Phase II Environmental Site Assessment

Former Richmond Creamery Richmond, Vermont VT DEC SMS#2008-3835

April 19, 2010

Prepared for:

Chittenden County Regional Planning Commission 101 West Canal Street, Suite 202 Winooski, VT 05404

ENVIRONMENTAL SCIENCE AND ENGINEERING SOLUTIONS

PARTNERS FOR SMART THINKING

AND CREATIVE STRATEGIES

ph (802) 229-4600 fax (802) 229-5876 100 State Street, Suite 600 Montpelier, VT 05602

www.johnsonco.com

April 19, 2010

Samantha Tilton, Staff Planner Chittenden County Regional Planning Commission 101 West Canal Street, Suite 202 Winooski, VT 05404

Re: Phase II Environmental Site Assessment Former Richmond Creamery Richmond, Vermont JCO Project #1-0346-3

Dear Ms. Tilton:

The Johnson Company is pleased to present the following Phase II Environmental Site Assessment report to the Chittenden County Regional Planning Commission (CCRPC). This report is intended to provide information pertaining to the potential existence of surface, subsurface, and building material contamination with respect to its impact on future redevelopment at the former Richmond Creamery Property.

We trust that this report satisfies the current needs of the CCRPC. Should you have any questions or require additional assistance, please do not hesitate to contact us at 229-4600. - Thank you for the opportunity to be of assistance to the CCRPC on this project.

Sincerely,

THE JOHNSON COMPANY, INC.

Project Scientis

Attachment

C: Hugo Martinez, VTDEC Diane Kelley, USEPA

Rhonda Kay Project Engineer

K:\1-0346-3\Phase II\Report\FINAL Richmond Phase II ESA 041910.doc

EXECUTIVE SUMMARY

The Johnson Company was contracted by the Chittenden County Regional Planning Commission (CCRPC) of Winooski, Vermont to perform Phase II Environmental Site Assessment (ESA) activities at the former Richmond Creamery site located at 74 Jolina Court in Richmond, Vermont (the Site). The Site is currently owned by Casing Development, LLC and formerly housed a dairy processing and cheesemaking facility, but the building is now vacant. CCRPC is utilizing United States Environmental Protection Agency (EPA) grant money to assess environmental conditions at the Site and thus assist in its redevelopment. This Phase II ESA follows a Phase I ESA Update prepared by The Johnson Company on October 29, 2008. The Phase II Environmental Site Assessment documented herein included sampling for metals, PCBs, asbestos, lead-based paint, VOCs, and SVOCs. The results of the investigation are summarized below.

<u>Overview</u>

The results of this ESA indicate that many of the compounds tested in soil and groundwater at the Site are not of significant concern, including PCBs, VOCs in most soil and all groundwater, SVOCs in some soils and all groundwater, and most metals in soils and groundwater.

Some metals and SVOCs were detected in soil above regulatory limits, and some metals were detected in groundwater above regulatory limits at the Site. In addition, the presence of asbestos containing building materials, lead-based paint, mold, ammonia and containerized materials were investigated in the factory building. These constituents of concern are discussed below.

<u>Metals</u>

Metals were field screened and selected samples were submitted for laboratory analysis. Residential soil screening levels were exceeded in surface soil samples submitted to the laboratory at locations near the factory building (3.7 mg/kg mercury in SS-FB-05), storage shed (700 mg/kg lead in SS-SS-03) and approximate location of mapped storage tanks (2,540 mg/kg manganese in SS-T-5). In addition, residential soil screening levels were exceeded in one slightly deeper soil boring sample (43 mg/kg arsenic in MW-3).

Arsenic at or above the Vermont Groundwater Enforcement Standard (VGES) of 0.01 mg/L was reported in monitoring wells MW-2 and MW-5, which are located approximately 50 feet north and 110 feet south of the factory building, respectively, and in the sample collected from the sump inside the building's eastern end. Based on the depth to the bottom of the sump and the depth to groundwater, the water in the Sump is assumed to be groundwater and connected to the groundwater in MW-2. There is no apparent correlation between the elevated arsenic concentration outside the southeastern corner of the building (at the MW-3 soil boring) and the groundwater samples, which were not located downgradient of MW-3. Therefore, the elevated arsenic concentrations in groundwater are likely to be naturally occurring. Since the Site is supplied by municipal water, groundwater is not likely to be used for drinking at the Site, although it is currently accessible via the sump.

