

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 10, Version 3 Location name: Richmond, Vermont, USA* Latitude: 44.405°, Longitude: -72.9968° Elevation: 311 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹								ches) ¹		
Duration				Average	recurrence	interval (ye	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.308	0.362	0.450	0.523	0.624	0.702	0.779	0.857	0.960	1.04
	(0.240-0.392)	(0.282-0.461)	(0.349-0.575)	(0.404-0.672)	(0.464-0.830)	(0.510-0.951)	(0.548-1.09)	(0.578-1.24)	(0.623-1.43)	(0.657-1.58)
10-min	0.437	0.513	0.638	0.741	0.884	0.994	1.10	1.21	1.36	1.47
	(0.340-0.556)	(0.399-0.653)	(0.495-0.815)	(0.572-0.953)	(0.658-1.18)	(0.723-1.35)	(0.776-1.54)	(0.819-1.75)	(0.883-2.03)	(0.931-2.24)
15-min	0.514	0.604	0.751	0.872	1.04	1.17	1.30	1.43	1.60	1.73
	(0.401-0.654)	(0.470-0.769)	(0.582-0.959)	(0.673-1.12)	(0.774-1.38)	(0.850-1.58)	(0.913-1.81)	(0.963-2.06)	(1.04-2.39)	(1 10-2.63)
30-min	0.696	0.817	1.02	1.18	1.40	1.58	1.75	1.93	2.16	2.34
	(0.542-0.885)	(0.636-1.04)	(0.787-1.30)	(0.909-1.51)	(1.05-1.87)	(1.15-2.14)	(1.23-2.45)	(1.30-2.78)	(1.40-3.22)	(1.48-3.56)
60-min	0.877	1.03	1.28	1.49	1.77	1.99	2.21	2.43	2.72	2.94
	(0.684-1.12)	(0.802-1.31)	(0.992-1.64)	(1.15-1.91)	(1.32-2.36)	(1.45-2.70)	(1.55-3.08)	(1.64-3.51)	(1.77-4.06)	(1.86-4.48)
2-hr	1.09	1.28	1.58	1.84	2.18	2.45	2.72	3.01	3.41	3.73
	(0.858-1.38)	(1.00-1.62)	(1.24-2.01)	(1.42-2.34)	(1.64-2.89)	(1.80-3.31)	(1.93-3.80)	(2.04-4.32)	(2.22-5.06)	(2.37-5.65)
3-hr	1.23	1.44	1.78	2.06	2.45	2.74	3.05	3.39	3.88	4.27
	(0.966-1.54)	(1.13-1.81)	(1.39-2.25)	(1.60-2.62)	(1.85-3.24)	(2.02-3.70)	(2.18-4.26)	(2.30-4.85)	(2.53-5.73)	(2.72-6.44)
6-hr	1.46	1.72	2.14	2.48	2.96	3.32	3.70	4.15	4.80	5.34
	(1.16-1.83)	(1.36-2.15)	(1.68-2.68)	(1.95-3.14)	(2.25-3.91)	(2.47-4.47)	(2.68-5.18)	(2.82-5.90)	(3.14-7.06)	(3.41-8.01)
12-hr	1.70	2.02	2.54	2.96	3.56	4.00	4.47	5.03	5.87	6.59
