• Convey peak design flow with largest pump out-of-service.

Assessment

The assessment of the major components for the influent wet well, influent grinder, and influent pump station are summarized in Table 2-5, and the major needs are described as follows:

Findings:

- Influent Pump #1 failed and was replaced with a used emergency pump in 2023. The pump is old and only a temporary solution.
- Influent Pump #2 is original to facility. The pump is in poor condition with a leaking seal. This pump is at risk of imminent failure leaving the facility with no pumping redundancy.
- Influent pumps routinely experience problems such as ragging and bricks/rocks causing damage.

- Influent grinder has been removed.
- Hatch not available for pump removal
- Roof drains are connected to the wet well.
- The concrete of wet well structure was not evaluated. It is recommended that a concrete assessment be conducted.
- Additional flow data is required to select influent pump replacements.

Table 2-5 Influent Wet Well and Pump Station Assessment

lhous			ank of Existing Condition			Year Installed	Projected	Notes
Item		or	Fair	Good			Remaining Life (years)	Notes
		2	3	4	5		Life (years)	
Wet Well			Х			1972	20+	Concrete should be inspected.
Influent Pump #1	х					2023 (used)	0-2	Used emergency pump, not permanent solution
Influent Pump #2	х					1972	0-2	Leaking seal, imminent failure
Pump VFDs			Χ			2005	2-5	
Level Control System			х			2005	2-5	

2.6.2. Headworks Assessment

Screening and grit removal consists of a package unit located in the Headworks Building. Screening and grit removal is accomplished using a combination unit that uses a rotary-type mechanical fine screen and an aerated grit removal chamber with a grit dewatering screw to screen inorganics and remove grit from the process stream. Wastewater is pumped to the unit via the influent pumps. Wastewater flows into the unit's screening basket where solids are retained. Screened material is removed from the screening basket and is spray washed to return organics to the process stream. The screened material is then transported up the unit's central screw conveyor, compacted, dewatered, and discharged to storage containers. The wastewater that flows through the screening basket passes directly into a grit removal chamber. Grit settles to the floor of the grit chamber and a grit transport screw moves the settled grit to a lateral sump. A grit dewatering screw transports the settled grit out of the lateral sump and dewaters the grit before it is discharged into storage containers. Air for the aerated grit chamber is fed from a new blower located in the one-room structure located over the aerobic sludge digester tank. Flow

Figure 2-13 Grit Removal

from the grit chamber is discharged directly into the first anoxic selector. The headworks can be bypassed by pumping directly to the aeration basins.

The rotary-type fine screen shaft has significant wear and while the screen does catch some rags, the operators indicate that it doesn't work well. The grit auger has significant wear and has been patched over the years. The operators indicated that grit that is captured is not being properly dewatered resulting in a product with a mud-like consistency. The operators have also noted a leak in the stainless steel package unit tank, which they have been patching regularly.

The Headworks Building's gas detection system is inoperable, and the ventilation system is activated by the light switch, indicating occupancy. It could not be determined if the existing ventilation meets the required air changes for this Class 1 Division I Hazardous space.

The existing design information for the screening and grit removal equipment is presented in Table 2-6 on the following page.

Table 2-6 Screening and Grit Removal Design Information

Description	Existing Design
Screening & Grit Removal Package	
Quantity	1
Manufacturer	Lakeside Equipment Corp.
Type/Model	Complete Plant/SO 03-191
Rotary Screen	
Туре	Mechanical, Fine Screen
Bar Spacings	3/8"
Motor Power Draw	2 HP
Capacity	2.97 MGD
Screen Openings Spacing	1/2"
Screen Basket Diameter	31"
Grit Chamber	
Number of Units	1
Dimensions	26' x 3.5'
SWD	9.17'
Capacity (Maximum Flow Rate)	2.97 MGD
Grit Transfer Screw	
Diameter	8"
Motor Drive	1 HP
Diameter	8"
Motor Drive	2 HP
Grit Blower	
Quantity	1
Туре	Rotary Positive Displacement Blower
Power Draw	2 HP
Design Capacity	26 scfm

Design Standards

- <u>Bypass Screens</u>: Installations using mechanically cleaned screens or comminution devices should include multiple units or a manually cleaned bypass screen. (TR-16 Standards)
- Manually Cleaned Screens: Unobstructed openings between bars should be 1–2 inches (2.5–5 cm) wide. Manually cleaned screens should be placed on a slope of 30–45 degrees with the horizontal. (TR-16 Standards)
- <u>Mechanically Cleaned Screens</u>: Unobstructed openings between bars are generally 0.25–1.5 inches (0.6–3.8 cm) wide. (TR-16 Standards)
- <u>Velocities</u>: Screen chambers should provide good velocity distribution across and through the screen. Approach velocities in screen channels should be at least 1.3 feet per second at minimum flows (2.0 ft/sec is preferred if possible), or 2.5 ft/sec during diurnal peak flow periods. Approach velocities in screen channels serving combined systems should be at least 3 ft/sec during storm flows. Velocities through openings of mechanically cleaned screens should be 2–4 ft/sec. Velocities through manually cleaned screens should be limited to 1–2 ft/sec. (TR-16 Standards)
- <u>Grit Removal</u>: Grit can be removed in grit chambers or by centrifugal separation of primary sludge.
 Acceptable grit chambers include aerated, vortex (including induced vortex and multi-tray vortex units), detritus, and horizontal flow (velocity control tanks) units. A single, manually or mechanically cleaned grit chamber with bypass is acceptable for small plants serving sanitary sewer systems. (TR-16 Standards)
- <u>Fire Protection:</u> For coarse and fine screen facilities, grit removal tanks, and pre-aeration tanks that are continuously ventilated at 12 air changes per hour, the entire enclosed space is classified as Class I, Division 1. This space requires a portable fire extinguisher, combustible gas detection system, and hydrant protection.

Assessment

The assessment of the major components for the Headworks is summarized in Table 2-7 on the following page, and the major needs are described as follows:

Findings:

- The stainless tank of the package screening and grit unit is leaking.
- The effectiveness of screening and grit removal is poor.
- Grit auger is worn and has been repeatably patched.
- Grit is not properly dewatering, creating a mud-like consistency.
- Gas detection in the building is inoperable.
- Existing ventilation may not provide adequate air changes.
- No drain in the sump where package unit sits. Operators must use a trash pump to drain if level gets too high.

Table 2-7 Headworks Assessment

Item				of Existing ondition		Year Installed	Projected Remaining	Notes						
item	Poor 1 2		Poor		Poor		Poor		Fair	Go	od	real ilistalleu	Life (years)	Notes
			3	4 5			Life (years)							
Rotary Screen		Х				2005	2-5							
Grit Chamber		Х				2005	10+							
Grit Blower		Х				2005	2-5							
Grit Transfer		,				2005	2-5							
Screw		Х				2005	2-5							
Grit Dewatering		,				2005	2-5							
Screw		Х				2005	2-5							
Headworks			· ·			2005	10+							
Building			Х			2005	10+							
Ventilation		Х				2005	2-5							
Gas Detection	Х					2005	0	inoperable						

2.6.3. Biological Process

The biological treatment system at the Richmond WWTF consists of anoxic selectors followed by aeration tanks. The first part of the process consists of three anoxic selectors located inside the Headworks Building. The first two anoxic selectors each have a capacity of 3,000 gallons while the third anoxic selector has a 6,000 gallon capacity. Mixing throughout the selectors is achieved with submersible mixers. Upon the time of inspection, the submersible mixer in the first anoxic selector is inoperable and only one of the mixers has a Class 1, Division I explosion-proof motor. Since the site visit, the submersible mixer in the first anoxic selector has been repaired.

Flow from the third anoxic selector is designed to split between two parallel aeration tanks, each having a volume of 150,000 gallons. Typical operation consists of one aeration tank in operation at a time. The aeration tanks have a fine bubble diffused air system and are fed air from two (2) 25 HP positive displacement blowers, each with a capacity of 450

Figure 2-14 Biological Aeration Tank

scfm, located in the Process Building upper level. A single dissolved oxygen (D.O.) probe is provided but is not connected to SCADA for blower operation. The operators indicated they would like one D.O. probe for each tank. The outdoor intake for the aeration blowers has been disconnected due to noise complaints, and air for the blowers is drawn from the septage holding tank in the Operations Building Garage. This air has significant hydrogen sulfide concentration for the air space above a non-aerated sludge holding tank. Blower control is cycled on/off from SCADA; however, D.O. concentration in the

aerated basin is not being used to inform the aeration schedule.

The aeration tanks are original to the Richmond WWTF and were constructed in 1972. The concrete of the tank structures was not evaluated during the site visit. The diffusers were not inspected during the site visit, however a uniform bubble pattern in the operating tank suggests that the diffusers are functioning as intended. The operators noted that Aeration Tank #1 was drained and cleaned out recently, however, Aeration Tank #2 has not been cleaned since the upgrade. The operators indicated that it is difficult to balance air in the air header between the tanks using manually operated butterfly valves and would like to see dedicated air lines from each blower to each aeration tank.

Aeration tank effluent is discharged from each tank over a fixed weir into an effluent channel where coagulant for chemical phosphorus removal is applied.

The existing design information for the biological system is presented in Table 2-8.

Table 2-8 Biological Treatment System Existing Design

Description	Existing Design
Anoxic Selector 1 & 2	
Quantity	2
Capacity	3,000 gal (each)
Dimensions	8.25' x 6.0'
SWD	8.10'
MLSS Target	Pending
Anoxic Selector 3	
Quantity	1
Capacity	6,000 gal
Dimensions	16.50′ x 6.0′
SWD	8.10'
MLSS Target	4,000 mg/L
Submersible Mixers	
Quantity	3 (1/anoxic tank)
Туре	Submersible Mixers
Manufacturer	Flygt
Power Draw	1.21 HP (each)
Aeration Basins	
Quantity	2
Dimensions	38' x 38'
SWD	14'
Volume	150,000 gal (each)
Aeration System	
Type/Manufacturer	Fine Bubble Flexible Membrane Diffuser/Sanitaire Aeration System
Quantity	162/tank
Discharge Pressure	7 psig

Blowers	
Quantity	2
Manufacturer	Aerzen USA
Motor	25 HP (each)
Capacity	220 to 450 scfm
Control Strategy	DO Control (not operable)
VFD	Yes

Design Standards

- Liquid depths should not be less than 10 feet or more than 25 feet. (TR-16)
- Aeration systems should be sized for the maximum daily oxygen requirements (considering facility side streams, and seasonal variations in temperature and humidity) while maintaining an aeration basin DO concentration of 2 milligrams per liter. (TR-16)
- Oxygen supply should be designed based on 0.85–1.2 pounds of oxygen per pound of BOD removed plus 4.2 pounds of oxygen per pound of ammonia nitrogen oxidized at maximum daily loading conditions. (TR-16)
- Blower capacity must be based on the air volume required during summer temperature and humidity conditions. The size of motors for centrifugal compressors must be based on summer air flow rates and the coldest expected winter temperature (or other means provided to control mass air flow rate and prevent motor overload). (TR-16)
- Blower controls should be incorporated into the system, providing sufficient ability to meet oxygen demand in the various tanks in service through multiple blowers, variable blower output, dissolved oxygen monitoring, air flow measurement, and automated control valves. (TR-16)
- The size of air piping should be based on maximum expected summer temperatures and in-line velocities of 2,000–2,500 feet per minute. (TR-16)
- Fine bubble, full-floor coverage: 0.12 scfm per square foot of tank area. (TR-16)

Assessment

The assessment of the major components for biological process is summarized in Table 2-9 on the following page, and the major needs are described as follows:

Findings:

- Only mixers in anoxic selectors #2 and #3 are operable, and only one mixer has an explosion-proof motor.
- Aeration Tank #2 has not been cleaned out since the 2005 upgrade.
- Blowers cycle on/off from SCADA but are not controlled by the D.O. probe in the active aeration basin. New D.O. probes needed.
- Blower intake is from a sealed aerated solids holding tank and shows significant signs of corrosion in the garage, outdoor air intake was disconnected due to noise complaints.
- Air balance to the aeration tanks is challenging due to manually operated butterfly valves.
- The concrete tank structures of the anoxic tanks nor aeration tanks were not evaluated. It is recommended that a concrete assessment be conducted.
- Data on mixed liquor suspended solids (MLSS) is not collected at the facility.

Table 2-9 Biological Treatment System Assessment

Item			nk of Ex Conditi	_		Year Installed	Projected Remaining	Notes
item	Po	or	Fair	Go	od	real ilistalleu	Life (years)	Notes
	1	2	3	4	5		Life (years)	
Anoxic Tanks			х			2005	20+	Concrete should be inspected
Submersible Mixers		Х				2005	2-5	Mixer #1 is inoperable. Do not have ex-proof motors on all mixers
Aeration Tank concrete			х			1972	20+	Concrete should be inspected
Aeration Tank walkway/railings				Х		2005	20+	
Diffusers			Х			2005	5-10	
Blowers			х			2005	5-10	Blower intake from septage holding tank is severely corroded.
VFDs			Х			2005	2-5	
DO Probes		Х				2005	0-2	New probes need

2.6.4. Coagulant Chemical Feed and Storage

There is one (1) 1,500 gallon sodium aluminate storage tank and two (2) positive displacement diaphragm type feed pumps located in the basement of the Process Building, though only one (1) feed pump is in use and the other is in storage. Secondary containment is provided in the form of a 3-ft high concrete retaining wall around the coagulant storage tank. An emergency eyewash station is located next to the coagulant storage tank; however, there is no emergency shower. The original design allowed for coagulant to be pumped to the aeration tank effluent channel and/or into both clarifier effluent pipes prior to the filter units. Typical operation is consistently dripping sodium aluminate through a 2" line into the aeration tank effluent channel and is based on an operator feed rate that is determined by effluent pH levels.

Figure 2-15 Sodium Aluminate Storage

Table 2-10 Chemical Storage & Feed Existing Design Information

Description	Existing Design					
Coagulant Storage						
Coagulant	Sodium Aluminate (Alum)					
Storage Tank Capacity	1,500 gallons					
Containment Volume Required	1,875 gallons					
Containment Volume Provided	1,544 gallons					
Coagulant Feed – Process Building						
Feed Pump Type	Positive Displacement, Diaphragm Type					
Number of Pumps	2 (1 duty, 1 in storage)					
Flow Rates	0 – 48 gpd					
Application Points	Aeration Tank Effluent Launder					

Design Standards

- Redundancy: A minimum of two feed pumps, one duty and one standby, should be provided. (TR-16)
- <u>Location</u>: Chemical feed equipment should be located in a separate, dedicated room to reduce potential hazards and exposure. (TR-16)
- Storage: Space should be provided for at least 30-days of chemical storage under average design conditions. Tanks should have a liquid level indicator, overflow and receiving basin, and secondary containment. Secondary containment should be no less than 125% of the storage tank volume. (TR-16)
- Eye-Wash Fountains and Emergency Showers: Should be provided no more than 25 feet from points of hazardous chemical exposure and supply tempered water at 30-50 gpm and 20-50 psi for 15-30 minutes. (TR-16)

Assessment

The assessment of the major components of the chemical feed and storage are summarized in Table 2-11 on the following page, and the major needs are described as follows:

Findings:

- No emergency shower provided in chemical area.
- Only 1,544 gallons of containment provided, which does not meet design standards. The secondary containment volume required is 1,875 gallons.

Itam	Rank of Existing Condition Year Remaining Note		Notes						
Item	Po	or	Fair	G	ood	Installed	_	Notes	
	1	2	3	4	5		Life (years)		
Coagulant Pumps			Х			2005	2-5		
Coagulant Storage Tank				Х		2005	20+		
Secondary Containment				х		2005	20+	Inadequate volume	

2.6.5. Secondary Clarification

Flow from the aeration tank effluent channel can be split between the two rectangular secondary clarifiers by a splitter box with stop gates. Typically, only one (1) clarifier is in operation at a time. Each rectangular secondary clarifier is 50-ft long and 11-ft wide. An access bridge extends the length of the clarifiers. The drives for the chain and flight scrapers are located on the walkway above each clarifier. Effluent troughs have v-notched weirs to control discharge from the clarifiers. Clarified effluent is discharged through a 12" pipe to filtration.

Flight scrapers scrape sludge along the bottom of the secondary clarifiers toward the influent end of each clarifier into a sump. A waste activated sludge (WAS) pump, located in the basement of the Operations Building, removes sludge from the clarifiers and transports it to the septage holding tanks. Return activated sludge (RAS) is drawn from the same

Figure 2-16 Secondary Clarifier

sump and conveyed back to the influent wet well via a gravity line. RAS flow is controlled by an electrically actuated pinch valve and flow is measured with a magnetic flow meter located on the RAS line.

The operators noted that they recently had drained both clarifiers, cleaned, and inspected the flight scrapers and both are in good working condition. Operators also noted that there was no grease skimmer on the clarifiers and that grease routinely passes through to the filters causing fouling of the cloth media.

Design information for the existing secondary clarifiers is presented in Table 2-12 on the following page.