Manganese was detected in groundwater samples from all but two sampled wells at the Site, but not detected in the Sump sample. As with arsenic, there was no apparent correlation between elevated manganese soil concentrations located in the former reported oil tank area and the widespread elevated manganese groundwater concentrations. Manganese is likely to be naturally occurring, since it is believed that cheesemaking processes did not incorporate significant quantities of manganese. There did not appear to be a correlation between pH levels and manganese detections; very acidic or very basic groundwater may have the potential to mobilize manganese, but this does not appear to be occurring.

The former water supply well in the well tower could not be safely accessed or sampled. However, based on the widely distributed presence of manganese and arsenic detections, if the well is screened in shallow groundwater, it may contain elevated concentrations of both of these elements above VGES limits.

Discrete areas where elevated metals concentrations should be addressed include the area between the southeast corner of the building and the hollow pit, at MW-3 and SS-FB-05, where the presence of elevated concentrations of mercury and arsenic indicate possible dumping or disposal. The extents of these soils have not been delineated, but are assumed to include the volume to a depth of 2 feet bounded by the building and road (approximately 280 square feet), resulting in a total volume of approximately 21 cubic yards of soil. A small area (approximately 160 square feet) of lead-impacted surficial soils is present on the eastern side of the storage shed to a depth of 0.5 feet; the estimated volume is 3 cubic yards. Additional sampling would refine these volume estimates. Although elevated concentrations of manganese were present in one soil sample near the western edge of the former oil storage area, as stated previously the source of this manganese is believed to be naturally occurring and a volume of impacted soils has not been calculated.

<u>SVOCs</u>

A Toxic Equivalent Factor (TEF) was applied to the carcinogenic polycyclic aromatic hydrocarbon (PAH) range of semi-volatile organic compound (SVOC) soil results. The products of the results multiplied by the TEF were summed and compared to the Vermont Department of Health (VDH) benzo(a)pyrene-TE criterion of 0.01 mg/kg. The VDH benzo(a)pyrene-TE screening value was exceeded in all samples where PAHs were reported in exceedance of laboratory detection limits, including all shallow soil sampling surface (0-0.5 foot depth) results. Surficial and near surface samples that contained the highest PAH concentrations are present near the former rail spur, and in the center of the former oil storage area. An area of approximately 7,600 square feet in the vicinity of the former rail spur appears to be impacted by PAHs to a depth of 2 feet, resulting in an estimated soil volume of 560 cubic yards; this area is currently well vegetated with grass, brush, and/or trees. The discrete area containing elevated PAHs in the former oil storage area is estimated to cover approximately 300 square feet to an average depth of 1.5 feet, which results in a soil volume of 17 cubic yards; however, this soil is immediately adjacent to an operating railroad, and is likely to receive PAH deposition after remediation and may require additional controls to control direct-contact risks.

<u>VOCs</u>

In addition, one SVOC (and VOC), naphthalene, was detected above the residential RSL (3.9 mg/kg) but below the VDH criterion of 1,070 mg/kg at two locations: SS-AST-2 (surficial and near surface soils to 2 feet below ground surface), and SB-08 (1.5-2.0 feet). Both locations had elevated photoionization detector readings and visual evidence of petroleum staining. These areas of impact are expected to be relatively limited in area, based on the lack of elevated detections at nearby sampling locations.

Asbestos-Containing Materials

The asbestos inspection reported the following asbestos-containing building materials (ACBM) associated with the factory building:

- Basement: gray ceiling/wall panels in milk receiving room; milk silo room; production areas #1, 2, and 3; storage area #5
- First floor:
 - gray ceiling panels in ammonia compressor room, storage room #6/culture room, closet under stairs,
 - o tan 9 inch x 9 inch vinyl floor tile in lab
- Second floor:
 - tan 9 inch x 9 inch vinyl floor tile in reception area, conference room (including closet)
 - o gray 9 inch x 9 inch vinyl floor tile in bathroom, office floor, storage room floor
 - o gold adhesive beneath gray tile in front reception area
 - o cream/green linoleum in office bathroom
 - o sheetrock compound at hallway wall edge and stairs
 - blue vinyl floor tile near bathrooms
 - black tar on cork in ceiling in the attic stock room
 - o exterior blue siding

Lead-Based Paint

There were positive detections of lead-based paints and coatings on surfaces on all parts of the factory building, with limited presence in the basement. Building exterior surfaces that exhibited lead detections include a first floor loading dock door, light blue shingles on an upper portion of the building, and slight positives associated with the coatings on the foundation.

Mold Issues

At the time of the assessment, conditions for mold growth, including excessive moisture as a result of past or current roof leaks and the absence of heating or air conditioning in the building, were favorable. Four mold types were identified: mycelial fragments, Aspergillus/Penicillium, Cladiosporium, and Basidiospores. Unidentified/other mold types were also reported in 3 of the 4 samples. All four of the identified mold types are prevalent in outdoor environments in northern New England and common to indoor environments with high moisture contents.