	(1.36-2.11)	(1.61-2.51)	(2.01-3.16)	(2.34-3.72)	(2.72-4.66)	(2.99-5.36)	(3.25-6.23)	(3.44-7.11)	(3.85-8.59)	(4.22-9.82)
24-hr	1.98	2.35	2.96	3.47	4.17	4.69	5.25	5.92	6.92	7.76
	(1.59-2.44)	(1.89-2.90)	(2.37-3.67)	(2.76-4.33)	(3.21-5.44)	(3.54-6.26)	(3.84-7.28)	(4.06-8.32)	(4.55-10.1)	(4.99-11.5)
2-day	2.33	2.75	3.43	4.00	4.78	5.37	5.99	6.71	7.78	8.67
	(1.88-2.86)	(2.22-3.37)	(2.76-4.22)	(3.20-4.95)	(3.70-6.18)	(4.06-7.09)	(4.39-8.22)	(4.63-9.37)	(5.14-11.2)	(5.59-12.8)
3-day	2.60	3.04	3.76	4.35	5.18	5.79	6.44	7.19	8.28	9.18
	(2.10-3.17)	(2.46-3.71)	(3.03-4.60)	(3.49-5.37)	(4.01-6.66)	(4.39-7.61)	(4.73-8.79)	(4.97-10.0)	(5.49-11.9)	(5.93-13.5)
4-day	2.82	3.28	4.03	4.65	5.51	6.15	6.83	7.60	8.70	9.62
	(2.29-3.43)	(2.66-4.00)	(3.26-4.92)	(3.74-5.72)	(4.28-7.06)	(4.67-8.05)	(5.02-9.27)	(5.26-10.5)	(5.78-12.5)	(6.22-14.1)
7-day	3.40	3.91	4.75	5.44	6.39	7.11	7.85	8.68	9.86	10.8
	(2.78-4.12)	(3.20-4.74)	(3.86-5.77)	(4.40-6.64)	(4.98-8.13)	(5.41-9.23)	(5.78-10.6)	(6.04-12.0)	(6.57-14.1)	(7.02-15.8)
10-day	3.96	4.52	5.43	6.18	7.23	8.01	8.83	9.72	11.0	12.0
	(3.25-4.78)	(3.70-5.45)	(4.43-6.58)	(5.02-7.53)	(5.65-9.15)	(6.12-10.4)	(6.50-11.8)	(6.78-13.4)	(7.32-15.6)	(7.77-17.4)
20-day	5.67	6.36	7.50	8.44	9.74	10.7	11.7	12.8	14.2	15.3
	(4.68-6.79)	(5.25-7.63)	(6.16-9.02)	(6.89-10.2)	(7.65-12.2)	(8.22-13.7)	(8.65-15.5)	(8.96-17.4)	(9.53-20.1)	(9.97-22.1)
30-day	7.12	7.92	9.22	10.3	11.8	12.9	14.1	15.3	16.8	18.0
	(5.91-8.49)	(6.56-9.45)	(7.61-11.0)	(8.45-12.4)	(9.30-14.7)	(9.94-16.5)	(10.4-18.5)	(10.7-20.7)	(11.3-23.6)	(11.7-25.8)
45-day	8.95 (7.45-10.6)	9.86 (8.20-11.7)	11.4 (9.41-13.6)	12.6 (10.4-15.1)	14.3 (11.3-17.8)	15.6 (12.0-19.8)	16.9 (12.5-22.1)	18.2 (12.9-24.7)	19.9 (13.4-27.9)	21.1 (13.8-30.3)
60-day	10.5	11.5	13.1	14.5	16.4	17.9	19.3	20.7	22.4	23.7
	(8.76-12.4)	(9.59-13.6)	(10.9-15.6)	(12.0-17.4)	(13.0-20.3)	(13.8-22.5)	(14.3-25.0)	(14.6-27.9)	(15.1-31.3)	(15.5-33.8)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Precipitation Frequency Data Server