Table 2-12 Secondary Clarifier Existing Design Information

Description	Existing Design	Notes
Secondary Clarifiers		
Number of Units	2	
Dimensions	50' x 11'	
SWD	10'	
Effective Weir Length	108'	
Surface Overflow Rate	202 gpd/sf @ ADF (0.222 MGD)	Meets design standards listed
(w/ 2 units in service)	1,047 gpd/sf @ PHF (1.152 MGD)	below
Weir Overflow Rate	2,056 gpd/ft @ ADF (0.222 MGD)	Meets design standards listed
(w/ 2 units in service)	10,667 gpd/ft @ PHF (1.152 MGD)	below
Sludge Collector		
Manufacturer/Model	FMC Corp. / Link-Belt Environmental	
	Equipment/ EE5057-G	
WAS Pumps		
Quantity	1	
Type	Double Disc, Positive Displacement Pump	
Manufacturer	Penn Valley Pump Co. Inc.	
Motor	7.5 HP	
Rating	150 gpm @ 18' TDH	
Equipment	VFD	
RAS Valve		
Quantity	1	
Туре	Pinch Valve	
Manufacturer	Red Valve	
RAS Flow Meter		
Type/Manufacturer	Magnetic/Siemens	
Model	SITRANS FM MAG 6000	
Size/Length	4-inch	
Typical RAS Rate	90% of effluent	

1. Average RAS Rate = 91.4% of Effluent Flow (January 2018 – February 2023)

Design Standards

- Surface Overflow Rate @ PHF
 - Extended Aeration 1,000 gpd/sf, 1,200 gpd/sf Contact Stabilization based on influent only (10 State Standards)
 - 1,140 gpd/sf (TR-16 @ SVI = 150 mL/g, MLSS = 3,000 mg/L)
 - Facility does not have MLSS data, SOR for MLSS = 3,000 mg/L used
- Weir Overflow Rate
 - Maximum weir loading rate of 20,000 gpd/ft at PHF for plants with an average capacity equal to or less than 1 MGD. (10 State Standards)
- Peak Solids Loading Rate @ PDF + Peak RAS Flow
 - Extended Aeration 35 lbs/d/sf, Contact Stabilization 40 lbs/d/sf (10 State Standards)
- Minimum of 12 ft side water depth. (10 State Standards)

Assessment

The assessment of the major components for the secondary clarifiers is summarized in Table 2-13, and the major needs are described as follows:

Findings:

- Clarifiers are in good working condition.
- Concrete tank structures were not evaluated. It is recommended that a concrete assessment be conducted.
- The surface overflow rate @ PHF meets the TR-16 design standard, assuming MLSS = 3,000 mg/L. If MLSS is greater than 3,000 mg/L, then the SOR standard may be exceeded.
- Lack of MLSS data does not allow for accurate solids loading rate analysis on the secondary clarifiers.

Table 2-13 Secondary Clarifier Assessment

Itom			nk of Ex Condit	_		Year Installed	Projected	Notes
Item	Po	or	Fair	Go	od	rear installed	Remaining	
	1	2	3	4	5		Life (years)	
Clarifier #1 Drive				Х		2005	10-15	
Clarifier #2 Drive				Х		2005	10-15	
Internal				х		2005	10-15	
Mechanisms						2003	10 10	
Launders, weirs				Х		2005	10-15	
Tankage				x		1972	20+	Concrete repaired in
Talikage				X		19/2	20+	2005 upgrade.
Walkway/Railings				Х		2005	20+	

2.6.6. Return and Waste Activated Sludge Pump System

There is one (1) waste activated sludge (WAS) pump located in the Pump Room in the lower level of the Operations Building. The WAS pump is a 7.5 HP Penn Valley Pump double disc, positive displacement pump rated for 150 gpm at 18 ft TDH. The WAS pump moves sludge to the aerated holding basins. The original design also allowed for the WAS to be pumped to the Aerobic Sludge Holding Tank. Operators indicated that many of the valves on the discharge piping are frozen, although they are systematically rebuilding them one at a time. WAS is wasted two (2) times per day for 1-hour intervals and is controlled by a timer. Operators indicate that the pump model is obsolete, and it is hard to get parts.

RAS flows by gravity back to the influent wet well. RAS flow is controlled by an electrically actuated pinch valve and flow is measured with a Siemens magnetic flow meter. Operators indicated that the RAS flow rate is set at 110 gpm. Historical data from January 2018 through February 2023 indicates that RAS is approximately 90% of forward flow.

Figure 2-17 WAS Pump

Table 2-14 RAS and WAS Existing Design

Description	Existing Design					
WAS Pump						
Quantity	1					
Туре	Double Disc, Positive Displacement Pump					
Manufacturer	Penn Valley Pump Co. Inc.					
Motor	7.5 HP					
Rating	150 gpm @ 18' TDH					
Equipment	VFD					
RAS Valve						
Quantity	1					
Туре	Electrically Actuated Pinch Valve					
Manufacturer	Red Valve					
RAS Flow Meter						
Type/Manufacturer	Magnetic/Siemens SITRANS FM MAG 6000					
Size/Length	4-inch					

Design Standards

 At facilities with an average design flow of 10 MGD or less, waste sludge pumping facilities should normally be designed with a maximum capacity of 25 percent of the average design flow and should provide a minimum flow rate of approximately 80 gallons per minute (to allow velocity of 2 feet per second in a 4-inch diameter pipe) (10 State Standards). • Suitable devices for observing, sampling, and controlling return activated sludge flow from each settling tank hopper shall be provided (10 State Standards).

Assessment

The assessment of the major components for sludge pumping is summarized in 2-15, and the major needs are described as follows:

Findings:

- The WAS pump is obsolete and parts are hard to obtain.
- The RAS pinch valve and flow meter operate well, however should be inspected for wear.
- There is only one (1) WAS pump with no redundancy provided.
- Multiple WAS plug valves are frozen.

Table 2-15 Sludge Pumping Condition Assessment

Item	Ranki	ng of E or	xisting Fair		ition	Year Installed	Projected Remaining	Notes
	1	2	3	4	5		Useful Life	
WAS Pump			х			2005	2-5	Pump model is obsolete and no redundancy is provided for
WAS plug valves		Х				2005	2-5	Many frozen valves
RAS Pinch Valve			Х			2005	2-5	
RAS Flow Meter			Х			2005	2-5	

2.6.7. Filtration

The tertiary process is located in the Filter/UV Room on the upper level of the Process Building and consists of two (2) steel package tanks, each containing two (2) cloth media disks with 5-micron fabric. Flow is split between the two units by way of a common manifold, though typical operation consists of one (1) unit in operation at a time. Flow can be throttled to each filter by means of a manual butterfly valve on the influent pipe to each filter unit.

Flow entering the filtration tank passes through the cloth membrane by gravity. Filtered water then enters the internal portion of the disk where it flows through the center-tube to an effluent box. Solids collected from the bottom of the tank are pumped via a 3 HP sludge removal pump to a drain line that drains back to the influent sewer. Filtered effluent flows by gravity via a 12" pipe to the UV disinfection system.

Figure 2-18 Filtration Tank

When a backwash cycle is initiated, the filter drive activates which rotates the filter disk at 1 RPM. The first backwash valve then opens, and the waste pump starts. Backwash is recycled to the influent wet well. One (1) of the backwash pumps was replaced in 2023. The other is on order and anticipated to be replaced in fall 2023.

Operators indicated that the filter units have been going into continuous backwash, causing the operators to have to manually waste sludge from the bottom of the filter tank by opening a drain valve. One suspected reason is polymer carryover from dewatering clogging the cloth media surface. Another is grease and solids carryover from the secondary clarifiers fouling the cloth fabric. All cloth media was replaced within the past few years. The operators noted that the filters are not controlled by the SCADA system and they have to manually turn on the second filter unit during high flows.

During the site visit, corrosion of the steel tanks was observed.

The influent weir for the filters is at 311.39 ft. and the top of the filter tank wall is at 313.22 ft, which are both below the 500-year flood elevation of 313.8 ft.

Design information for the existing filtration equipment is presented in Table 2-16.

Table 2-16 Filtration Existing Design

Description	Existing Design						
Filter Tanks							
Number of Tanks	2						
Manufacturer/ Model Number	Aqua-Aerobic Systems, Inc. Cloth Media Filter ADFP-54X2E-PC						
Number of Disks, Total	4 (2, 2-Disk Units)						
Dimensions	8' x 9'-2"						
SWD	7.84'						
Max Water Level	9.61'						
	53.8 sf/disk						
Filter Area Provided	107.6 sf/unit						
	215.2 sf total						
	1.43 gpm/sf @ ADF (0.222 MGD) – one filter unit (2 disks)						
Hydraulic Loading Rate	7.43 gpm/sf @ PHF (1.152 MGD) – one filter unit (2 disks)						
Tryuraunc Loading Nate	0.72 gpm/sf @ ADF (0.222 MGD) – two filter units (4 disks)						
	3.72 gpm/sf @ PHF (1.152 MGD) – two filter units (4 disks)						
	0.52 lbs TSS/sf/day @ ADF (0.222 MGD) – one filter unit (2 disks)						
Solids Loading Rate ¹	2.68 lbs TSS/sf/day @ PHF (1.152 MGD) – one filter unit (2 disks)						
Solius Loading Nate	0.26 lbs TSS/sf/day @ ADF (0.222 MGD) – two filter units (4 disks)						
	1.34 lbs TSS/sf/day @ PHF (1.152 MGD) – two filter units (4 disks)						
Sludge Removal Pump							
Quantity	2						
Power Draw	3 HP						
Motor Drives							
Quantity	2						
Power Draw	½ HP						

^{1.} Assuming tertiary influent concentration of 30 mg/L TSS.

Design Standards

- Filter systems should be designed to accommodate peak hourly flows with one unit in backwash mode and to accommodate filters operating at design maximum headloss through filter media. (TR-16)
- Filters should include provisions for automatic bypass in the event of filter media binding as well as provisions for positive flow distribution. (TR-16)
- Effluent filtration systems should include automatic control features to initiate backwash based on intervals of time or on high filter headloss. (TR-16)
- Filter systems should be provided with instrumentation to monitor headloss and turbidity of both filter influent and effluent, and to monitor for filter influent and backwash flows. (TR-16)
- Disc filters should be housed in heated and ventilated enclosures. (TR-16)
- Loading rates at peak hourly flow should not exceed 6.5 gpm/sf of filter surface area. (TR-16)
- A minimum of two filter units should be provided. (TR-16)
- A minimum of 100% of peak hourly design capacity with largest unit out of service. (VTDEC Design Guidance)

Assessment

The assessment of the major components associated with the filtration system are summarized in Table 2-17 on the following page, and the major needs are described as follows:

Findings:

- Filter units have been going into continuous backwash as cloth media is fouled. Operators need to manually waste solids using drain valves at bottom of tank.
- Polymer carry over from dewatering has negatively impacted cloth media performance.
- Significant corrosion on the steel tank, trough, and rusted filter drains was observed.
- Ventilation in the filter room is sealed/shut off and is not functional.
- Filters not connected to SCADA for automatic operation at high flows, must be manually start.
- Suction of settled solids is not functioning properly
- Filter tank wall elevation is below the 500-year flood elevation.

Table 2-17 Filtration System Assessment

Item			nk of Ex Conditi		3	Year Installed	Projected	Nata
item	Poor		Fair	Go	od	rear installed	Remaining Life (years)	Notes
	1	2	3	4	5		Life (years)	
Filter Tanks			х			2005	5-10	Rust needs to be addressed
Filter cloth		х				2022	0-2	Cloth is routinely fouled.
Sludge Pumps		х				2005	0-2	Sludge pump is not working properly
Backwash Pumps			х			2005/2023	2-5/10+	One backwash pump replaced in 2023
Motor Drives			Х			2005	2-5	
Backwash Valves			Х			2005	2-5	

2.6.8. Ultraviolet Disinfection

Ultraviolet (UV) disinfection is located in the Filter/UV Room on the upper level of the Process Building. The UV disinfection system consists of a package unit with two (2) banks of UV lamps in series with ten (10) modules in each bank and four (4) lamps in each module. The banks are housed in a stainless-steel channel with transition boxes for flanged pipe attachment at both inlet and outlet ends. A fixed serpentine weir located downstream of the second bank controls the surface water level and directs flow into an outlet transition box. Each bank provides full disinfection treatment at peak flows, providing full redundancy.

The operators indicated that the UV intensity meter was not working, however they have ordered a replacement and will install it soon. The operators also indicated that they have never had a disinfection violation.

It should be noted that the weir in the UV unit is at 308.95 ft and the top of UV channel is at 309.54 ft. These elevations are below the 100-year flood elevation of 310.5 ft and the 500-year flood elevation of 313.8 ft.

The design information for the existing UV disinfection system is presented in Table 2-18 on the following page.

Table 2-18 UV Disinfection Existing Design Information

Item Description	Existing							
UV Disinfection Design Conditions								
Average Daily Flow	0.222 MGD							
Peak Hourly Flow	1.0 MGD							
TSS	10 mg/L							
UV Dose @ UVT 60% and Peak Flow	36,724 uWs/cm ²							
Effluent Standards	77/100 ML E. coli							
UV Disinfection System								
Manufacturer / Model	Trojan System / UV3000 PTP							
Number of UV Banks	2 (1 duty, 1-stand-by)							
Number of UV Modules (Total)	20 (10/bank)							
Number of Lamps per Module	4							
Total Number of UV Lamps	80							
Liquid Depth	12.6"							
Width	30"							
Length	23"-2"							

Design Standards

- <u>Dosage Monitoring:</u> Each UV module should be equipped with a UV intensity meter responding only to light between 2,525 and 2,550 angstroms. The sensing device for this meter should be fixed at the area of minimum expected intensity. The sensor should be installed within a quartz sleeve. (TR-16)
- <u>Contact Period:</u> Sufficient contact time is required in a UV reactor to provide the established design dose at the delivered UV intensity under peak flow conditions.
- <u>Control Equipment:</u> Each UV module should activate a local and remote alarm signal when the
 UV intensity drops to 80 percent of original output. A spare PLC processor with a current
 program should be available.
- <u>UV Dose:</u> The system will provide a minimum UV dose of at least 30,000 microwatt-seconds per square centimeter at peak flow. (VT UV Disinfection Standard)
- Open Channel Units: For open channel units, at least two banks of lamps shall be provided, which operate in series. The multiple open channel units shall cumulatively provide at least the minimum required dosage at the facility's peak flow rate. (VT UV Disinfection Standard)

Assessment

The assessment of the major components for the disinfection system is summarized in Table 2-19 on the following page and the major needs are described as follows:

Findings:

• The UV intensity meter is not working, however a replacement has been ordered and will be installed in the near future.

• UV top of channel wall elevation is below the 100-year and 500-year flood elevations.

Table 2-19 UV Disinfe	ction System Assessment
-----------------------	-------------------------

Item			of Exist ondition	_		Year	Projected Remaining	Notes	
item	Po	or	Fair	Go	od	Installed	Life (years)	Notes	
	1	2	3	4	5		Life (years)		
UV Disinfection System			Х			2005	5-10	May need new controls.	
Stainless Steel UV Channel				х		2005	20+	Top of channel is below the 100-yr flood elevation	

2.6.9. Effluent Flow Measurement

Flow leaving the UV disinfection system flows from the UV outlet transition box through a 12-inch pipe into the effluent wet well. Effluent flow measurement is achieved by the use of a 90° vnotch weir and an ultrasonic level detector in the wet well. The 90° v-notch weir can accurately measure up to 1.616 MGD with 1.0 feet of head above the bottom of the v-notch according to Isco Open Channel Flow Measurement Handbook, 3rd Edition. Historical operating data suggested that the open channel Sigma 980 effluent flow meter seems to max out at 0.66 MGD, which would indicate a calibration issue or a malfunctioning flow meter. To solve this issue, the effluent flow meter was corrected and recalibrated. Additional effluent flow data collection beginning in October 2023 will help inform design criteria.

The TR-16 Standard is to accurately measure peak flows at the 25-year flood elevation and protect against the 100-year flood. As discussed in Section

Figure 2-20 Effluent Wet Well & V-Notch

1.4.2, the 100-year and 500-year flood elevations at the Richmond WWTF site are EL. 310.50 ft and EL. 313.77 ft, respectively. The invert of the v-notch weir is EL. 306.14 ft, which is below the updated 100-year flood elevation. A check valve is located on the effluent line to prevent water from hydraulically backing up the outfall during a 100-year or 500-year flood event. During the recent July 2023 flooding event, emergency use of a sump pump to lift flows to an external discharge point was used to prevent flooding of the Filter/UV Room. While the sump pump was able to keep up with flows during the most recent flooding event, it has not been properly sized to handle peak flows and provide redundancy.

A plant water system is not provided, and operators noted the WWTF uses significant potable water for screening and dewatering.

Effluent sampling is accomplished by an auto sampler located adjacent to the effluent channel that takes 24-hour composite samples from the effluent sump.

Table 2-20 Effluent Flow Measurement Existing Design Information

Item Description	Existing
Control Device	90° V-Notch Weir
Bottom of V-Notch Weir Elevation	306.13-ft
Measurement	Ultrasonic Flow Meter
Manufacturer/Model	Sigma 980
	Min: 0.03 MGD at 0.2' above v-notch
Flow Meter Capacity	Max: 1.616 MGD at 1' above v-notch
	Recorded Max: 0.66 MGD ¹

Notes:

1. Max effluent flow from historical operating data January 2018 to February 2023

Assessment

The assessment of the major components for the effluent flow measurement system is summarized in Table 2-21 on the following page, and the major needs are described as follows:

Findings:

- The effluent flow meter did not appear to be accurate based on recorded historical flow data. Since then, the meter has been corrected and recalibrated.
- The effluent weir elevation is at 306.14 feet which is below the 100-year flood elevation of 310.50 feet and will impact flow measurement accuracy during a flood event.
- The effluent wet well top of wall elevation is at 313.30 ft, which is below the 500-year flood elevation of 313.8 feet.
- Effluent check valve and sump pump downstream of weir is an emergency fix and not sized for peak flows or redundancy.
- No plant water system is provided.

Table 2-21 Effluent Flow Measurement Assessment

Item	Ranking of Existing Condition		Year	Projected Remaining	Notes			
item	Po	or	Fair	G	ood	Installed	Life	Notes
	1	2	3	4	5		(years)	
90° V-Notch Weir				Х		2005	20+	
Ultrasonic Flow Meter	х					2005	0-2	Flow meter was recently corrected and recalibrated.
Emergency effluent sump pump		х				2007	2-5	Not sized for peak flows. No redundancy.
Effluent Sampler			Х			2005	5-10	

2.6.10. Outfall

Disinfected effluent leaves the effluent wet well by means of a 12" pipe which flows to Manhole No. 13 prior to being discharged to the Winooski River through an 18" reinforced concrete outfall pipe. A check valve was added to the outfall after Tropical Storm Irene. This and the temporary provision of using a sump pump in the effluent well to discharge effluent flows to a higher elevation of the Winooski River prevented flooding of the lower level of the WWTF during the July 11, 2023 flood event.

The outfall was not observed during the site visit and therefore the condition could not be assessed.

Assessment

The assessment of the major components for the outfall is summarized in Table 2-22, and the major needs are described as follows:

Findings:

• Condition assessment of the existing outfall was not performed.