Containerized Materials

Numerous containerized materials in the factory building used for various cleaning, maintenance, and compressor- related purposes were observed and inventoried, and the majority were labeled. A Department of Transportation (D.O.T) fingerprint analysis was conducted for containerized materials that were not labeled.

<u>Ammonia</u>

Ammonia was confirmed to be present in a storage tank, and it is likely that residual ammonia is also present in the refrigeration system.

Recommendations

Based on the findings of this Phase II ESA, The Johnson Company provides the following recommendations:

- Although metals concentrations were detected in groundwater wells at concentrations exceeding Vermont Groundwater Enforcement Standards (VGES), VOCs and SVOCs were not detected above VGES, and there is no evidence to suggest existing impacts to groundwater from Site activities. The elevated concentrations of arsenic and manganese in groundwater appear to be related to the successful degradation of petroleum products at the Site, and groundwater is not a source of drinking water at the Site.
- No remedial actions are recommended for groundwater unless a use is identified for the existing water supply well, in which case additional sampling should be conducted in advance of use. No additional water supply wells should be installed on the property without advance coordination with the Sites Management Section of VT DEC.
- A hollow pit of concrete rubble does not appear to be impacting groundwater or soil and no remedial actions are recommended to address the pit. However, this pit could pose a safety hazard for future redevelopment activities and should be managed appropriately.
- Additional sampling should be conducted to delineate the areal and vertical extent of the soils impacted by metals (arsenic, lead, manganese, and mercury) outside of the southeastern corner of the building.
- Additional sampling should be conducted to delineate the areal extent of surficial soils impacted by PAHs and naphthalene. If residential redevelopment is planned, these results should be used as part of a risk assessment to evaluate the potential human health risks associated with PAHs and naphthalene at the Site.
- Since no groundwater remediation is recommended, the existing onsite monitoring wells should be closed to prevent a conduit for contamination during any future Site uses.
- Once the building plans for the Site have been finalized, a Corrective Action Plan (CAP) should be developed in accordance with the VT DEC guidelines to address the following issues of concern at the Site:
 - Metals and PAH impacted shallow soils
 - Ammonia present in the abandoned refrigeration system
 - Containerized materials present in the factory building, if they have not already been removed by the owners
 - The water supply well

- The sump inside the building
- Asbestos, lead paint, and mold

Details of the CAP recommendations listed above are provided as follows:

- Once the building plans for the Site have been finalized, a Corrective Action Plan (CAP) should be developed in accordance with the VT DEC guidelines to address the following issues of concern at the Site:
 - Metals and PAH impacted shallow soils
 - o Ammonia present in the abandoned refrigeration system
 - The water supply well
 - The sump inside the building
 - o Asbestos, lead paint, and mold

Details of the CAP recommendations listed above are provided as follows:

- Metals (arsenic, lead, manganese, and mercury) were reported in four surface and nearsurface soil samples at concentrations above soil screening levels for residential soils. The soils outside the southeast corner of the building should be removed or covered, as should the soils on the northeast side of the storage shed. In addition, PAHs were reported at concentrations exceeding residential and industrial screening levels in locations surrounding the former rail spur and in the reported vicinity of the former tanks, in addition to isolated locations in other portions of the property. Currently, a complete vegetative covering at the rail spur area limits exposure to PAH compounds; however, if the Site use changes, remediation or land use restrictions should be applied to limit future exposures. In the former tank area, no action is recommended due to its proximity to the functioning rail line, which will be a continuing source of PAHs in the future.
- The presence of ammonia was confirmed in the abandoned refrigeration system. In its current condition, the ammonia refrigeration system does not pose an environmental hazard. However, it could pose a health and safety risk for future redevelopment activities. Ammonia in the storage tank should be pumped and reclaimed, and any residual ammonia present in refrigeration system removed prior to demolition or reuse of the building.
- An onsite former water supply well could not be accessed during the Phase II field investigation. The well is not easily accessible and is unlikely to serve as a conduit for contamination into groundwater. However, elevated concentrations of arsenic and manganese have been detected in shallow groundwater at the Site. Although the screened interval of the supply well is not known, it should be sampled before any future uses. Alternatively, if it will not be used and future redevelopment activities would result in Site

modifications making the well more accessible, the well should be demolished and properly decommissioned.