Large scale aerial

Ver Bi	rsion: 11/24/2020 oretention (4.3.1)			Proje Dischar Biore	ct Name: ge Point: tention #	Richmond Vil 1 1	llage Hou	sing	
	Practice Drainage Area	For Permit Coverage	Not for Permit Coverage	Total to Practice	-				
1	Total Area (acres)	0.780	0.000	0.780					
2	New Impervious (acres)	0.000	0.000	0.000					
3	Redeveloped Impervious	0.510	0.000	0.510					
4	WQ _v to practice	WQ _v for credit 0.0208	WQ _v not for credit 0.0000	Total WQ _v 0.0208	Modified	d CN for WQ (1.0") storm		90	
5 6* 7	Designed to Infiltrate? Design Volume for Infiltration T _v (acre-feet) Designed to Infiltrate >WQ _v ?	 Yes ○ No n/a No Yes 							

Note: If the practice is designed to infiltrate the WQ_v , then $T_v = WQ_v$. Designers may use the Practice Drainage Area Runoff Calculator (second tab) for calculation of practice-specific runoff volumes for other treatment standards. Sizing of the filter bed area/swale bottom need to consider the desired treatment volume (see treatment section). Some design requirements will change based on the size of storm the practice is designed to treat.

* Questions preceded by an asterix (*) may change based on previously entered values

	Feasibility (4.3.1.1)	Response	Attachment location
8*	Is the SHGWT at or below the bottom of the practice?	○ Yes ○ No	
9*	Has the infiltration rate (fc) of the underlying soil been confirmed to be at least 0.2 inches per hour by the soil testing requirements in Section 4.3.3.2?	○ Yes ○ No	
10*		◯ Yes ◯ No	

	Conveyance (4.3.1.2)	Response	Attachment location
11	Has an underdrain been provided? (required if the underlying soils have an		
	infiltration rate of less than 0.2 inches per hour)	0.0000	
12*		🔿 Yes 🔿 No	
13	Have the outfalls and the conveyance to the discharge point been		
	designed/protected to avoid erosive velocities?		

Practice Drainage Area Runoff Calculator

Project Name: Richmond Village Housing Discharge Point: 1

Bioretention # 1

This tool may be used to calculate the required treatment volumes for the area draining to an individual practice where the practices drainage area is only a portion of of the area draining to a discharge point. Where the practice receives runoff from the entire area to a discharge point, this calculator will give the same information as the Standards Compliance Workbook.

Precipitation Data	* Preciptation	* Preciptation values shall be obtained from NOAA Atlas 1					
Storm	WQ Storm	1 yr, 24 hr	10 yr, 24 hr	100 yr, 24 hr			
Precipitation (inches)	1.00	1.98	3.47	5.25			

Drainage Area Information

Pre Development Land Use (acres)

		Hydrologic	Soil Group		
Landuse	А	В	С	D	Total (acres)
Grass	0.270	0.000	0.000	0.000	0.270
Meadow	0.000	0.000	0.000	0.000	0.000
Woods	0.000	0.000	0.000	0.000	0.000
Pavement, roofs, and					
other impervious	0.510	0.000	0.000	0.000	0.510
Total	0.780	0.000	0.000	0.000	0.780

Post Development Land Use (acres)

		Hydrologic	Soil Group		
Landuse	А	В	С	D	Total (acres)
Grass	0.270	0.000	0.000	0.000	0.270
Meadow	0.000	0.000	0.000	0.000	0.000
Woods	0.000	0.000	0.000	0.000	0.000
Pavement, roofs, and					
other impervious	0.510	0.000	0.000	0.000	0.510
Total	0.780	0.000	0.000	0.000	0.780

T_v of upstream practices:

0.000 ac-ft

T_v credit of this practice:

0.000 ac-ft

Channel Protection (Hydrologic Condition Method)0.00000.07460.0746919191Overbank Flood0.00000.13770.1377878787	Treatment Standard	Required Treatment Volume	Post Development Runoff Volume	Pre- development Runoff Volume	Post Composite CN (to practice)	CN _{Adj} (with T _v practice credit)	Pre Composite CN
Overbank Flood 0.0000 0.1377 0.1377 87 87 87	Channel Protection (Hydrologic Condition Method)	0.0000	0.0746	0.0746	91	91	91
	Overbank Flood	0.0000	0.1377	0.1377	87	87	87

Information for Calculating T_c by the Watershed Lag Method

Average				
Catchment	Hydraulic	Time of 0	Concentration,	T _c (min)
Slope, Y (%)	Length, I (ft)	1 yr	10 yr	100 yr

Pre Development 7.00% 275.00 2.9 3.4 3.9 Post Development, upstream of practice 7.00% 275.00 2.9 3.4 3.9 Post Development, with T_v credit from practice 0.00% 0.00 0.0 0.0 0.0 0.0						
Post Development, upstream of practice7.00%275.002.93.43.9Post Development, with T_v credit from practice0.00%0.000.00.00.0	Pre Development	7.00%	275.00	2.9	3.4	3.9
upstream of practice0.00%0.000.00.0Post Development, with Tv credit from practice0.00%0.000.00.0	Post Development,	7.00%	275.00	2.9	3.4	3.9
Post Development, with Tv credit from practice0.00%0.000.00.00.0	upstream of practice				-	
	Post Development, with T _v credit from practice	0.00%	0.00	0.0	0.0	0.0

Project Notes

Richmond Village Housing Stormwater Modeling

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.780	90	Worksheet (14S)
0.780	90	TOTAL AREA