Table 2-22 Outfall Assessment

Hom	R		ing of E Condition		ing	Year	Projected Remaining	Notes	
Item	Po	or	Fair	G	ood	Installed	Life	Notes	
	1	2	3	4	5		(years)		
18" Outfall to Winooski River						1972	unknown	A condition assessment of the outfall was not performed.	

2.6.11. Septage Receiving Facilities

The Richmond WWTF has the ability to accept up to 2,000,000 gallons of septage per year. Septage receiving facilities consist of a septage receiving unit located on the upper level of the Processing Building with two (2) aerated holding basins below. The septage receiving unit consists of a cylindrical bar screen complete with screen basket, rotating rake, cleaning comp, screw conveyor, dewatering screw, screenings press with drive unit mounted in a stainless-steel tank, tank spray wash system, motorized inlet valve, and liquid level sensing system. Septage haulers manually record the volumes discharged. The Town has indicated that they would prefer to have a flow meter on the discharge to allow for more accurate record keeping.

Septage, along with WAS, discharges directly to either of the two aerated holding basins, each with a capacity of 23,000 gallons, located below the floor of the upper level of the Processing Building. Each tank is equipped with a diffused fine bubble aeration system and fed air

Figure 2-21 Septage Receiving Unit

from a 10 HP, 200 scfm positive displacement blower with a VFD located in the basement of the Process Building. Alternatively, the diffused aeration system can also be fed from the aeration tank blowers.

A single sludge transfer pump is provided to transfer sludge from either of the two tanks to the aerobic sludge holding tank or between the two tanks. The operators indicated that the pump runs well, however the model is obsolete, and it is hard to get replacement parts. The aerated holding basins were designed to be decanted to increase the solids concentration using manually operated decant valves and ports on each basin that drain to the influent sewer; however, the operators indicated that decant has never been used and has since been disconnected.

The inside of the holding tanks was not accessed and therefore not evaluated. During the time of the site visit, operators indicated that there is about 4 feet of solids accumulated in the tanks and they have been experiencing issues with the diffusers in the aerated holding basins. They indicated that as the tanks are considered a confined space, they will need to contract with an outside firm to do the cleaning. Since the visit, solids have been removed from both holding tanks.

The ventilation system within the septage receiving area in the upper Process Building is inoperable. Additionally, vents have been cut into the electrical room housing the motor control center (MCC) in the septage receiving garage, allowing heat from the electrical room to vent into the septage receiving area. The septage receiving area is classified as Class I, Division 1, hazardous space per NFPA 820. Equipment located in this space and shared air space are required to have explosion proof motors.

The design information for the existing septage receiving facilities is presented in Table 2-23 on the following page.

Table 2-23 Septage Receiving Facilities Existing Design Information

Description	Existing Design
Septage Receiving Unit	
Manufacturer	Lakeside Equipment Corp.
Hydraulic Capacity	400 gpm (up to 3% solids)
Aerated Holding Basins	
Quantity	2
Dimensions	21.58' x 14.58'
SWD	10'
Capacity	23,000 gal (each)
Aerated Holding Basin Tank Blower	
Number of Blowers	1
Location	Process Building Basement
Blower Type	Positive Displacement
Power Draw	10 HP
Capacity	200 scfm @ 5 psig
VFD	Yes
Aerated Holding Basin Aeration System	
Diffusers	Fine Bubble, Membrane Type
Manufacturer	Sanitaire Aeration System
Sludge Transfer Pump #1	
Quantity	1
Location	Process Building Basement
Туре	Double Disc, Positive Displacement
Power	7.5 HP
Capacity	150 gpm @ 18 ft TDH
VFD	Yes

Design Standards

- Without pretreatment or wastewater process modifications, septage addition should not exceed 2-5 percent of actual wastewater flow on any day and must be slowly metered into the wastewater stream during periods of the day with higher flow. (TR-16)
- The receiving station area must collect and contain any septage spilled during unloading. Equipment and space for washdown must be provided, including water with ample pressure, hose, and spray nozzle. (TR-16)
- Receiving facilities should provide for the containment, collection, and treatment of odors. (TR-16)
- A sludge storage system should be equipped with mixing devices to prevent separation of solids and to provide a more uniform feed-to-dewatering device. Aeration may be required if the sludge is unstabilized. (TR-16)
- A minimum mixing and oxygen requirement of 15-20 cfm per 1,000 cf of tank volume is recommended for WAS with the largest blower out of service. If diffusers are used, the nonclog type is recommended, and they should permit continuity of service. If mechanical aerators are used, a minimum of 1.0 HP per 1,000 cf should be provided. (TR-16)

- Pumps for handling the septage should be non-clogging and capable of passing 3-inch diameter solids. (10 State Standards)
- Sludge withdrawal piping should have a minimum diameter of 8 inches for gravity withdrawal and 6 inches for pump suction and discharge lines. For dilute sludges, the available head should provide a velocity of at least 3 feet per second at the design flow. (TR-16)
- Class I Division 1 sludge storage wet wells, pits, and holding tank spaces require combustible gas detection system, portable fire extinguisher, and hydrant protection. (NFPA 80)

Assessment

The assessment of the major components for the septage receiving facilities is summarized in Table 2-24, and the major needs are described as follows:

Findings:

- The septage receiving unit is reaching the end of its anticipated useful life and was found to be in poor condition, the bearings are gone, and the auger has significant wear.
- Septage receiving unit must be manually cleaned out by operators.
- The Town is interested in a key card system with a flow meter for recording septage hauler discharges.
- There is significant solids accumulation in each aerated holding basin, causing clogging issues with the diffusers.
- Aerated holding basins are a confined space.
- The aerated holding basins decant system has been disconnected.
- Plug valves on septage holding tanks are not operable.
- There is no redundancy provided for the sludge transfer pump. The pump model is obsolete making parts hard to obtain.
- The ventilation system is not operable in the garage where the septage receiving unit is located. Vents have been cut into the electrical room providing airflow between the two spaces.
- The septage receiving room is not compliant with NFPA 820 hazardous classifications.

Table 2-24 Septage Receiving Facility Assessment

	Ran	k of	Existing	Cond	ition	Year	Projected	
Item	Poor		Fair	Fair Good		Installed	Remaining	Notes
	1	2	3	4 5	5	installed	Life (years)	
Septage Receiving Unit			Х			2005	2-5	
Aerated Holding Basins				х		2005	20+	Significant solids accumulation
Septage Receiving Diffusers	Х					2005	0-2	Diffusers are clogged by accumulated solids
Tank Decant	Х							Decant has been disconnected.
Septage Receiving Blower			Х			2005	5-10	
Sludge Transfer Pump #1			х			2005	2-5	No redundancy provided. Model is obsolete.

2.6.12. Aerobic Sludge Holding Tank

Sludge from the two aerated holding basins is pumped by the sludge transfer pump to the aerobic sludge holding tank. The aerobic sludge holding tank can hold 34,000 gallons and is equipped with coarse bubble diffusers. Air to the diffuser system is supplied by a 10 HP, 170 scfm blower located in the one-room structure located over the aerobic sludge holding tank, which also houses the grit blower. The intake for the blower is internal to the building.

The aerobic sludge holding tank was not drained to evaluate the condition of the concrete tank, nor the existing diffusers. The operators noted that the tank needs to be cleaned as there is an accumulation of rocks, grit, and rags in the tank which are creating plugging issues with the downstream sludge transfer and feed pumps. The non-uniform bubble pattern observed on the surface of the tank contents during the evaluation indicates that some of the diffusers may be clogged and inoperable.

Figure 2-22 Aerobic Sludge Holding Tank

Table 2-25 Aerobic Sludge Holding Tank Existing Information

Description	Existing Design
Aerobic Sludge Holding Tank	
Dimensions	38' x 8.5'
SWD	14'
Capacity	34,000 gal (each)
Aerobic Sludge Holding Aeration System	
Diffusers	Coarse Bubble
Туре	unknown
Number	unknown
Air Required for Mixing	140 scfm
Blowers	
Number of Blowers	1
Manufacturer	Aerzen USA Corp.
Blower Type	Positive Displacement
Capacity	170 scfm at 7 psi
Motor	10 HP
VFD	Yes

Assessment

The assessment of the major components for the aerobic sludge holding tank is summarized in Table 2-26, and the major needs are described as follows:

Findings:

- The concrete tank structure was not able to be evaluated. It is recommended that a concrete assessment be conducted.
- Operators noted that the tank needs to be cleaned as there is an accumulation of rocks, grit, and rags.
- Observance of non-uniform buddle pattern at surface indicates that some diffusers in the aerobic sludge holding tank are not operational and need to be changed.

lhous	Ranking of Existing Condition Year		Projected Remaining	Notes				
Item	Po	or	Fair	G	ood	Installed	Life	Notes
	1	2	3	4	5		(years)	
Aerobic Sludge Holding Tank			х			1972	20+	Concrete assessment needed. Tank requires cleaning due to accumulation of rags/rocks/grit.
Diffusers Coarse Bubble	х					1972	0-2	Some diffusers appear clogged. Need to be replaced.
Blower			Х			2005	5-10	

2.6.13. Dewatering Facilities

A separate Dewatering Building is located at the far side of the site and houses sludge pumping equipment, a sludge day tank, rotary press, polymer feed system, dewatered sludge cake conveyors, and a sludge trailer. A site visit by the manufacturer of the dewatering equipment, Fournier, was made on September 30, 2023, and the summary report of the technician's findings is presented in Appendix B.

When the dewatering equipment is in operation, sludge is removed from the aerobic sludge holding tank using the sludge transfer pump located in the Dewatering Building which originally discharged through a sludge grinder to the sludge day tank, also located in the Dewatering Building. The sludge grinder has since been removed by the operators.

Figure 2-23 Sludge Day Tank

The sludge day tank is a 3,000-gallon fiberglass tank which supplies sludge to the dewatering process. The tank has an access hatch at the top and is equipped with a mixer, to keep the contents mixed, and a level detector that is integrated into the controls of the sludge transfer pump and the sludge feed pump. The operators have noted that the sludge day tank needs to be cleaned out as the sludge feed pump routinely gets plugged from rags passing through. The

operators also noted that there is no way to remove the mixer from the day tank as there is no headroom above the tank for the long shaft.

Figure 2-24 Rotary Press

The sludge feed pump pumps sludge directly to the dewatering equipment, specifically the flocculator, where sludge is mixed with polymer from the polymer feed system. This pump is directly controlled by the rotary press PLC. The inspection report noted that sludge gravity flows through the pump from the day tank, either indicating that new pump interior parts are needed, or sludge valves need replacing.

A two-channel rotary press, located in the Sludge Dewatering Building, provides sludge dewatering using rotating perforated screens. Sludge is fed from the sludge day tank into the flocculator where polymer is injected into the sludge via a polymer feed

pump. Conditioned sludge then enters a manifold and is divided into a series of circular channels. In the channel, sludge is sandwiched between two (2) low speed rotating perforated screens. The operators noted that maintenance on the rotary press has lapsed, resulting in operational issues. It was noted that regular cleaning is necessary every six months at a minimum. Currently, only one (1) channel in the two (2) channel rotary press is operational. The manufacturer's report indicates that the one inoperable channel has significant damage to it's screen, however all four screens are very warn.

The polymer feed system is located in the Sludge Dewatering Building and injects polymer to the sludge dewatering flocculator. The polymer feed system consists of a package system that provides for the mixing of polymer with water in a mixing chamber and then uses a chemical metering pump to transfer dilute polymer to a batch tank, where the polymer can age. A progressive cavity pump equipped with a VFD then feeds the dilute polymer to the Rotary Press flocculator. The polymer feed system automatically controlled by the rotary press control panel.

Figure 2-25 Rotary Press Conveyor System

A conveyor system is used to transfer dewatered sludge cake from the rotary press to a roll-off

Figure 2-26 Inclined Conveyor

During the site visit, it was noted that the Dewatering Building does not have proper ventilation. The operators have noted there are significant odors issues and a build-up of ammonia gases, especially in the winter season when garage doors are kept closed. At the time of the site visit, operators noted that the only control for the overhead door is inside the building and across the room from the main entrance. Since then, a switch has been installed on the exterior of the building to allow operators the ability to open the overhead door and vent gases without having to enter the building. A fair amount of corrosion of metal components in the Dewatering Building was also observed during the site visit.

Additionally, the floor of the dewatering building does not have a rear floor drain, causing difficulties managing drainage from the sludge trailer. Operators expressed interest in a water meter on the water line to

container where it is taken off-site for final disposal. The conveyor consists of three parts: a discharge conveyor, the inclined conveyor, and the distributing conveyor. All three are hollow flight screw type conveyors. The discharge conveyor runs horizontally for 9 feet from the discharge chutes of both channels of the rotary press to the inclined conveyor. The inclined conveyor is 20 feet in length with an approximate slope of 37 degrees. This conveyor brings dewatered cake up to the middle of the distributing conveyor. The distributing conveyor is approximately 32 feet in length and is elevated over the parked roll-off container. The distributing conveyor has openings at either end, and two pneumatically operated slide gates to distribute dried cake evenly within the container. The hollow flight conveyor within the distributing conveyor has a reversing motor to allow cake to be discharged to either end. The operators noted that both the auger and screw were replaced in the Spring of 2022, and that the screw broke again in December of 2022. During the repair, staff noted that the liner needed to be replaced.

Figure 2-27 Dewatering Building

the dewatering building to monitor the cost of potable water used during dewatering, as well as a dedicated electrical meter for the building to assess power consumption.

Table 2-27 Sludge Dewatering Existing Design Information

Description	Existing Design			
Sludge Transfer Pump (From Digester to Day Tanl	k)			
Quantity	1			
Туре	Double Disc, Positive Displacement			
Manufacturer	Penn Valley Pump Co. Inc.			
Capacity	50 gpm			
Max TDH	25.5 ft			
Min TDH	11.5 ft			
Max Suction Lift	19 ft			
Min Suction Lift	5 ft			
Motor	5 HP			
VFD	Yes			
Sludge Day Tank				
Quantity	1			
Capacity	3,000 gal			
Туре	Fiberglass Tank			
Mixer	Shaft impeller			
Sludge Feed Pump (From Day Tank to Rotary Pres	'			
Quantity	1			
Туре	Double Disc, Positive Displacement			
Manufacturer	Penn Valley Pump Co. Inc.			
Flow Rate	0-60 gpm			
Max TDH	20 ft			
Min TDH	0 ft			
Motor	3 HP			
VFD	Yes			
Control	Rotary Press PLC			
Sludge Dewatering				
Solids Feed ¹	Volume Pressed: 26,445 gpd			
Solids Concentration ²	WAS: 9,300 mg TSS/L			
	Septage: 1,760 mg TSS/L			
Average Solids Feed % ³	0.26%			
Sludge Disposal	98 wet tons/month ¹			
	28.6 dry tons/month ³			
Manufacturer/Model	Fournier Industries Inc. 2-900/2000CV			
Туре	Rotary Press with Flocculator			
Number of Units	1			
Channels	2			
Channel Diameter	36"			
Motor	7.5 HP			
Through-put⁴	100 lbs/hr/channel			

Description	Existing Design
Flow Meter	
Type/Manufacturer	Magnetic/Endress and Hauser
Size	3"
Conveyor System	
Type	Hollow flight screw conveyor
Discharge Conveyor Length	9'
Inclined Conveyor Length	20' @ 37 degrees
Distributing Conveyor Length	32'
Slide Gates	Pneumatically operated
Polymer Feed System	
Туре	Liquid polymer activation, dilution, and feed system including mixing chamber and feed pump
Storage	55-gallon drums
Chemical Feed Pump Type	Positive Displacement, Diaphragm Type
Number of Pumps	1
Metering Pump Flow Range	0.4 – 8.0 gph
Dilution Water Flow Range	120 to 1,200 gph
Application Points	Sludge Dewatering Flocculator

Notes

- 1. Average is from historical operating data from January 2018-February 2023.
- 2. Concentration is from 9/21/2022 sampling event.
- 3. Calculated from historical operating data and sampling event.
- 4. From Rotary Press Basis of Design
- 5. Cake solids is average of five dewatered sludge testing results from 2022.

Design Standards

- The operating period should not usually exceed 30 hours per week, which allows one-shift operation with time for chemical makeup, cleanup, and delays. (TR-16)
- Hydraulic loading rate of a single drive unit ranges from 5 to 250 gpm, with a maximum loading rate of 50 gpm per channel. (TR-16)
- Facilities should be provided for ventilation of the dewatering area. (TR-16)
- Floors should be pitched and drained for cleaning purposes and should be slip-proof. (TR-16)
- Volume of containment area be no less than 125% of the tank volume for hazardous or corrosive chemicals. (TR-16)

Assessment

The assessment of the major components of the dewatering system are summarized in Table 2-28, and the major needs are described as follows:

Findings:

 Significant wear and damage to the screens of the dewatering press screens was observed by the manufacturer's technician during the September 30th site visit. Significant repairs are warranted to keep dewatering operations functional.

- The grinder has been removed from the sludge transfer line.
- No ventilation is provided in the sludge dewatering room resulting in accumulation of corrosive gases and odors within the building.
- No gas detection system in building.
- Day tank needs to be cleaned.
- Mixer in the sludge day tank has a long shaft and there is no way to remove.
- Lack of floor drain at rear of sludge trailer makes it difficult to manage drainage from trailer.
- Polymer system defaults to over-pumping when power is lost.
- Operators noted that the hollow flight augers of the conveyors are deteriorated and need replacement, as well as the liner.
- A check valve on the line between the aerobic sludge holding tank and day tank was added and is cleaned daily.
- The feed pump to the dewatering press plugs frequently.

Table 2-28 Dewatering Facilities Assessment

Itom	Rank of Existing Condition				· · · · · · · · · · · · · · · · · · ·						Condition Year Projected	Notes
Item	Po	or	Fair	Go	od	Installed	Remaining Life (years)	Notes				
	1	2	3	4	5		Life (years)					
Sludge												
Transfer			х			2005	2-5					
Pump												
Sludge Day			x			2005	2.5	Needs cleaning. No way to get				
Tank			Χ			2005 2-5		mixer shaft out of tank.				
Sludge		х				2005	0-2	Plugs frequently.				
Feed Pump		X				2005 0-2		Flugs frequently.				
Rotary	x					2005 0-2		Maintenance and repairs required				
Press	۸					2003	0-2	to remain operational				
Flocculator	Х					2005	0-2	Leaking at seal shaft				
Flow Meter			Х			2005	2-5					
Conveyor	.,					2005	0.2	Screw auger is shot. Liner has been				
System	Х					2005 0-2		replaced several times				
Dewatering		.,				2005	2.5	Severe corrosion inside building				
Building		Х				2005	2-5	due to build-up of corrosive gases				

2.6.14. Operations Building

The Operations Building was built in 1972 and has undergone modifications and renovations in the 2005 upgrade. The upper level houses the office and laboratory, bathroom, and break room, while the lower level houses the RAS and WAS pump systems, influent pumping, and mechanical room. The roof drains of the Operations Building are connected directly to the influent wet well. Currently, there is no access hatch to reach the influent pumps located underneath the laboratory, and the operators expressed a need for better access.

Richmond Wastewater Treatment Facility 20-Year Evaluation Section 2 – Existing Facilities

The operators indicated that the control on the boiler have all been replaced and they are continuously having to repair it. They also noted that HVAC systems throughout the facility need to be completely replaced.

As part of the 2005 upgrade, an extension to the existing Operations Building was constructed to include the garage that houses septage receiving, workshop space, and an electrical room containing the motor control center (MCC).

Observations noted during the May 2023 site visit include the following:

- Boiler needs to be replaced.
- HVAC systems need to be replaced
- Laboratory refrigerator is inoperable.
- Operations Building roof drains to the influent wetwell.
- Doors and windows are original to plant.
- No method to hoist influent pumps from basement.
- Washer/dryer discharges to the floor drain and vents to the building interior.

2.6.15. Site

As previously mentioned in Section 1.4.2, the new flood elevation determination by FEMA in 2014 resulted in a 2 foot increase in the 100-year flood elevation. The new **100-year** and **500-year** flood elevations at the location of the Richmond WWTF are **310.50** feet and **313.77** feet, respectively.

The ground elevation around the Process Building, which houses the chemical storage, UV disinfection, and filter units, is **313.50 feet**. While the Process Building will be protected from a 100-year flood event, there is risk of flooding during a 500-year flood event.

The ground elevation of the Operations Building is at approximately **314.00 feet** and is protected from the 100-year and 500-year flood events.

Other site observations made during the May 2023 site visit include the following:

Stand-by Generator:

There is a 150-kW diesel engine driven generator, rated 150 kW at a governed speed of 1,800 rpm providing 480 volt, 3-phase stand-by electrical service located outside of the Blower Building. The generator has an approximately 390-gallon skid-mounted No. 2 diesel fuel tank capable of providing 24 hours of operation. When a loss of utility power occurs, the amount of load placed on the stand-by generator is limited to loads deemed critical for maintaining operation, including: one (1) influent pump, screening & grit removal, anoxic selector submersible mixers, one (1) aeration tank blower, secondary clarifiers, RAS pinch valve, RAS flow meter, two (2) filter units, UV disinfection system, influent & effluent flow metering, automatic samplers, SCADA system & PLC, heating, and lighting.

While the operators indicated that the generator operates well, it is noted that there is a need for an electrical assessment for the Richmond WWTF as one does not currently exist.

Plant Water System:

The Richmond WWTF does not have a plant water system and Town water is used throughout the site. The operators have expressed a desire to implement a plant water system to reduce the Town water consumption and cost.

<u>Former Sludge Drying Bed:</u> The former sludge drying bed has been converted to a storage area. There is no electricity to this area and the operators indicated wanting to supply power and heat to the garage to allow for other opportunities for use.

<u>Site Fence:</u> The facility is surrounded by a security fence with access gates at the driveway entrance and behind the Storage Garage. Feedback from the trucking company that delivers the sludge trailer indicates the need for a wider gate opening at the main entrance.

Assessment

The assessment of the major components is summarized in Table 2-29 for the WWTF site.

Table 2-29 Site Assessment

Item	R	Ranking of Existing Condition		Year	Projected Remaining	Notes		
item	Poor		Fair	Good		Installed	Life	Notes
	1	2	3	4	5		(years)	
Process Building					х	2005	20+	Finished floor at 313.50 is below the 500-yr flood elevation
Generator				х		2005	10-15	An electrical assessment of the generator is recommended.
Storage Garage	x					?	0-2	Installation year unknown – between 1972 and 2005. No electricity.
Security Fence & Entrance Gate			Х			2005	5-10	Wider main entrance gate needed for sludge trailer
Yard Hydrants & yard piping			х			1972/2005	2-5	Addition yard piping added in 2005

2.6.16. WWTF Electrical System and Instrumentation

General

A detailed electrical and instrumentation review by an electrical engineer was not included in the scope of work. General observations are provided in the following section.

Applicable Codes and Standards

The electrical systems design for the refurbishment of the wastewater treatment facility must meet applicable State of Vermont and Fire, Electrical and Energy codes. The electrical systems design for the planned upgrades at the WWTF will consider the following codes and standards:

- Vermont Fire and Building Safety Code (2015)
- The National Electrical Code (NFPA 70) (2020)
- The National Fire Alarm and Signaling Code (NFPA 72) (2013)
- Vermont Access Rules (2012)
- Americans with Disabilities Act Accessibility Guidelines (ADAAG), July 26, 1991
- Vermont Commercial Building Energy Standards (CBES) (2020)
- NFPA 1 (2015), Fire Code
- NFPA 101 (2015), Life Safety Code
- IBC (2015), International Building Code
- NFPA 37 (2010), Standard for the Installation and Use of Stationary Combustion Engines and Gas Turbines
- NFPA 110 (2013), Standard for Emergency and Standby Power Systems
- NFPA 820 (2012), Standard for Fire Protection in Wastewater Treatment and Collection Facilities
- Technical Report #16 (TR-16) Guides for the Design of Wastewater Treatment Works prepared by the New England Interstate Water Pollution Control Commission.

2.6.17. Existing Conditions

Motor Controllers

The motor control center (MCC) is located in the Operations Building Garage. Outside ventilation has been dismantled and vents have been cut into the room connecting the air space with the Operations Garage that is classified as a Class I, Division I hazardous space as it contains the septage receiving unit.

PLC/SCADA System/Alarm Communications

The central plant PLC/SCADA system was installed in the 2000 upgrade.

LCS recently repaired the dialer from the alarm system to have the alarm send texts to staff cell phones until the alarm is cleared in SCADA. The Town intends to have LCS set up to alarm system to call the pager when there is an alarm condition and the cell service is not working.

2.7 Condition of Collection System

Pending

2.8 Condition of Pump Station

Pending

2.9 Financial Status of Any Existing Facilities

2.9.1. Wastewater Revenue

The Town of Richmond's Water and Wastewater Budget pays for wastewater treatment, pump station and force main conveyance operation, maintenance, and capital costs within the Town. A detailed Water and Wastewater Budget for Fiscal Year (FY) 2024 is presented in Appendix C. Table 2-30 summarizes budgeted wastewater revenue generated to support existing municipal wastewater facilities.

Table 2-30 Richmond Wastewater Revenue

Description	FY 22 Budget	FY 22 Actual	FY 23 Budget	FY 24 Budget		
Wastewater Revenue						
Sewer User Receipts	\$357,337	\$373,213	\$361,326	\$292,874		
Hook-Up Fees - Sewer	\$1,000	\$3,213	\$1,000	\$1,000		
Net Interest on Checking Account	\$1,200	\$1,998	\$1,500	\$14,000		
Fund Balance Usage			\$48,394			
Septage Receipts	\$430,000	\$483,577	\$460,000	\$550,000		
Wastewater Revenue Subtotals	\$789,537	\$862,001	\$872,220	\$857,874		

2.9.1.1. User Rate Structure

Richmond's sewer user rates are summarized in Table 2-31. The average annual fee for the average homeowner is \$565.73 per year.

Table 2-31 Richmond Wastewater User Rate Structure

Sewer User Type	User Rate	
Commercial	\$475.05/Annual Fee	
Commercial	\$16.17/1,000 gal treated	
Residential	\$169.72/Annual Fee	
Residential	\$18.87/1,000 gal treated	

2.9.2. Wastewater Expenses

Table 2-32 summarizes budgeted wastewater expenses for Richmond's municipal wastewater facilities.

Table 2-32 Richmond Wastewater Expenses

Description	FY 22 Budget	FY 22 Actual	FY 23 Budget	FY 24 Budget		
Wastewater Expenses						
Wastewater Administration Expenses	\$251,622	\$264,477	\$305,046	\$344,635		
Wastewater Operating Expenses	\$329,900	\$393,699	\$359,900	\$416,800		
Wastewater Capital Expenses	\$208,015	\$207,955	\$207,274	\$96,439		
Wastewater Expenses Subtotals	\$789,537	\$866,131	\$872,220	\$857,874		

2.10 Water/Energy/Waste Audits

There are no water, energy, and waste audits for the Richmond WWTF.

3. NEED FOR PROJECT

3.1 Health, Sanitation and Security

The reliable function of the wastewater treatment system is required to protect public health and sanitation by meeting the requirements of the Richmond WWTF NPDES discharge permit. The Richmond WWTF has effectively met its permit requirements over the past 5 years and has not had any exceedances during this time.

3.2 Aging Infrastructure

Age related needs were identified in the assessments completed in Section 2.5.8 for the Richmond WWTF. Some items requiring upgrade are original (1972) to the plant while others were implemented during the 2005 upgrade. Equipment has reached the end of its useful life and upgrade is recommended. Table 3-1 summarizes the needs for the WWTF.

Table 3-1 Summary of Major Deficiencies

	Projected Date of Required Upgrade					
Item Description	<2 Years	2 to 5 Years	6 to 10 Years	11 to 15 Years	20+ Years	
Influent Pump #1	\checkmark					
Influent Pump #2	✓					
Grit Removal		✓				
Anoxic Tank Mixers & VFD's		✓				
Aeration Tank Diffusers & Blowers			✓			
Clarifier Drives, Internal Mechanisms,				✓		
Launders, & Weirs, & Walkway/Railings				v		
Clarifier Tankage					✓	
WAS Pump		✓				
RAS Flow Meter		✓				
Filtration Backwash Pump, Motor Drives,		√				
& Backwash Valves		V				
Filtration Sludge Pumps & Filter Cloth	\checkmark					
Filter Tanks			✓			
UV Disinfection System			✓			
Stainless Steel UV Channel					✓	
Aerobic Sludge Holding Tank					✓	
Aerobic Sludge Diffusers	✓					
Aerobic Sludge Blower		✓				
Sludge Day Tank, Transfer Pump, Feed		√				
Pump & Flow Meter		٧				
Rotary Press & Flocculator	✓					
Conveyor System	✓					
Dewatering Building		✓				

In addition to the summary of the major deficiencies at the Richmond WWTF, an emphasize is placed on the following immediate needs:

• Influent Pumps: the influent pumps are at risk of imminent failure and immediate replacement is recommended.

3.3 Reasonable Growth

3.3.1. Existing and Future Wastewater Flows

A proposed sewer service expansion area exists along the east side of West Main Street in Richmond, VT from Richmond Village to the I-89 interchange. Wastewater in the area is currently treated by individual on-site systems which is limiting growth potential. The expansion project is split up into three (3) phases, where Phase 1 and Phase 2 involve the expansion of the sewer collection system along the east side of West Main Street. Phases 1 and 2 are estimated to have a total future average daily wastewater flow of 8,420 gpd.

Phase 3 of the expansion project includes extending the sewer collection system to an existing mobile home park and commercial fuel company. Phase 3 of the future expansion area is considered separately from Phases 1 & 2 as implementation of Phase 3 is unknown at this time. Table 3-2 below depicts the future average daily wastewater flows associated with each phase of the sewer expansion area.

Table 3-2 Future Sewer Expansion Area Wastewater Flows

Expansion Phase	Future Average Daily Wastewater Flow ¹ (gpd)
Phase 1	2,945
Phase 2	5,475
Phases 1 & 2 Total	8,420
Phase 3	36,420
Phases 1, 2, & 3 Total	44,840

Notes:

1. July 2021 West Main Sewer Extension Preliminary Engineering Report

In addition to the proposed expansion areas, the current unconnected committed allocations are 3,530 gallons per day between the residences and commercial users listed in Table 3-3.

Table 3-3 Unconnected Committed Sewer Allocated Flows

Area	Unconnected Committed Sewer Allocated Flows ¹ (gpd)
Peaceable Kingdom (residential)	1,680
Whistle Stop Lane (residential)	680
112 E. Main Street (residential)	210
DS0022 (residential & commercial)	960
Total	3,530

Notes:

1. July 2021 West Main Sewer Extension Preliminary Engineering Report

Combining the unconnected committed sewer allocated flows with the proposed expansion area Phase 1-3 flows, the total flow of proposed and committed unconnected sewer allocated flows is 48,370 gpd.

Assuming that the current unconnected committed sewer allocated flows and the total proposed expansion area are implemented during the next 20-years, Table 3-4 presents the future wastewater treatment capacity at the Richmond WWTF.

Table 3-4 Future Wastewater Treatment Flow Capacity

Description	Wastewater Flow (gpd)
WWTF Permitted Design Capacity	222,000
80% of WWTF Permitted Design Capacity	177,600
Historical Average Daily Flow ¹	73,000
Unconnected Committed Sewer Flows	3,530
Proposed Future Expansion Area Flows (Phases 1-3)	44,840
Total Remaining WWTF Treatment Capacity ²	56,230

Notes:

- 1. Historical Average Daily Flow from January 2018 February 2023
- 2. Assuming proposed future expansion area flows are implemented

As discussed in Section 1.5, average daily flow entering the Richmond WWTF is not anticipated to exceed the design flow of 0.222 MGD over the 20-year planning horizon.

3.4 Design Criteria

3.4.1. Influent

The original influent design criteria, current influent conditions, and proposed influent design criteria for the liquid treatment processes at the Richmond WWTF are presented in Table 3-5 on the following page. Historical operating data is discussed in Section 2.5.

In order to determine the peak hour flow and current peaking factor, additional data collection is required due to the historical inaccuracy of the effluent flow meter. This peaking factor will be used to

determine the future peak hour flow throughout the wastewater treatment facility. Since this data collection issue was identified, the effluent flow meter has been corrected and recalibrated. Additional data collection beginning in October 2023 will help inform decisions surrounding pending design criteria.

The proposed design criteria are pending future conversations with the Town of Richmond regarding the intent of future septage receiving volumes and practices. There is no flow meter on the dewatering pressate line, making it difficult to determine the nutrient load to the liquid treatment stream associated with pressate and originating from septage receiving.

Table 3-5 Richmond WWTF Proposed Influent Design Criteria

Parameter	Original Design ^{1,2}	Current Conditions ^{3,4}	Proposed Design Criteria	
Average Daily Flow	0.222 MGD	0.073	0.222 MGD	
Peak Daily Flow	-	pending	pending	
Peak Hour Flow	1.152 MGD	pending	pending	
Biochemical Oxygen	324 mg/L	670 mg/L	pending	
Demand	600 lbs/day	411 lbs/day	penang	
Total Suspended Solids	270 mg/L	932 mg/L	pending	
Total Suspended Solids	500 lbs/day	573 lbs/day	penality	
Total Phosphorus	10 mg/L	19.5 mg/L	pending	
Total Nitrogen	-	-	-	
Temperature (min/avg/max)	10/_/20°C	4/15/26°C	pending	

Notes:

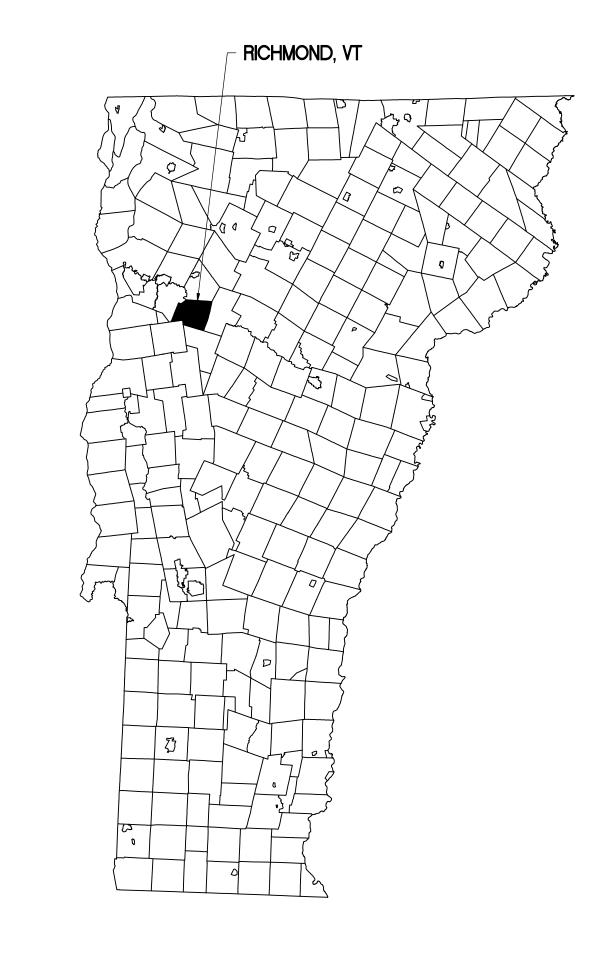
- 1. Source: Basis of Design, 2003
- 2. Original design criteria BOD and TSS concentration are back calculated using design loads and design ADF. Original design criteria TP load is back calculated using design concentration and design ADF.
- 3. Based on Monthly Operating Report data from January 2018 to February 2023. Note that influent data is from wet well samples, which include municipal influent, RAS, and pressate.
- 4. Historical BOD and TSS loads are back calculated using historical average flows and concentrations.

3.4.2. Effluent

Effluent design criteria for the Richmond WWTF are based on the existing NPDES permit and are provided in Table 3-3 on the following page. The existing NPDES permit expires on December 31, 2025.