Time span=1.00-120.00 hrs, dt=0.01 hrs, 11901 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment14S: WS-EastRunoff Area=0.780 ac0.00% ImperviousRunoff Depth=0.32"Flow Length=275'Slope=0.0700 '/'Tc=3.0 minCN=90Runoff=0.50 cfs0.021 af

Pond 15P: Bio retentionPeak Elev=309.72' Storage=410 cf Inflow=0.50 cfs 0.021 afDiscarded=0.00 cfs 0.012 afPrimary=0.04 cfs 0.008 afOutflow=0.04 cfs 0.021 af

Total Runoff Area = 0.780 ac Runoff Volume = 0.021 af Average Runoff Depth = 0.32" 100.00% Pervious = 0.780 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment 14S: WS-East

Summary for Pond 15P: Bio retention

Inflow Are Inflow Outflow Discarded Primary	ea = = = d = =	0.780 ac, 0. 0.50 cfs @ 1 0.04 cfs @ 1 0.00 cfs @ 1 0.04 cfs @ 1	00% Impervic 1.94 hrs, Vol 2.46 hrs, Vol 1.39 hrs, Vol 2.46 hrs, Vol	ous, Inflow De ume= ume= ume= ume=	pth = 0.32" 0.021 af 0.021 af, Atto 0.012 af 0.008 af	for WQv en= 91%, I	event Lag= 31.1 min
Routing b Peak Ele	oy Stor-Ind v= 309.72'	method, Time @ 12.46 hrs	Span= 1.00-′ Surf.Area= 9	120.00 hrs, dt= 14 sf Storage	• 0.01 hrs •= 410 cf		Runoff volume reduction from Bioretention Swale
Plug-Flov Center-of	v detentior -Mass det	n time= 775.4 ו . time= 775.5 ו	nin calculated nin (1,632.2 -	l for 0.021 af (´ - 856.7)	100% of inflov	N)	
Volume	Inver	t Avail.Sto	rage Storag	ge Description			
#1	309.00)' 7	69 cf Custo	m Stage Data	(Prismatic)L	isted belov	v (Recalc)
Elevatior (feet	n S :)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Sto (cubic-fe	ore et)		
309.00	2	260	0		0		
309.70	0	860	392	3	92		
310.00	0	1,650	377	7	69		
Device	Routing	Invert	Outlet Devic	ces			
#1 #2	Discarded Primary	309.00' 309.70'	0.500 in/hr 6.0' long x Head (feet) 2.50 3.00 (Coef. (Engli 2.65 2.67 2	Exfiltration ov 5.0' breadth E 0.20 0.40 0.1 3.50 4.00 4.5 sh) 2.34 2.50 2.66 2.68 2.7	ver Surface a Broad-Creste 60 0.80 1.00 0 5.00 5.50 0 2.70 2.68 2 0 2.74 2.79	area below ed Rectang 0 1.20 1.40 2.68 2.66 2.88	309.01' Jular Weir D 1.60 1.80 2.00 2.65 2.65 2.65
Discarde	Discarded OutFlow Max=0.00 cfs @ 11.39 hrs HW=309.01' (Free Discharge) ←1=Exfiltration (Exfiltration Controls 0.00 cfs)						

Primary OutFlow Max=0.04 cfs @ 12.46 hrs HW=309.72' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 0.04 cfs @ 0.33 fps) Flow (cfs)

0.15

0.1

0.05

0.04 cfs

0.04 cfs

Hydrograph InflowOutflow 0.50 cfs Discarded Inflow Area=0.780 ac Primary 0.55 Peak Elev=309.72' 0.5 Storage=410 cf 0.45 0.4 0.35 0.3 0.25 0.2

Pond 15P: Bio retention

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 Time (hours)

Project Notes

Richmond Village Housing Stormwater Modeling

Area Listing (selected nodes)

Area (acres)	CN	Description (subcatchment-numbers)
1.560 1.560	85 85	Worksheet - Interpolated (25S, 32S)

Borden St	Type II 24-hr 25 year Rainfall=4.17
Prepared by Krebs & Lansing Consulting Engineers, Inc.	Printed 5/19/2023
HydroCAD® 10.00-19 s/n 06429 © 2016 HydroCAD Software Solutions	s LLC Page 4