Table 3-3 Richmond WWTF Upgrade Effluent Design Criteria

Parameter	Original Design Criteria ¹	Proposed Design Criteria ²
Flow (Annual Average)	0.222 MGD	0.222 MGD
BOD (Monthly Average)	30 mg/L	30 mg/L
TSS (Monthly Average)	30 mg/L	30 mg/L
Total Phosphorus (Monthly Average)	0.8 mg/L	0.8 mg/L
Total Phosphorus (Annual Load)	134 lbs/year	134 lbs/year
Total Nitrogen (Annual Average)	Monitor Only	Monitor Only
Total Kjeldahl Nitrogen (TKN) (Daily Maximum)	Monitor Only	Monitor Only
Nitrate/Nitrite Nitrogen (NOx) (Daily Maximum)	Monitor Only	Monitor Only
Settleable Solids (Instantaneous Maximum)	1.0 mL/L	1.0 mL/L
E. coli (Instantaneous Maximum)	77 CFU/100 ml	77 CFU/100 mL
рН	6.5-8.5 S.U.	6.5-8.5 S.U.

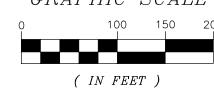

Notes:

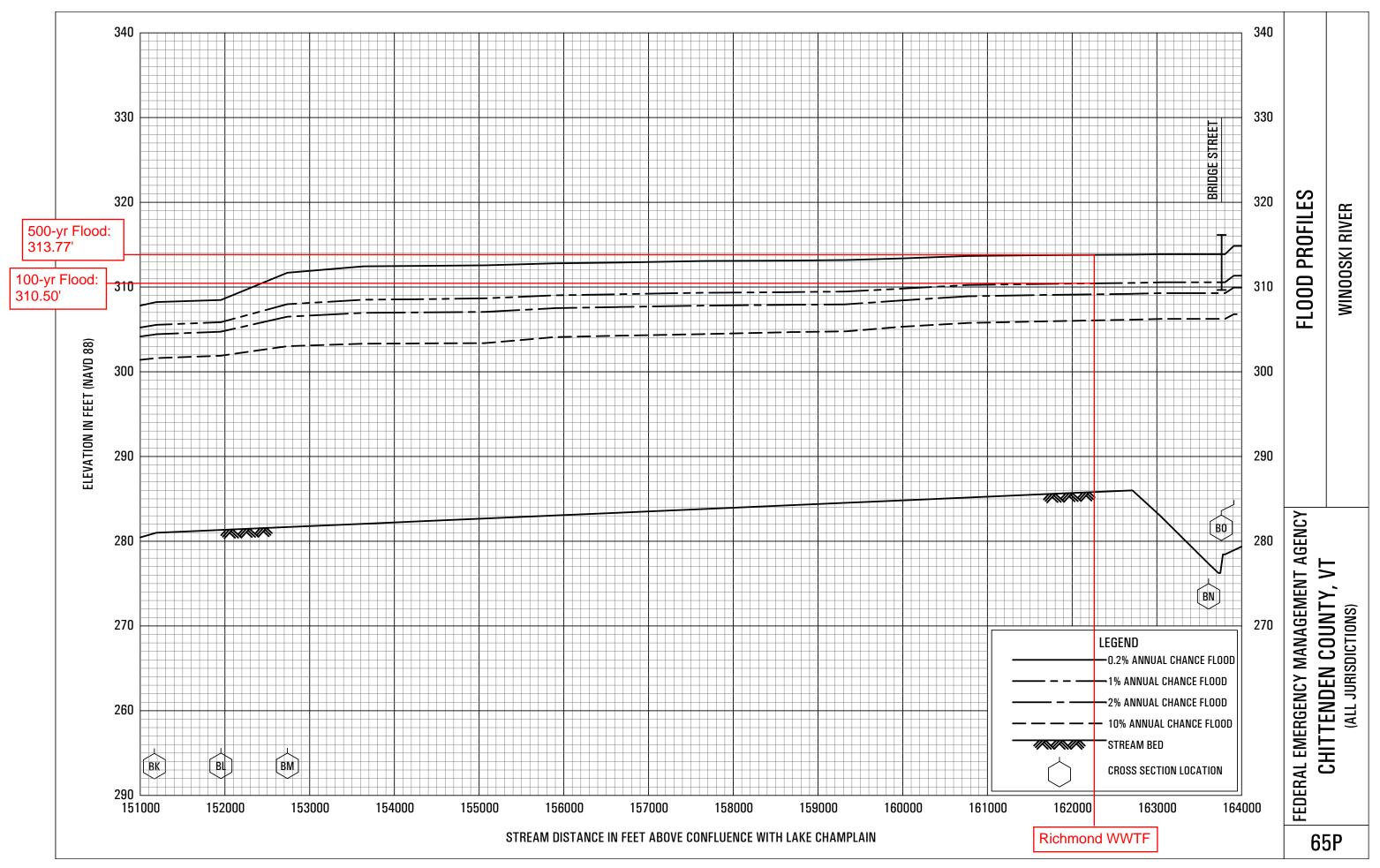
- 1. Source: Richmond WWTF current NPDES Discharge Permit No. 3-1173, effective date January 1, 2021.
- 2. Proposed Effluent Design Criteria is from the WWTF's NPDES Discharge Permit No. 3-1173, effective date January 1, 2021.

APPENDICES

APPENDIX A FIGURES

RICHMOND, VERMONT

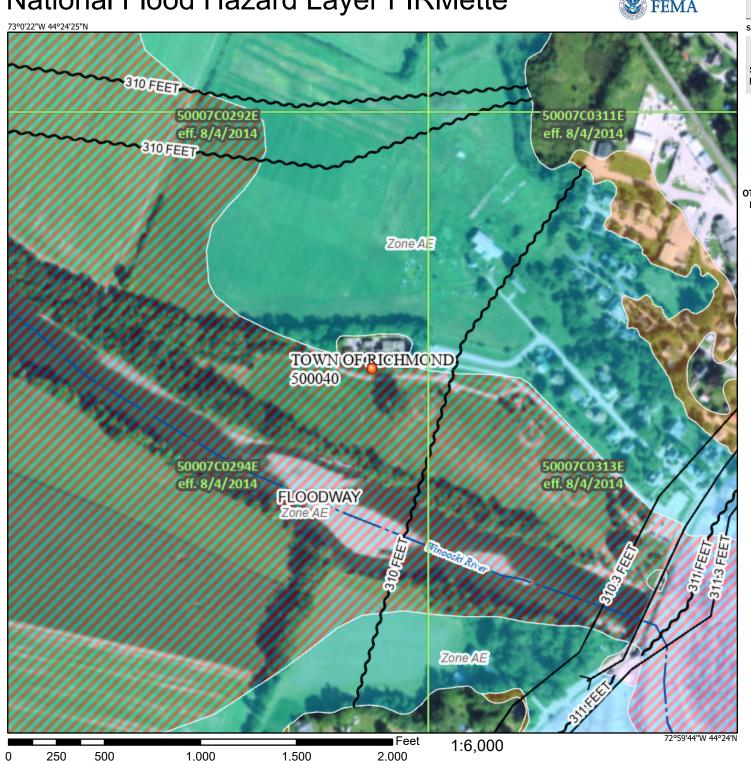

LOCATION MAP


FIGURE NO.

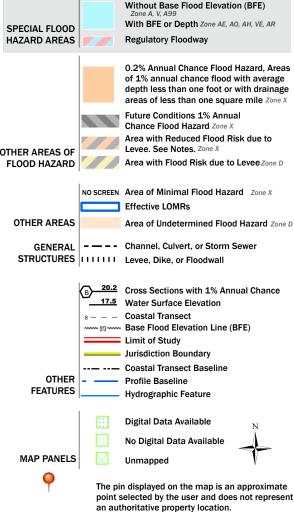
A-1

HEET 1 OF 3

PLAN
SCALE: 1"=100'



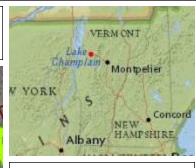
National Flood Hazard Layer FIRMette



Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT


This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 3/23/2023 at 1:22 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Natural Resources Atlas Vermont Agency of Natural Resources

vermont.gov

Wetland Projects

Watersheds for 303(d) List

Priority Waters List (Lakes and
Part B (impaired TMDL not required

Part D (impaired with approved TM)

Part E (altered exotic species)

Part F (altered flow regulation)

Stressed Waters List (Streams Stressed Waters List (Lakes ar

Designated ORW (Streams an

Prospective ORW (Streams an

Prospective ORW (Lakes and

Wetland - VSWI

Class 1 Wetland

Class 2 Wetland

Wetland Buffer

Wettand Bullet

Wetlands Advisory Layer

River Main Stem Waterbodies

WBID Watersheds

Stormwater Impaired Watershe

Parcels (standardized)

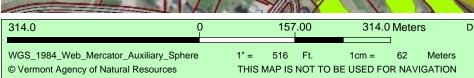
Parceis (standardiz

Roads

Interstate

US Highway; 1

State Highway


Town Highway (Class 1)

Town Highway (Class 2,3)

Town Highway (Class 4)

NOTES

Watershed & Wetlands

VT08-03

DISCLAIMER: This map is for general reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable. ANR and the State of Vermont make no representations of any kind, including but not limited to, the warranties of merchantability, or fitness for a particular use, nor are any such warranties to be implied with respect to the data on this map.

1: 6,188

March 23, 2023

318.0

WGS_1984_Web_Mercator_Auxiliary_Sphere

© Vermont Agency of Natural Resources

Richmond WWTF - Endangered Species

Vermont Agency of Natural Resources

159.00

522

318.0 Meters

63

1cm =

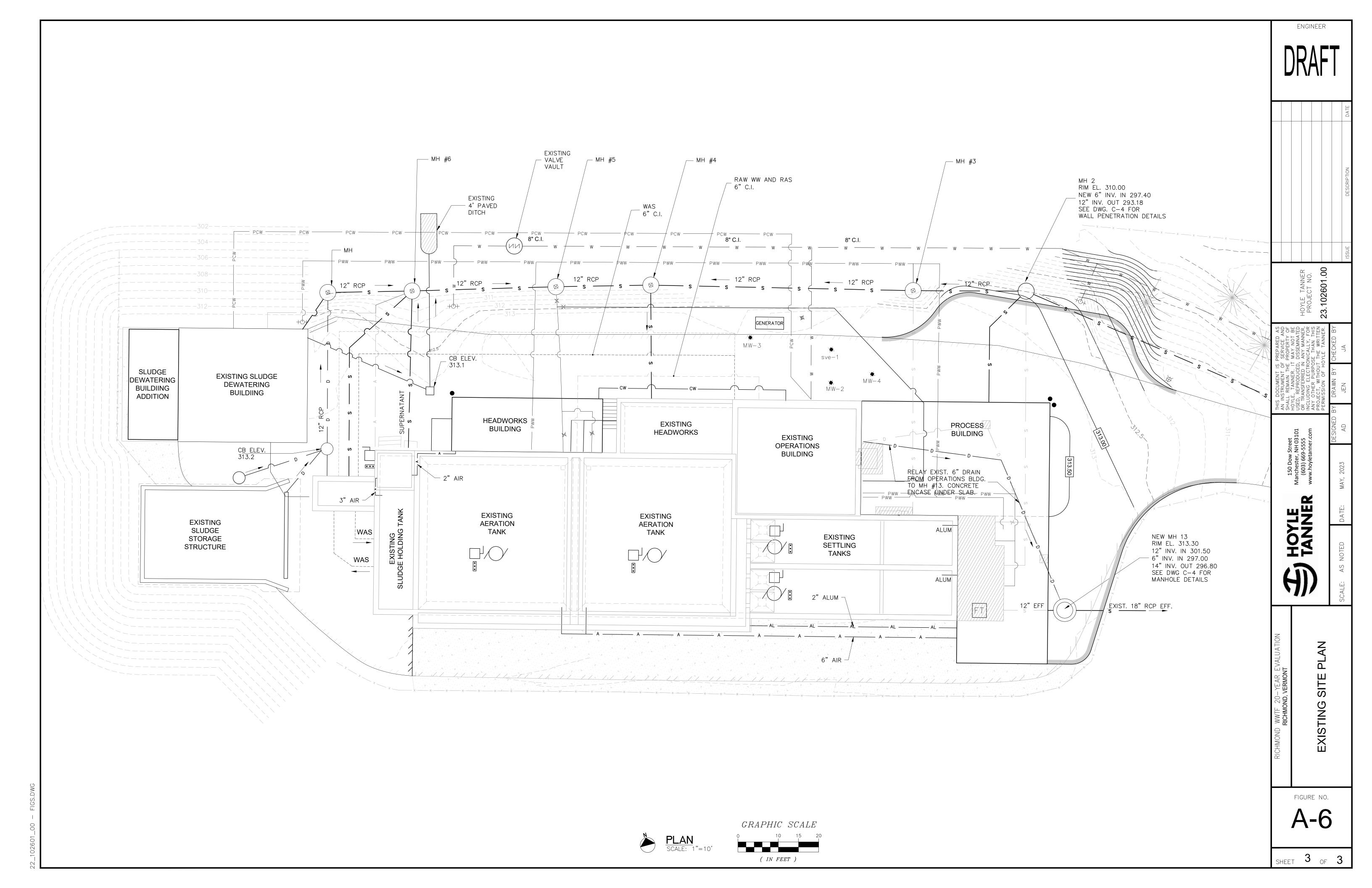
THIS MAP IS NOT TO BE USED FOR NAVIGATION

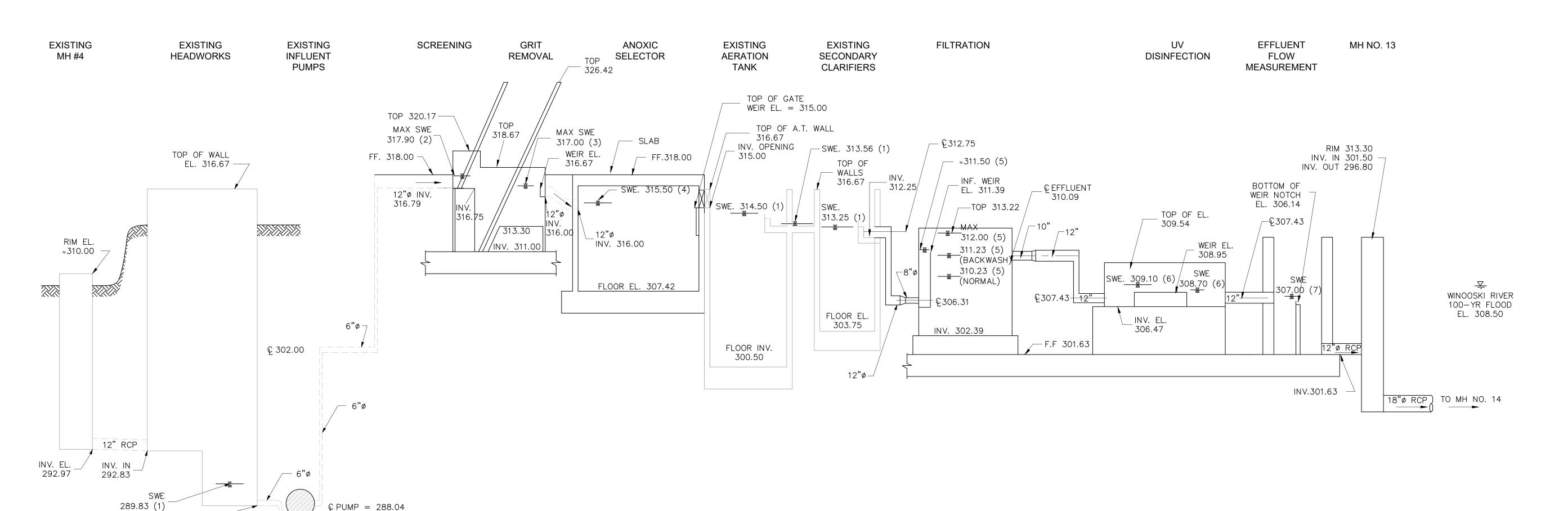
vermont.gov

DISCLAIMER: This map is for general reference only. Data layers that appear on

this map may or may not be accurate, current, or otherwise reliable. ANR and the State of Vermont make no representations of any kind, including but not

limited to, the warranties of merchantability, or fitness for a particular use, nor


are any such warranties to be implied with respect to the data on this map.

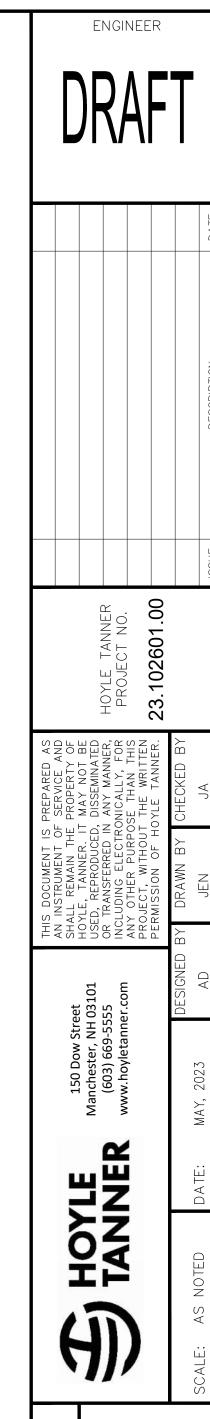

Indiana Bat Summer Range

Parcels (standardized)

Town Highway (Class 1)

Map created using ANR's Natural Resources Atlas

HYDRAULIC PROFILE


NOTES:

1. SURFACE WATER ELEVATION (SWE) BASED ON MAXIMUM FLOW OF 1.14 MGD THROUGH ONLY ONE OF EACH DUPLICATE UNIT AS PER RECORD DRAWINGS BY WEBSTER-MARTIN, INC., JULY 1971.

© SUCTION = 287.00

FLOOR EL. 286.00 —

- 2. HEADLOSS ACROSS SCREEN UNIT BASED ON CALCULATIONS BY LAKESIDE EQUIPMENT CORPORATION AT 2.97 MGD.
- 3. HEADLOSS AT EFFLUENT WEIR OF GRIT REMOVAL PACKAGE UNIT BASED ON CALCULATIONS BY LAKESIDE EQUIPMENT CORPORATION AT DESIGN PEAK HOURLY FLOW OF 1.152 MGD.
- 4. DESIGN PEAK HOURLY FLOW OF 1.152 MGD
- 5. HEADLOSS THROUGH FILTER UNIT BASED ON CALCULATIONS BY AQUA—AEROBICS SYSTEMS, INC. AT 3254 GPM THROUGH ONE FILTER UNIT.
- 6. HEADLOSS THROUGH UB UNIT BASED ON CALCULATIONS BY TROJAN TECHNOLOGIES, INC. AT PEAK HOURLY FLOW OF 1.0 MGD.
- 7. PEAK HOURLY FLOW OF 1.0 MGD.

EXISTING
HYDRAULIC PROFILE

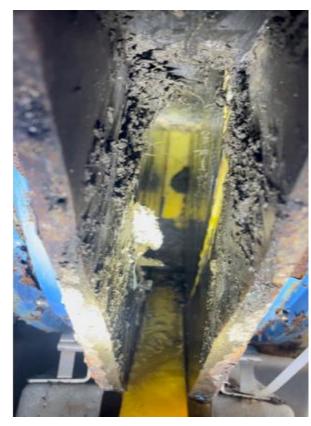
FIGURE NO.

SHEET 2 OF 3

APPENDIX B

FOURNIER ROTARY PRESS INSPECTION REPORT 9/30/2023

Richmond Vermont <u>Visit Summary</u>


Introduction

The purpose of this visit was to inspect the condition of the two channel Rotary Press located in Richmond Vermont and provide operational assistance to the personnel. The press has an estimated 45,000hrs on it. This is a two 36" channel press, model number 2-900/2000, and serial number PR-09-0/99.

Inspection

Screens: The facility only runs sludge through one channel and has recently complained about the filtrate quality. They do not run on the other channel due to damaged screens. Opening the restrictor arms on both channels and cleaning the channels out to inspect, I discovered that all four screens were very worn.

Frames: The frames on the channels were rusting and worn were the restrictor arms moved. You could see the yellow cover seal between the wheel and the frame starting to come through with trash.

Shaft: The shaft of the press was in ok condition. The shaft only supports one channel on each side, so there was limited exposure to the atmosphere. There is sone rust around on the end, however that should not effect the removal.

Three-way valve: The existing three-way valve does not work. It has been stuck in the dewatering position and does not turn. This causes problems with a proper startup. Sludge also leaks out of the supply tank, through the sludge pump and, because the valve is stuck in the dewatering position, into the channels.

Floccualtor: The flocculator seal shaft has been leaking for some time. It's hard to tell the extent of the damage.

September 30th, 2023

Panel: The panel is the old style with speed dials for the flocculator speed and rotary press speed. The outlet pressure is controlled directly at the channel. If you adjust it on the panel, it doesn't do anything.

Channel Wash Manifold: The Festo valves on the channel wash manifold do not seem to work. The piping and spray bars are not in good condition.

Sludge Pump: The facility has a double disc sludge pump and is in good condition. However, the sludge tank gravity feeds past the pump when it is in the off position.

Polymer System: The polymer system does not have an indication of concentration. A batch of diluted polymer is sent to a 50-gallon tank. From there it is pumped to the floccuator at a ratio of the sludge flow.

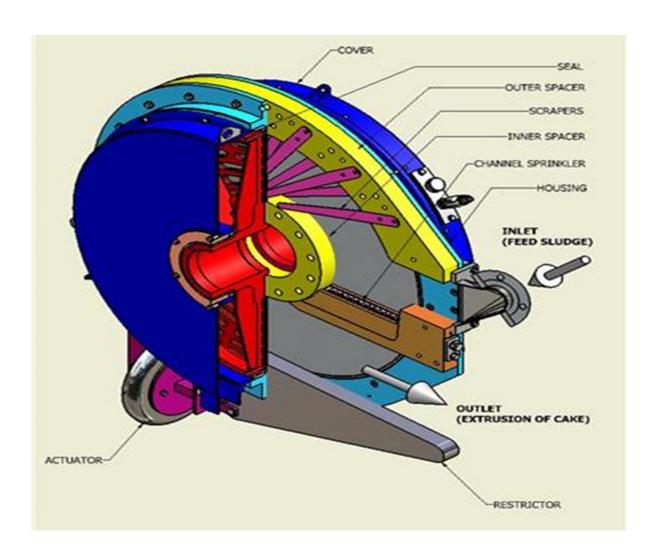
Conveyor System: The conveyor seems to be in good condition apart from a couple rusted out holes in the lower one. Also, on the inclined conveyor it is open at the top. The employees said this was from cake building up due to an unopened slide gate that has since been fixed.

Operation

The operators at the facility are operating the press as best as possible for the condition it is in. During a normal startup the three-way valve sends sludge down the drain, in recirculation, this gives the operator time to determine that they have a good flocculation. Because the valve does not work it sends it directly to the rotary press. If the sludge tank is full and the sludge supply valve is open to the pump, it passes the pump and goes into the rotary press without it even on or running. So, when they start instead of recirculating, they hit dewatering and it goes right to the rotary press. The first sludge the press receives is not flocculated. Once it starts to flocculate, the one operating channel begins to produce cake. However, a lot of solids are going through

the worn screens and down the filtrate. Because they are running a blend of digested and septic sludge the press is still able to produce some cake. I believe if they were just running digested sludge, they would have a hard time getting anything to come out of the channel. The only way to keep sludge producing cake is to treat it gently. If they produce high pressure inside the channel sludge comes out the screens instead of out the front as cake. The key is low outlet pressure 5psi, low inlet pressure 1.2psi, and moderate rotary press speed 30%. This minimizes the sludge in the filtrate being sent to the head of the plant. The press still produces 25-30% cake dryness with a flow of 20-30gpm through the channel. Sludge total solids was 1.45% Polymer consumption was 26 active lbs/dry ton.

Observations and Conclusion


The Richmond, Vermont facility needs:

- 1. New Channels Everything on the channels needs replacement so I would recommend whole new channels. Even if you could spare some parts, we might need to cut the wheels from the shaft.
- 2. New Flocculator Assembly The top of the floccuator need to be dismantled and probably everything needs to be replaced below the gearbox.
- 3. Three-way Valve I would suggest they replace them with two two-way valves.
- 4. Channel Wash Valves If it doesn't already come with the new channels.
- 5. Air supply A new air regulator needs to be installed. As of right now I do not believe they have air going to the three-way valve and they only have it to the bellows.

Possible upgrades needed:

- Sludge pump The sludge supply tank feeding the pump is gravity feeding through it.
 The pump may just need new interior parts. Or the sludge valve needs to be closed off when the press is not running.
- 2. Polymer system We determined the polymer was making down a batch of 0.25% concentration, with a polymer to sludge ratio of 8% and a consumption of 26 active lbs/dry ton. An upgrade of the polymer system could produce lower consumption.

- 3. Panel HMI The installation of a new panel would make it easier for the operators to use the press. The current old program is outdated and not optimal.
- 4. Conveyor system There are a couple holes that need to be patched or sections replaced.