Solutions LLC Page 4

Time span=1.00-120.00 hrs, dt=0.01 hrs, 11901 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 25S: WS-E	East	Runoff Area=0.780 ac Tc=3.7	0.00% Impervious 7 min CN=85 Rur	Runoff Dep off=3.86 cfs	oth=2.61" 0.170 af
Subcatchment 32S: WS-E	East	Runoff Area=0.780 ac Tc=3.7	0.00% Impervious 7 min CN=85 Rur	Runoff Dep off=3.86 cfs	oth=2.61" 0.170 af
Pond 35P: Bio retention	Discarded=0.00 cfs	Peak Elev=310.03' 5 0.013 af Primary=3.71	Storage=753 cf Infl cfs 0.156 af Outfl	ow=3.86 cfs ow=3.71 cfs	0.170 af 0.170 af
Link 26L: (new Link)			Infl Prim	ow=3.86 cfs ary=3.86 cfs	0.170 af 0.170 af

Total Runoff Area = 1.560 acRunoff Volume = 0.339 af
100.00% Pervious = 1.560 acAverage Runoff Depth = 2.61"
0.00% Impervious = 0.000 ac

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 Time (hours) Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 1.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 25 year Rainfall=4.17"

25 year storm Post Development Peak Discharge Rate

Borden St

Prepared by Krebs & Lansing Consulting Engineers, Inc. HydroCAD® 10.00-19 s/n 06429 © 2016 HydroCAD Software Solutions LLC

Summary for Pond 35P: Bio retention

Inflow Area	=	0.7	80 ac,	0.00% Imp	ervious,	Inflow	Depth =	2.6	1" for 25	year event
Inflow =	=	3.8	S cfs @	11.94 hrs,	Volume	=	0.170	af		
Outflow =	=	3.7	l cfs @	11.96 hrs,	Volume	=	0.170	af, .	Atten= 4%,	Lag= 1.0 min
Discarded =	=	0.0) cfs @	7.19 hrs,	Volume	=	0.013	af		-
Primary =	=	3.71	l cfs @	11.96 hrs,	Volume	=	0.156	af		

Routing by Stor-Ind method, Time Span= 1.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 310.03' @ 11.96 hrs Surf.Area= 1,330 sf Storage= 753 cf

Plug-Flow detention time= 104.5 min calculated for 0.170 af (100% of inflow) Center-of-Mass det. time= 104.7 min (914.3 - 809.6)

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	309.00'	1,53	36 cf Custom) Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatio (fee	on Su et)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
309.0 309.7 310.5	00 70 50	260 860 2,000	0 392 1,144	0 392 1,536	
Device	Routing	Invert	Outlet Device	s	
#1 #2	Discarded Primary	309.00' 309.70'	0.500 in/hr Ex 8.0' long x 5 Head (feet) 0 2.50 3.00 3. Coef. (English 2.65 2.67 2.	xfiltration over 5 .0' breadth Broa 0.20 0.40 0.60 50 4.00 4.50 5 h) 2.34 2.50 2. 66 2.68 2.70 2	Surface area below 309.01' ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 5.00 5.50 70 2.68 2.68 2.66 2.65 2.65 2.65 2.74 2.79 2.88
Discard	ed OutFlow	Max=0.00 cf	s @ 7.19 hrs H	HW=309.02' (F	ree Discharge)

T-1=Exfiltration (Exfiltration Controls 0.00 cfs) **Primary OutFlow** Max=3.70 cfs @ 11.96 hrs HW=310.03' (Free Discharge)

2=Broad-Crested Rectangular Weir (Weir Controls 3.70 cfs @ 1.40 fps)

Pond 35P: Bio retention

25 year storm Predevelopment peak discharge rate

Borden St

Type II 24-hr 25 year Rainfall=4.17" Prepared by Krebs & Lansing Consulting Engineers, Inc. HydroCAD® 10.00-19 s/n 06429 © 2016 HydroCAD Software Solutions LLC

Printed 5/19/2023 Page 9

Summary for Link 26L: (new Link)

Inflow Area	a =	0.7 8 0 ac,	0.00% Impervious,	Inflow Depth = 2.6	51" for 25 year event
Inflow	=	3.86 cfs @	11.94 hrs, Volume	= 0.170 af	-
Primary	=	3.86 cfs @	11.94 hrs, Volume	= 0.170 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-120.00 hrs, dt= 0.01 hrs

Link 26L: (new Link)