APPENDIX C

FY24 WATER & SEWER BUDGET

FINAL Water FY24

20-6-03-5-40.05 20-6-00-4-10.02 20-0-00-00.00 20-6-10-4-10.04 Eire Service WATER RESOURCES ADMINISTRA 20-7-80-0-10.00 20-7-80-0-10.30 20-7-80-0-10.30 20-7-80-0-11.00 Social Secu 20-7-80-0-15.00 20-7-80-0-15.00 20-7-80-0-15.01 20-7-80-0-15.03 20-7-80-0-15.03 20-7-80-1-15.03 20-7-80-1-16.00 Uniforms 20-7-80-1-22.00 Office Supp 20-7-80-1-22.00 Office Supp 20-7-80-1-22.01 Computer 20-7-80-1-22.02 Computer S 20-7-80-1-22.03 Administratif 20-7-80-1-26.01 Administratif 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-43.00 Legal 20-7-80-1-43.00 Legal 20-7-83-4-31.00 Heat 20-7-83-4-31.00 Heat 20-7-83-4-31.00 Legal 20-7-83-4-34.00 Trash Remc 20-7-83-4-45.00 System Per 20-7-83-4-45.00 Equipment F 20-7-83-4-45.00 Equipment F 20-7-83-4-45.00 Equipment F 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Fleet Mainte						
20-6-00-3-01.00 Sale of Water User 20-6-00-3-01.00 Sale of Water 20-6-03-5-40.05 Net Interest 20-6-00-4-10.02 Hook On Fe 20-0-00-0-00.00 Fund Balant 20-6-10-4-10.04 Fire Service WATER RESOURCES ADMINISTRA 20-7-80-0-10.00 Salaries 20-7-80-0-10.30 Insurance O 20-7-80-0-10.30 Insurance O 20-7-80-0-11.00 Social Secu 20-7-80-0-12.00 Municipal R 20-7-80-0-15.00 Health Insur 20-7-80-0-15.01 Health Savi 20-7-80-0-15.03 Long Term I 20-7-80-1-16.00 Uniforms 20-7-80-1-20.00 Office Supp 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.03 Audit Expen 20-7-80-1-26.01 Administratir 20-7-80-1-26.01 Administratir 20-7-80-1-27.00 Staff Trainin 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-24.00 Association 20-7-80-1-48.00 Heat 20-7-80-1-48.00 W& S Gene WATER OPERATIONS EXPENSES 20-7-83-4-34.00 Trash Remc 20-7-83-4-34.00 Electricity 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Electricity 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Fleet Mainte 20-7-83-	Description	Budgeted FY22	Actual FY22	Budgeted FY23	Budgeted FY24	+INCREASE (DECREASE)
20-6-00-3-01.00 Sale of Wat 20-6-03-5-40.05 Net Interest 20-6-00-4-10.02 Hook On Fe 20-0-00-00.00 Fund Balanc 20-6-10-4-10.04 Fire Service 20-7-80-0-10.00 Salaries 20-7-80-0-10.30 Insurance O 20-7-80-0-11.00 Social Secu 20-7-80-0-15.00 Health Insur 20-7-80-0-15.01 Health Savit 20-7-80-0-15.03 Long Term I 20-7-80-1-15.00 Uniforms 20-7-80-1-15.00 Uniforms 20-7-80-1-22.00 Office Supp 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Administratif 20-7-80-1-22.01 Administratif 20-7-80-1-22.01 Administratif 20-7-80-1-22.00 Staff Trainin 20-7-80-1-22.00 Travel 20-7-80-1-22.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-42.00 Association 20-7-80-1-43.00 Legal 20-7-80-1-43.00 Legal 20-7-83-4-34.00 Personal Pr 20-7-83-4-34.00 Fleet Mainte 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-60.00 Fleet Mainte	ser Receipts	326,560	333,594	317,547	320,384	0.89%
20-6-03-5-40.05 Net Interest 20-6-00-4-10.02 Hook On Fe 20-0-00-00.00 Fund Balance 20-6-10-4-10.04 Fire Service 20-6-10-4-10.04 Fire Service 20-7-80-0-10.00 Salaries 20-7-80-0-10.00 Social Secu 20-7-80-0-11.00 Social Secu 20-7-80-0-15.00 Health Insur 20-7-80-0-15.01 Health Savi 20-7-80-0-15.03 Long Term I 20-7-80-1-15.01 Health Savi 20-7-80-1-15.01 Health Savi 20-7-80-1-15.00 Uniforms 20-7-80-1-22.00 Office Supp 20-7-80-1-22.00 Office Equip 20-7-80-1-22.00 Office Equip 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Administrati 20-7-80-1-26.03 Audit Expen 20-7-80-1-26.03 Audit Expen 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-27.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-43.00 Legal 20-7-80-1-43.00 Legal 20-7-80-1-43.00 Electricity 20-7-83-4-34.00 Fiest MATER OPERATIONS EXPENSES 20-7-83-4-34.00 Fiest Materials Remarks 10-7-83-4-45.00 Water Control 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Fiest Mainte 20-7-83-4-50.00 F	Vater from Hydrant	1,500	2,046	1,500	1,500	0.00%
20-6-00-4-10.02 Hook On Fe 20-0-00-00-00.00 Fund Balant 20-6-10-4-10.04 Fire Service 20-6-10-4-10.04 Fire Service 20-6-10-4-10.04 Fire Service 20-6-10-4-10.04 Fire Service 20-6-10-4-10.00 Salaries 10-7-80-0-10.30 Insurance O 20-7-80-0-10.30 Insurance O 20-7-80-0-11.00 Social Secu 20-7-80-0-15.00 Health Insur 20-7-80-0-15.01 Health Savit 20-7-80-0-15.03 Long Term I 20-7-80-0-15.03 Long Term I 20-7-80-1-20.00 Office Supp 20-7-80-1-22.00 Office Supp 20-7-80-1-22.00 Office Equip 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.00 Advertising 20-7-80-1-26.01 Administratif 20-7-80-1-26.01 Administratif 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.00 Staff Trainin 20-7-80-1-29.00 Travel 20-7-80-1-30.00 Legal 20-7-80-1-48.00 Was Sense 20-7-83-4-34.00 Heat 20-7-83-4-34.00 Heat 20-7-83-4-34.00 Fleet Mainte 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-60.00 Fleet Mainte 20-7-83	est on Checking Account	500	856	500	6,000	1100.00%
20-0-00-00-00.00 20-6-10-4-10.04 WATER RESOURCES ADMINISTRA 20-7-80-0-10.00 20-7-80-0-10.30 20-7-80-0-10.99 20-7-80-0-11.00 20-7-80-0-15.00 20-7-80-0-15.00 20-7-80-0-15.01 20-7-80-0-15.01 20-7-80-0-15.03 20-7-80-0-15.03 20-7-80-1-16.00 20-7-80-1-22.00 20-7-80-1-22.00 20-7-80-1-22.01 20-7-80-1-22.01 20-7-80-1-22.01 20-7-80-1-22.01 20-7-80-1-22.01 20-7-80-1-22.01 20-7-80-1-22.01 20-7-80-1-22.01 20-7-80-1-22.01 20-7-80-1-22.01 20-7-80-1-23.00 20-7-80-1-24.00 20-7-80-1-26.01 20-7-80-1-27.00 3taff Trainin 20-7-80-1-27.01 3cafety Train 20-7-80-1-28.00 20-7-80-1-28.00 20-7-80-1-28.00 20-7-80-1-28.00 20-7-80-1-28.00 20-7-80-1-28.00 20-7-80-1-28.00 20-7-80-1-28.00 20-7-80-1-48.00 20-7-80-1-48.00 20-7-80-1-48.00 20-7-83-4-45.00 20-7-83-4-34.00 20-7-83-4-34.00 20-7-83-4-45.00 20-7-83-4-45.00 20-7-83-4-45.00 20-7-83-4-45.00 20-7-83-4-45.00 20-7-83-4-45.00 20-7-83-4-45.00 20-7-83-4-45.00 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Electricity 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Elect Mainte 20-7-83-4-50.00 Elect Mainte 20-7-83-4-50.00 Elect Mainte 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Elect Mainte	Fees – Water	500	250	500	500	0.00%
WATER RESOURCES ADMINISTRA 20-7-80-0-10.00 Salaries 20-7-80-0-10.30 Insurance O 20-7-80-0-10.99 Overtime 20-7-80-0-11.00 Social Secu 20-7-80-0-15.00 Health Insur 20-7-80-0-15.01 Health Savii 20-7-80-0-15.03 Long Term I 20-7-80-0-15.03 Long Term I 20-7-80-1-16.00 Uniforms 20-7-80-1-22.00 Office Supp 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.02 Computer S 20-7-80-1-22.03 Audit Expen 20-7-80-1-26.01 Administratir 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.00 Travel 20-7-80-1-28.00 Telephone 20-7-80-1-48.00 W& S Gene WATER OPERATIONS EXPENSES 20-7-83-4-31.00 Heat 20-7-83-4-34.00 Electricity 20-7-83-4-34.00 System Pen 20-7-83-4-45.00 Water Conti 20-7-83-4-45.00 Uniforms 20-7-83-4-45.00 System Pen 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Elect Mainte		-		27,339	-	-100.00%
WATER RESOURCES ADMINISTRA 20-7-80-0-10.00 Salaries 20-7-80-0-10.30 Insurance O 20-7-80-0-10.99 Overtime 20-7-80-0-11.00 Social Secu 20-7-80-0-12.00 Municipal Ri 20-7-80-0-15.00 Health Insur 20-7-80-0-15.01 Health Savi 20-7-80-0-15.03 Long Term I 20-7-80-1-16.00 Uniforms 20-7-80-1-22.00 Office Supp 20-7-80-1-22.01 Computer S 20-7-80-1-22.01 Computer S 20-7-80-1-22.01 Administrati 20-7-80-1-24.00 Advertising 20-7-80-1-26.01 Administrati 20-7-80-1-26.03 Audit Expen 20-7-80-1-27.00 Staff Traini 20-7-80-1-27.01 Safety Train 20-7-80-1-27.01 Safety Train 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-42.00 Association 20-7-80-1-43.00 Legal 20-7-80-1-43.00 Legal 20-7-80-1-43.00 Heat 20-7-83-4-34.00 Heat 20-7-83-4-34.00 Fleet Mainte 20-7-83-4-34.00 System Pen 20-7-83-4-45.00 Water Conti 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Fleet Mainte		50,432	50,432	51,148	49,899	-2.44%
20-7-80-0-10.00 Salaries 20-7-80-0-10.30 Insurance O 20-7-80-0-10.99 Overtime 20-7-80-0-11.00 Social Secu 20-7-80-0-12.00 Municipal R: 20-7-80-0-15.00 Health Insur 20-7-80-0-15.01 Health Saviv 20-7-80-0-15.03 Long Term I 20-7-80-1-16.00 Uniforms 20-7-80-1-22.00 Office Suppi 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Administratir 20-7-80-1-22.01 Administratir 20-7-80-1-26.01 Administratir 20-7-80-1-26.03 Audit Expen 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-28.00 Travel 20-7-80-1-42.00 Association 20-7-80-1-42.00 Association 20-7-80-1-42.00 Association 20-7-80-1-42.00 Association 20-7-80-1-42.00 Association 20-7-80-1-42.00 Association 20-7-80-1-42.00 Eggal 20-7-80-1-42.00 System Per 20-7-83-4-34.00 Trash Remo 20-7-83-4-34.00 Trash Remo 20-7-83-4-45.00 Water Conti 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Fleet Mainte	Water Revenue Sub Totals	379,492	387,178	398,534	378,283	-5.08%
20-7-80-0-10.00 Salaries 20-7-80-0-10.30 Insurance O 20-7-80-0-10.99 Overtime 20-7-80-0-11.00 Social Secu 20-7-80-0-12.00 Municipal Ri 20-7-80-0-15.00 Health Insur 20-7-80-0-15.01 Health Saviv 20-7-80-0-15.03 Long Term I 20-7-80-1-16.00 Uniforms 20-7-80-1-22.00 Office Suppi 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Administratir 20-7-80-1-22.01 Administratir 20-7-80-1-26.01 Administratir 20-7-80-1-26.03 Audit Expen 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-29.00 Travel 20-7-80-1-42.00 Association 20-7-80-1-42.00 Association 20-7-80-1-43.00 Legal 20-7-80-1-43.00 Legal 20-7-83-4-34.00 Personal Pr 40-7-83-4-34.00 Personal Pr 40-7-83-4-34.00 System Per 20-7-83-4-45.00 Water Contice Point Reprince Per 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-52.00 Fleet Mainte			, ,			
20-7-80-0-10.30 Insurance O 20-7-80-0-10.99 Overtime 20-7-80-0-10.09 Social Secu 20-7-80-0-12.00 Municipal R 20-7-80-0-15.00 Health Insur 20-7-80-0-15.01 Health Savii 20-7-80-0-15.03 Long Term I 20-7-80-1-16.00 Uniforms 20-7-80-1-22.00 Office Supp 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.02 Computer S 20-7-80-1-22.03 Audit Expen 20-7-80-1-26.01 Administratir 20-7-80-1-26.01 Administratir 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-28.00 Telephone 20-7-80-1-48.00 W& S Gene WATER OPERATIONS EXPENSES 20-7-83-4-34.00 Heat 20-7-83-4-34.00 Electricity 20-7-83-4-34.00 System Pen 20-7-83-4-45.00 Water Conti 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Elect Mainte	RATION EXPENSES (30% of total)					
20-7-80-0-10.99 Overtime 20-7-80-0-11.00 Social Secu 20-7-80-0-12.00 Municipal Ri 20-7-80-0-15.01 Health Insur 20-7-80-0-15.01 Health Savi 20-7-80-0-15.03 Long Term I 20-7-80-1-16.00 Uniforms 20-7-80-1-22.00 Office Supp 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Administrati 20-7-80-1-22.01 Administrati 20-7-80-1-24.00 Advertising 20-7-80-1-26.01 Administrati 20-7-80-1-26.01 Administrati 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-27.01 Safety Train 20-7-80-1-28.00 Travel 20-7-80-1-28.00 Association 20-7-80-1-42.00 Association 20-7-80-1-43.00 Legal 20-7-80-1-43.00 Legal 20-7-80-1-43.00 Heat 20-7-83-4-31.00 Heat 20-7-83-4-34.00 Trash Remc 20-7-83-4-34.00 System Per 20-7-83-4-45.00 Water Conti 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Elect Mainte 20-7-83-4-50.00 Elect Mainte 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-50.00 Fleet Mainte		63,593	65,885	77,277	83,002	7.41%
20-7-80-0-11.00 Social Secu 20-7-80-0-12.00 Municipal Rt 20-7-80-0-15.01 Health Insur 20-7-80-0-15.01 Health Savi 20-7-80-0-15.01 Long Term I 20-7-80-1-16.00 Uniforms 20-7-80-1-120.00 Office Supp 20-7-80-1-22.00 Office Equip 20-7-80-1-22.01 Computer S 20-7-80-1-22.01 Computer S 20-7-80-1-22.01 Administratif 20-7-80-1-26.01 Administratif 20-7-80-1-26.03 Audit Expen 20-7-80-1-26.03 Audit Expen 20-7-80-1-26.03 Audit Expen 20-7-80-1-26.03 Audit Expen 20-7-80-1-26.00 Talephone 20-7-80-1-20.00 Talephone 20-7-80-1-20.00 Talephone 20-7-80-1-42.00 Association 20-7-80-1-42.00 Association 20-7-80-1-48.00 W & S Gene WATER OPERATIONS EXPENSES 20-7-83-4-416.00 Personal Pr 20-7-83-4-32.00 Electricity 20-7-83-4-34.00 Trash Remc 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-60.00 Flee		1,500	1,500	1,500		-100.00%
20-7-80-0-12.00 Municipal Re 20-7-80-0-15.00 Health Insur 20-7-80-0-15.01 Health Savi 20-7-80-0-15.01 Health Savi 20-7-80-0-15.03 Long Term I 20-7-80-1-16.00 Uniforms 20-7-80-1-22.00 Office Supp 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer 20-7-80-1-22.02 Computer 20-7-80-1-22.02 Advertising 20-7-80-1-26.03 Audit Expen 20-7-80-1-26.03 Audit Expen 20-7-80-1-26.03 Audit Expen 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-42.00 Association 20-7-80-1-42.00 Association 20-7-80-1-42.00 W & S Gene WATER OPERATIONS EXPENSES 20-7-83-4-16.00 Personal Pr Heat 20-7-83-4-32.00 Electricity 20-7-83-4-34.00 Trash Remc 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 United 20-7-83-4-45.00 Equipment F 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Elect 20-7-83-4-50.00 Elect 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-60.00 Fleet Mainte 20-7		900	3,135	2,400	2,400	0.00%
20-7-80-0-15.00 Health Insur 20-7-80-0-15.01 Health Savii 20-7-80-0-15.03 Long Term I 20-7-80-0-15.03 Uniforms 20-7-80-1-20.00 Office Supp 20-7-80-1-22.00 Office Equip 20-7-80-1-22.01 Computer 20-7-80-1-22.02 Computer S 20-7-80-1-22.02 Computer S 20-7-80-1-22.03 Advertising 20-7-80-1-26.01 Administratif 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-28.00 Heat 20-7-80-1-28.00 W & S Gene 20-7-80-1-48.00 W & S Gene 20-7-80-1-48.00 Personal Pr 20-7-83-4-34.00 Heat 20-7-83-4-34.00 Electricity 20-7-83-4-34.00 System Per 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-60.00 Fleet Mainte 20-7-83-	ecurity/Medicare	5,081	5,168	6,181	6,576	6.39%
20-7-80-0-15.01 Health Savii 20-7-80-0-15.03 Long Term I 20-7-80-1-16.00 Uniforms 20-7-80-1-22.00 Office Supp 20-7-80-1-22.00 Office Supp 20-7-80-1-22.01 Computer S 20-7-80-1-22.02 Computer S 20-7-80-1-22.01 Administratif 20-7-80-1-26.03 Audit Expen 20-7-80-1-26.03 Audit Expen 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-27.01 Safety Train 20-7-80-1-29.00 Travel 20-7-80-1-30.00 Telephone 20-7-80-1-42.00 Association 20-7-80-1-43.00 Legal W & S Gene WATER OPERATIONS EXPENSES 20-7-83-4-34.00 Heat 20-7-83-4-34.00 Fleet Meat 20-7-83-4-34.00 System Per 20-7-83-4-34.00 System Per 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-60.00 Fleet		4,031	5,624	5,318	5,765	8.41%
20-7-80-0-15.03 Long Term II 20-7-80-1-16.00 Uniforms 20-7-80-1-20.00 Office Supp 20-7-80-1-22.00 Office Equip 20-7-80-1-22.01 Computer 20-7-80-1-22.02 Computer S 20-7-80-1-22.01 Administratif 20-7-80-1-26.01 Administratif 20-7-80-1-26.03 Audit Expen 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Trainin 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-42.00 Association 20-7-80-1-48.00 W& S Gene WATER OPERATIONS EXPENSES 20-7-83-4-34.00 Heat 20-7-83-4-34.00 Electricity 20-7-83-4-34.00 System Per 20-7-83-4-34.00 System Per 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-50.00 Fleet Mainte		7,372	8,299	15,023	19,310	28.54%
20-7-80-1-16.00 Uniforms 20-7-80-1-20.00 Office Suppi 20-7-80-1-22.01 Computer 20-7-80-1-22.01 Computer S 20-7-80-1-22.02 Computer S 20-7-80-1-22.02 Advertising 20-7-80-1-26.01 Administratif 20-7-80-1-26.03 Audit Expen 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-42.00 Association 20-7-80-1-42.00 Association 20-7-80-1-42.00 W & S Gene WATER OPERATIONS EXPENSES 20-7-83-4-46.00 Personal Pr 20-7-83-4-32.00 Electricity 20-7-83-4-34.00 Trash Remo 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Uniform Personal Pr 20-7-83-4-45.00 Electricity 20-7-83-4-45.00 Electricity 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Fleet Mainte	avings Account	1,248	420	458	313	-31.66%
20-7-80-1-20.00 Office Supple 20-7-80-1-22.00 Office Equip 20-7-80-1-22.01 Computer S 20-7-80-1-22.02 Computer S 20-7-80-1-22.02 Computer S 20-7-80-1-22.00 Advertising 20-7-80-1-26.01 Administratir 20-7-80-1-26.03 Audit Expen 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-42.00 Association 20-7-80-1-42.00 Association 20-7-80-1-43.00 Legal 20-7-80-1-43.00 W & S Gene 20-7-80-1-43.00 Heat 20-7-83-4-31.00 Heat 20-7-83-4-34.00 Trash Remo 20-7-83-4-34.00 Trash Remo 20-7-83-4-34.00 System Per 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Equipment F 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-60.00 Fleet Mainte 20-7-83-4-		420	408	407	570	40.05%
20-7-80-1-22.00 Office Equip 20-7-80-1-22.01 Computer 20-7-80-1-22.02 Computer S 20-7-80-1-22.00 Advertising 20-7-80-1-26.01 Administratir 20-7-80-1-26.03 Audit Expen 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Telephone 20-7-80-1-42.00 Association 20-7-80-1-43.00 Legal 20-7-80-1-48.00 W & S Gene WATER OPERATIONS EXPENSES 20-7-83-4-31.00 Heat 20-7-83-4-34.00 Trash Remc 20-7-83-4-34.00 System Pen 20-7-83-4-45.00 Water Conticulation 20-7-83-4-45.00 System Pen 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Gas, Oil & E 20-7-83-4-50.00 Fleet Mainte		400	164	400	400	0.00%
20-7-80-1-22.01 Computer 20-7-80-1-22.02 Computer 3 20-7-80-1-22.02 Computer 3 20-7-80-1-24.00 Advertising 20-7-80-1-26.01 Administratif 20-7-80-1-26.03 Audit Expen 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-29.00 Travel 20-7-80-1-30.00 Telephone 20-7-80-1-42.00 Association 20-7-80-1-43.00 Legal 20-7-80-1-48.00 W & S Gene 20-7-80-1-48.00 Personal Pr 20-7-83-4-31.00 Heat 20-7-83-4-34.00 Trash Remc 20-7-83-4-34.00 System Per 20-7-83-4-34.00 Water Control 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Gas, Oil & E 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-50.00 Fleet Maint	upplies/Postage	300	296	300	670	123.33%
20-7-80-1-22.02 Computer S 20-7-80-1-24.00 Advertising 20-7-80-1-26.01 Administrative 20-7-80-1-26.03 Audit Expen 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Telephone 20-7-80-1-42.00 Association 20-7-80-1-48.00 W & S Gene WATER OPERATIONS EXPENSES 20-7-83-4-16.00 Personal Pr 20-7-83-4-32.00 Electricity 20-7-83-4-34.00 Trash Remo 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-50.00 Water Line	quipment	200	155	200	200	0.00%
20-7-80-1-24.00 Advertising 20-7-80-1-26.01 Administratii 20-7-80-1-26.03 Audit Expen 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-42.00 Association 20-7-80-1-42.00 W & S Gene 20-7-80-1-48.00 W & S Gene 20-7-80-1-48.00 Personal Properties 20-7-83-4-34.00 Personal Properties 20-7-83-4-34.00 Personal Properties 20-7-83-4-34.00 Personal Properties 20-7-83-4-34.00 System Personal Properties 20-7-83-4-34.00 System Personal Properties 20-7-83-4-34.00 Personal Properties 20-7-83-4-34.00 System Personal Properties 20-7-83-4-36.00 Personal		-	69	-	450	100.00%
20-7-80-1-26.01 Administrative 20-7-80-1-26.03 Audit Expensor 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Trainin 20-7-80-1-29.00 Travel 20-7-80-1-30.00 Telephone 20-7-80-1-42.00 Association 20-7-80-1-43.00 Legal 20-7-80-1-48.00 W & S Gene 20-7-80-1-48.00 Personal Pr 20-7-83-4-31.00 Heat 20-7-83-4-34.00 Trash Remc 20-7-83-4-34.00 System Per 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Equipment F 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-50.0	• •	-	646	1,777	1,800	1.29%
20-7-80-1-26.03 Audit Expen 20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-29.00 Travel 20-7-80-1-30.00 Telephone 20-7-80-1-42.00 Association 20-7-80-1-43.00 Legal 20-7-80-1-48.00 W & S Gene 20-7-80-1-48.00 Personal Pr 20-7-83-4-31.00 Heat 20-7-83-4-34.00 Trash Remc 20-7-83-4-34.00 System Per 20-7-83-4-34.00 Water Control 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Gas, Oil & E0-7-83-4-50.00 Fleet Mainte 20-7-83-4-50.00 Water Line	ing	200	-	200	200	0.00%
20-7-80-1-27.00 Staff Trainin 20-7-80-1-27.01 Safety Train 20-7-80-1-29.00 Travel 20-7-80-1-30.00 Telephone 20-7-80-1-42.00 Association 20-7-80-1-43.00 Legal 20-7-80-1-48.00 W & S Gene WATER OPERATIONS EXPENSES 20-7-83-4-16.00 Personal Pr 20-7-83-4-31.00 Heat 20-7-83-4-32.00 Electricity 20-7-83-4-34.00 Trash Remc 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Gas, Oil & E 20-7-83-4-50.00 Fleet Mainte	rative Expense	9,000	9,000	9,000	12,450	38.33%
20-7-80-1-27.01 Safety Train 20-7-80-1-29.00 Travel 20-7-80-1-29.00 Travel 20-7-80-1-42.00 Association 20-7-80-1-48.00 W & S Gene 20-7-80-1-48.00 W & S Gene 20-7-80-4-48.00 Personal Properties of the state of the	penses	6,673	3,030	1,305	1,450	11.11%
20-7-80-1-29.00 Travel 20-7-80-1-30.00 Telephone 20-7-80-1-42.00 Association 20-7-80-1-43.00 Legal 20-7-80-1-48.00 W & S Gene WATER OPERATIONS EXPENSES 20-7-83-4-16.00 Personal Pr 20-7-83-4-31.00 Heat 20-7-83-4-34.00 Trash Remc 20-7-83-4-34.00 System Per 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Gas, Oil & E 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-52.00 Fleet Mainte 20-7-83-4-52.00 Fleet Mainte	ining/Education/Licenses	800	956	800	1,300	62.50%
20-7-80-1-30.00 Telephone 20-7-80-1-42.00 Association 20-7-80-1-43.00 Legal 20-7-80-1-48.00 W & S Gene WATER OPERATIONS EXPENSES 20-7-83-4-16.00 Personal Pr 20-7-83-4-31.00 Heat 20-7-83-4-34.00 Trash Remo 20-7-83-4-45.00 System Per 20-7-83-4-45.00 Water Control 20-7-83-4-45.00 Engineering 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Gas, Oil & E 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-52.00 Fleet Mainte 20-7-83-4-52.00 Fleet Mainte	raining	100	-	100	100	0.00%
20-7-80-1-42.00 Association 20-7-80-1-43.00 Legal 20-7-80-1-48.00 W & S Gene WATER OPERATIONS EXPENSES 20-7-83-4-16.00 Personal Pr 20-7-83-4-31.00 Heat 20-7-83-4-34.00 Trash Remo 20-7-83-4-41.00 System Per 20-7-83-4-45.00 Water Contr 20-7-83-4-45.00 Equipment F 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Gas, Oil & E 20-7-83-4-52.00 Fleet Mainte 20-7-83-4-52.00 Fleet Mainte 20-7-83-4-52.00 Fleet Mainte		300	-	300	300	0.00%
20-7-80-1-43.00 Legal 20-7-80-1-48.00 W & S Gene WATER OPERATIONS EXPENSES 20-7-83-4-16.00 Personal Pr 20-7-83-4-32.00 Electricity 20-7-83-4-34.00 Trash Remc 20-7-83-4-41.00 System Per 20-7-83-4-45.00 Water Contr 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Engineering 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-52.00 Fleet Mainte 20-7-83-4-52.00 Fleet Mainte	ne	2,500	1,527	2,500	2,500	0.00%
WATER OPERATIONS EXPENSES 20-7-83-4-16.00 Personal Pr 20-7-83-4-31.00 Heat 20-7-83-4-32.00 Electricity 20-7-83-4-34.00 Trash Remc 20-7-83-4-45.00 Water Contr 20-7-83-4-45.00 Equipment F 20-7-83-4-45.00 Engineering 20-7-83-4-50.00 Gas, Oil & E 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-52.00 Fleet Mainte 20-7-83-4-52.00 Water Line	ion Dues	200	140	200	200	0.00%
WATER OPERATIONS EXPENSES 20-7-83-4-16.00 Personal Pr 20-7-83-4-31.00 Heat 20-7-83-4-32.00 Electricity 20-7-83-4-34.00 Trash Remc 20-7-83-4-45.00 Water Conti 20-7-83-4-45.00 Equipment F 20-7-83-4-46.00 Engineering 20-7-83-4-50.00 Gas, Oil & E 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-52.00 Fleet Mainte 20-7-83-4-52.00 Water Line		-	664	-	500	100.00%
20-7-83-4-16.00 Personal Pr 20-7-83-4-31.00 Heat 20-7-83-4-32.00 Electricity 20-7-83-4-34.00 Trash Remc 20-7-83-4-41.00 System Per 20-7-83-4-45.00 Water Contr 20-7-83-4-45.02 Equipment F 20-7-83-4-60.0 Gas, Oil & E 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-52.00 Water Line	eneral Insurance	8,498	7,023	5,782	6,300	8.96%
20-7-83-4-16.00 Personal Pr 20-7-83-4-31.00 Heat 20-7-83-4-32.00 Electricity 20-7-83-4-34.00 Trash Remc 20-7-83-4-41.00 System Per 20-7-83-4-45.00 Water Contr 20-7-83-4-45.02 Equipment F 20-7-83-4-60.0 Gas, Oil & E 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-52.00 Water Line	Water Administration Expense Totals	113,316	114,109	131,428	146,756	11.66%
20-7-83-4-16.00 Personal Pr 20-7-83-4-31.00 Heat 20-7-83-4-32.00 Electricity 20-7-83-4-34.00 Trash Remc 20-7-83-4-41.00 System Per 20-7-83-4-45.00 Water Contr 20-7-83-4-45.02 Equipment F 20-7-83-4-60.0 Gas, Oil & E 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-52.00 Water Line	=8					
20-7-83-4-31.00 Heat 20-7-83-4-32.00 Electricity 20-7-83-4-34.00 Trash Remc 20-7-83-4-41.00 System Pen 20-7-83-4-45.00 Equipment F 20-7-83-4-46.00 Engineering 20-7-83-4-50.00 Gas, Oil & E 20-7-83-4-52.00 Fleet Mainte 20-7-83-4-62.02 Water Line	I Protective Equip	500	244	500	500	0.00%
20-7-83-4-32.00 Electricity 20-7-83-4-34.00 Trash Remo 20-7-83-4-41.00 System Pen 20-7-83-4-45.00 Water Contr 20-7-83-4-45.02 Equipment 20-7-83-4-50.00 Gas, Oil & E 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-52.00 Water Line	1.1	600	626	600	600	0.00%
20-7-83-4-34.00 Trash Remo 20-7-83-4-41.00 System Pen 20-7-83-4-45.00 Water Contr 20-7-83-4-45.02 Equipment Ing 20-7-83-4-50.00 Gas, Oil & E 20-7-83-4-50.00 Fleet Mainte 20-7-83-4-52.00 Water Line	v	8,500	10,799	8,500	10,100	18.82%
20-7-83-4-41.00 System Pen 20-7-83-4-45.00 Water Contr 20-7-83-4-45.02 Equipment F 20-7-83-4-46.00 Engineering 20-7-83-4-50.00 Gas, Oil & E 20-7-83-4-52.00 Fleet Mainte 20-7-83-4-62.02 Water Line	•	800	2,117	800	1,500	87.50%
20-7-83-4-45.00 Water Control 20-7-83-4-45.02 Equipment F 20-7-83-4-66.00 Engineering 20-7-83-4-50.00 Gas, Oil & E 20-7-83-4-52.00 Fleet Mainte 20-7-83-4-62.02 Water Line	Permits/Fees/Licenses	1,900	1,293	1,900	1,900	0.00%
20-7-83-4-45.02 Equipment F 20-7-83-4-46.00 Engineering 20-7-83-4-50.00 Gas, Oil & E 20-7-83-4-52.00 Fleet Mainte 20-7-83-4-62.02 Water Line		5,000	3,041	5,000	4,000	-20.00%
20-7-83-4-46.00 Engineering 20-7-83-4-50.00 Gas, Oil & D 20-7-83-4-52.00 Fleet Mainte 20-7-83-4-62.02 Water Line		500	220	500	500	0.00%
20-7-83-4-50.00 Gas, Oil & D 20-7-83-4-52.00 Fleet Mainte 20-7-83-4-62.02 Water Line		2,000	145	2,000	1,000	-50.00%
20-7-83-4-52.00 Fleet Mainte 20-7-83-4-62.02 Water Line	•	500	227	500	500	0.00%
20-7-83-4-62.02 Water Line		1,000	46	1,000	1,000	0.00%
		20.000	2.261	20.000	15.000	-25.00%
20-7-83-4-62.03 Pumps/Tank		5,000	5,251	5,000	5,000	0.00%
20-7-83-4-62.04 Asphalt Rep		5,000	5,251	5,000	5,000	0.00%
	ent Purchase	500	33	500	500	0.00%
20-7-83-4-62.06 Supplies	int aonacc	1,000	96	1,000	1,000	0.00%
20-7-83-4-62.07 Meters		3,000	653	3,000	3,000	0.00%
	reatment Chemicals	1,000	779	1,000	2,600	160.00%
20 7 00 4 00.00 Water Heat	Water Operating Expense Totals	56,800	27,831	56,800	53,700	-5.46%

WATER CAPITAL EX	(PENSES					FY	23 Predicted Year End Bala	nces
20-7-90-5-93.01 Water Capital Reserve		36,000	36,000	36,000	-	-100.00%	115,991	1000
20-7-90-5-90.03	Short-term (10 yr) capital fund	20,000	20.000	20,000	20,000	0.00%	126,651	
20-7-90-2-90.09	Distribution System Capital fund	15,000	15,000	15,000	20,000	33.33%	21,100	
20-7-90-2-90.16	Water Reservoir gap principal (2025)	25,857	25,857	25,857	25,857	0.00%	263,742	
20-7-90-2-90.17	Water Reservoir gap interest	1,975	1,482	1,482	990	-33.20%		
20-7-90-5-90.01	RF3-302 Water Reservoir principal (2048)	37,705	37,705	37,705	37,705	0.00%		
20-7-90-5-93.02	RF3-335 East Main principal	25,140	25,140	25,140	25,140	0.00%		
20-7-90-2-90.07	Jericho Road Loan Principal (2032)	26,208	26,208	26,208	26,208	0.00%		
20-7-90-2-90.08	Jericho Road Loan Interest	11,491	11,491	10,549	9,562	-9.36%		
20-7-90-5-90.13	RF3-365 Bridge Upper & Crossing Principal (2047)	10,000	9,865	9,865	9,865	0.00%		
	RF3-444 Bridge Street Middle (2062)	-	-	2,500	2,500	0.00%		
20-7-90-1-00.00	Unbudgeted Capital Expense			-	-	0.00%		
	Water Capital Expense Totals	209,376	208,748	210,306	177,827	-15.44%		
	TOTAL WATER REVENUE	379,492	387,178	398,534	378,283	-5.08%		
	TOTAL WATER EXPENSES	379,492	350,688	398,534	378,283	-5.08%		
	BALANCE	-	36,490	-	-			
UNASSIGNED FUNDS FY22 YEAR END AUDIT					(64,135)			
UNASSIGNED FL			255,145					
UNASSIGNED FUNDS FY23 USAGE/GROWTH					233,173			

191,010

378,283

56,742

134,268

398,010

PREDICTED UNASSIGNED FUNDS YEAR END FY23

DRAFT FY24 WATER EXPENSES AS OF 05/01/2023

Available Unassigned funds & Total FY23 Reserve Funds

15% OF FY24 BUDGET EXPENSES

UNASSIGNED FUNDS IN EXCESS OF 15%

FINAL Wastewater FY24

Account #	Description	Budgeted FY22	Actual FY22	Budgeted FY23	Budgeted FY24	+INCREASE (DECREASE)
WASTEWATER REVENUE						
21-6-00-3-00.01	Sewer User Receipts	357,337	373,213	361,326	292,874	-19%
21-6-00-4-10.03	Hook On Fees – Sewer	1,000	3,213	1,000	1,000	0%
21-6-03-5-40.05	Net Interest on Checking Account	1,200	1,998	1,500	14,000	833%
21-0-00-0-00.00	Fund Balance Usage	-	-	48,394	-	-100%
21-6-01-4-11.10	Septage Receipts	430,000	483,577	460,000	550,000	20%
	Waste Water Revenue Subtotal	789,537	862,001	872,220	857,874	-2%
WASTEWATER RESOURCE	S ADMINISTRATION EXPENSES (70% of total)					
21-7-80-0-10.00	Salaries	148,381	153,731	180,312	199,270	11%
21-7-80-0-10.30	Insurance Opt Out	3,500	3,500	3,500	-	-100%
21-7-80-0-10.99	Overtime	2,100	7,314	5,600	5,600	0%
21-7-80-0-11.00	Social Security/Medicare	11,857	12,058	14,423	15,344	6%
21-7-80-0-12.00	Municipal Retirement	9,405	13,146	12,408	13,451	8%
21-7-80-0-15.00	Health Insurance	17,201	19,363	35,053	45,056	29%
21-7-80-0-15.01	Health Savings Account	2,913	980	1,070	731	-32%
21-7-80-0-15.03	Long Term Disablity	960	953	949	1,330	40%
21-7-80-1-16.00	Uniforms	900	355	900	900	0%
21-7-80-1-20.00	Office Supplies/Postage	500	691	500	500	0%
21-7-80-1-22.00	Office Equipment	400	281	400	400	0%
21-7-80-1-22.01	Computer	-	2,299	-	1,050	100%
21-7-80-1-22.02	Computer Support	-	308	4,145	4,200	1%
21-7-80-1-24.00	Advertising	400	-	400	400	0%
21-7-80-1-26.01	Administrative Expense	21,000	21,000	21,000	29,050	38%
21-7-80-1-26.03	Audit Expenses	6,237	7,071	3,045	3,383	11%
21-7-80-1-27.00	Employee Training/Education/Licenses	1,800	739	1,800	2,770	54%
21-7-80-1-27.01	Safety Training	300	-	300	300	0%
21-7-80-1-29.00	Travel	700	-	700	700	0%
21-7-80-1-30.00	Telephone	3,800	3,548	3,800	3,800	0%
21-7-80-1-42.00	Association Dues	400	326	400	400	0%
21-7-80-1-43.00	Legal	3,000	2,856	3,000	3,000	0%
21-7-80-1-48.00	W & S General Insurance	15,868	13,958	11,341	13,000	15%
	Wastewater Administration Expense Subtotal	251,622	264,477	305,046	344,635	13%

WASTEWATER OREDA	TIONS EVERNOES						
WASTEWATER OPERA		4 000		4 000	4 000	201	
21-7-82-2-32.01	Electricity	1,000	-	1,000	1,000	0%	
21-7-82-2-62.03	Pump Station Maintenance	1,800	-	1,800	1,800	0%	
21-7-82-3-16.00	Personal Protective Gear	500	982	500	500	0%	
21-7-82-3-31.00	Heat	10,000	8,400	10,000	10,000	0%	
21-7-82-3-32.00	Plant Electricity	40,000	38,747	40,000	45,000	13%	
21-7-82-3-32.02	WWTF water bill	32,000	31,515	32,000	32,000	0%	
21-7-82-3-34.00	Rubbish Removal	1,500	4,213	1,500	4,300	187%	
21-7-82-3-41.00	System Permits/Certs/Licenses	800	1,128	800	800	0%	
21-7-82-3-45.00	Wastewater Contracted	7,500	5,339	7,500	7,500	0%	
21-7-82-3-45.01	Biosolids Contracted	4,500	5,994	4,500	4,500	0%	
21-7-82-3-45.02	Equipment Rental	500	70	500	500	0%	
21-7-82-3-45.03	Biosolids Disposal/CSWD	120,000	153,967	130,000	160,000	23%	
21-7-82-3-46.00	Engineering	500	2,281	500	500	0%	
21-7-82-3-50.00	Gas, Oil & Diesel Fuel	1,800	735	1,800	1,800	0%	
21-7-82-3-52.00	Fleet Maintenance	2,500	188	2,500	2,500	0%	
21-7-82-3-62.00	Wastewater Facil Repair	8,000	19,672	8,000	12,000	50%	
21-7-82-3-62.01	Biosolids Facility Repair	8,000	14,003	8,000	9,000	13%	
21-7-82-3-62.02	Collection System Repair	4,000	1,222	4,000	4,000	0%	
21-7-82-3-65.00	Wastewater Chemicals	10,000	7,947	10,000	17,000	70%	
21-7-82-3-65.01	Biosolids Chemicals	70,000	94,220	90,000	98,100	9%	
21-7-82-3-66.00	Supplies	5,000	3,076	5,000	4,000	-20%	
	Wastewater Operating Expense Subtotal	329,900	393,699	359,900	416,800	16%	
WASTEWATER CAPITA	AL EXPENSES						FY23 Predicted Year End Balances
21-7-90-5-93.00	Wastewater Capital Reserve	70,000	70,000	70,000	10,000	-86%	156,595
21-7-90-5-93.04	Short-term (10 yr) capital fund	50,000	50,000	50,000	10,000	-80%	158,305
21-7-90-5-93.11	Collection System Capital Fund	10,000	10,000	10,000	-	-100%	468,056
21-7-90-2-90.01	RFL-101 planning-ww (2027)	12,081	12,021	12,081	12,021	0%	782,956
21-7-90-2-90.06	Project 7a Sanitary Sewer (2032)	14,093	14,093	14,093	14,093	0%	
21-7-90-2-90.02	Phosphorus SRF(2026)	22,220	22,220	22,220	22,220	0%	
21-7-90-2-90.14	Jericho Rd Loan Principal (2032)	20,592	20,592	20,592	20,592	0%	
21-7-90-2-90.16	Jericho Rd Loan Interest	9,029	9,029	8,288	7,513	-9%	
21-7-82-1-00.00	Unbudgeted Capital Expense			-	-	0%	
	Wastewater Capital Subtotal	208,015	207,955	207,274	96,439	-53%	
·	_						
	TOTAL WASTEWATER REVENUE	789,537	862,001	872,220	857,874	-2%	
	TOTAL WASTEWATER EXPENSES	789,537	866,131	872,220	857,874	-2%	
	BALANCE	-	(4,130)	-	-		
	_						
UNASSIGNED FUN	DS FY22 YEAR END AUDIT				382,021		
UNASSIGNED FUN	DS FY23 USAGE/GROWTH				159,314		
PREDICTED LINAS	SIGNED FUND BALANCE YEAR END FY23				541,335		
	OND DAE HOL LEAN LIND I 120			_	3 12,333		
DRAFT FY24 SEWE	R EXPENSES AS OF 05/01/2023				857,874		
15% OF FY 24 BUD	OGET EXPENSES				128,681		
UNASSIGNED FUN	DS IN EXCESS OF 15%				412,654		
				_	,00 :		

Water Budget - Fire Protection Calculation

48% Tank loan	37,705	0.48	18098
48% Gap loan	26,847	0.48	12887
5% Total Water Budget	378,283	0.05	18914
			49899

Proprietary Net Position Unrestricted							FY23 Projections are ONLY for Reserve funds				
	FY18	FY19	FY20	FY21	FY22	(see previous sheets for unassigned fund projections)					
	L110	F113	F12U	FIZI		FY23 Usage Budgeted	FY23 Contribution	FY23 Usage as of 04/30/23	FY23 Predicted Year-End		
Water Audit Unrestricted	298,778	243,190	(58,859)	349,163	156,230	Osage Daugeteu	Contribution	03age as 01 04/30/23	Tredicted Tear-End		
Water Reserves		-,	(,,								
Short Term Capital	40,000	55,575	75,270	95,270	114,714	0	20,000	(18,722)	115,991		
Water Capital	85,817	21,070	53,742	66,359	90,651	0	36,000	0	126,651		
Distribution	63,265	52,702	57,430	(11,708)	15,000	0	15,000	(8,900)	21,100		
Total Reserves	189,082	129,347	186,442	149,921	220,365	0	71,000	(27,622)	263,743		
Water Audit Unrestricted minus Reserves	109,696	113,843	(245,301)	199,242	(64,135)						
Sewer Audit Unrestricted	471,819	587,860	781,772	974,341	1,048,217						
Sewer Reserves											
Wastewater Capital	197,761	331,572	355,769	388,056	92,755	0	70,000	(6,160)	156,595		
Short Term Capital	30,682	53,522	85,496	117,479	115,385	0	50,000	(7,080)	158,305		
Collection System	36,735	78,405	87,630	82,755	458,056	0	10,000	0	468,056		
Total Reserves	265,178	463,499	528,895	588,290	666,196	0	130,000	(13,240)	782,956		
Sewer Audit Unrestricted minus Reserves	206,641	124,361	252,877	386,051	382,021		•				

Water and Wastewater Items Identified for Repair or Replacement in FY23 and FY24

Water		Outside Consultant	Estimated Cost		Fiscal Year
	Wire and calibrate PH meter at water house.	Tom Allen	TBD		FY23 or FY24
	Water tank mixer replacement		\$	20,000	FY24
	Water tank cleaning		\$	9,000	FY24
	Repair common alarm	Tom Allen	TBD		FY23 or FY24
	Excavation to locate Borden St. water valve		\$	10,000	FY23
Wastewat	er				
	Repair pager dialer	Tom Allen	TBD		FY23 or FY24
	Replace check valve for pump station	Phil Laramie	TBD		FY23
	Repair meters for hours of operation on each pump	Dan Pratt	TBD		FY23
	Rebuild backwash pump 1	Phil Laramie	\$	5,000	FY23
	Rebuild backwash pump 2	Phil Laramie	\$	5,000	FY24
	Purchase New backwash pump		TBD		FY23
	Grit motor assessment and repair	Dan Pratt	TBD		FY23
	Replace auger liner	Phil Laramie	TBD		FY23
	Replace air valve on dewatering press		TBD		FY23
	Repair hazardous gas alarm	Phil Laramie	TBD		FY23
	Purchase UV meter		\$	2,128	FY23
	Install UV meter	Tom Allen	TBD		
	Clean and repair aeration tanks and all holding tanks	Obtaining Quotes	\$30,000 - \$50,000		FY23 or FY24
	Purchase meter for septage receiving	Obtaining Quotes	TBD		FY23
	Wastewater Mixer		\$	8,500	FY23
	New Influent Pumps	Rough Estimate	\$	60,000	FY24

Prioritize projects.

Use Unassigned funds dows to 15% of the FY24 budgeted expenses.

Then use Reserve Funds down to zero.

Then back to unassigned funds only if the project is criticle.