- Concentrations of arsenic were observed above VGES in a sump located in the factory building. Metals concentrations were consistent with surrounding shallow groundwater, and no remedial actions are recommended. However, exposure to the water in the sump should be prevented during redevelopment activities by removing the sump. Alternatively, since the sump may be connected to groundwater and it may not be possible to completely pump out, the sump could also be covered to secure access and prevent ingestion of the water.
- Asbestos containing building materials and lead-based paint should be handled and disposed of appropriately during demolition or reuse of the building. Asbestos was not detected in soil samples analyzed with Polarized Light Microscopy (PLM). However, chrysotile was reported in both soil samples analyzed with Transmission Electron Microscopy. Although no remedial actions would be required due to the presence of asbestos, best-management practices should be employed to limit exposure to dust during soil-disturbing activities.
- The presence of four mold types was confirmed in the factory building mold inspection. Although no remedial actions are recommended, best-management practices should be employed to limit exposure to mold during demolition or renovation activities, and conditions conducive to mold growth should be addressed prior to building reuse.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	.I
1.0 INTRODUCTION	. 1
1.1 BACKGROUND	. 1
1.1.1 Previous and Related Investigation Results	2
2.0 METHODOLOGY AND RESULTS	3
2.1 ASBESTOS INSPECTION	4
2.1.1 Asbestos Inspection: Building Materials	4
2.1.1.1 Asbestos Inspection: Building Materials - Methodology	
2.1.1.2 Asbestos Inspection: Building Materials - Results	. 4
2.1.2 Asbestos Sampling: Soils	5
2.1.2.1 Asbestos Sampling: Soils - Methodology	
2.1.2.1 Asbestos Sampling: Soils - Results	
2.2 LEAD PAINT AND MOLD INSPECTION	6
2.2.1 Lead Paint Inspection	6
2.2.1.1 Lead Paint Inspection Methodology	
2.2.1.2 Lead Paint Inspection Results	
2.2.3 Mold Inspection	
2.2.3.1 Mold Inspection Methodology	
2.2.3 Mold Inspection Results	
2.3 POLYCHLORINATED BIPHENYL (PCB) SAMPLING	
2.3.1 Indoor Concrete Sampling for PCBs	
2.3.1.1 Indoor Concrete Sampling for PCBs Methodology	
2.3.1.2 Indoor Concrete Sampling for PCBs Results	
2.3.2 Soil Sampling for PCBs	
2.3.2.1 Soil Sampling for PCBs Methodology	
2.3.2.2 Soil Sampling for PCBs Results	
2.4 HOLLOW PIT CHARACTERIZATION	
2.5 CONTAINERIZED MATERIALS CHARACTERIZATION	
2.6 ASSESSMENT OF AMMONIA REFRIDGERATION SYSTEM	
2.7 ASSESSMENT OF WATER SUPPLY WELL	
2.8 CHARACTERIZATION OF SUMP	
2.8.1 Sump Characterization Methodology	
2.8.2 Sump Characterization Results	
2.8.2.1 Sump VOC Results	
2.8.2.2 Sump SVOC Results	
2.8.2.3 Sump Metals Results	
2.9 SHALLOW SOIL SAMPLING	
2.9.1 Shallow Soil Borings Methodology	
2.9.2 Shallow Soil Sampling Results	13
2.9.2.1 Shallow Soil Sampling Results - VOCs	13

2.9.2.2 Shallow Soil Sampling Results - SVOCs and PAHs	
2.9.2.3 Shallow Soil Sampling Results - Metals	
2.9.2.4 Shallow Soil Sampling Results - Pesticides	
2.10 GROUNDWATER QUALITY INVESTIGATION	
2.10.1 Groundwater Quality Investigation Methodology	
2.10.2 Groundwater Quality Investigation Results	17
2.10.2.1 Locations of Groundwater Monitoring Wells	
2.10.2.2 Groundwater Flow Direction	
2.10.2.3 Groundwater and Soil Boring VOC Results	
2.10.2.4 Groundwater and Soil Boring SVOC and PAH Results	
2.10.2.5 Groundwater and Soil Boring Metals Results	
3.0 QUALITY ASSURANCE / QUALITY CONTROL MEASURES	
3.1.1 Duplicate Samples	
3.1.2 Laboratory vs. XRF Screening Results	
3.1.3 Laboratory QA/QC	
3.1.4 QA/QC Conclusions	
3.0 CONCLUSIONS	
3.1 OVERVIEW	
3.2 METALS	
3.4 SVOCS	
3.5 VOCS	
3.6 ASBESTOS-CONTAINING MATERIALS	
3.7 LEAD-BASED PAINT	
3.8 MOLD ISSUES	
3.9 CONTAINERIZED MATERIALS	
3.10 AMMONIA	
	27
4.0 RECOMMENDATIONS	
4.0 RECOMMENDATIONS4.0 LIMITATIONS	

LIST OF TABLES

Tables in Text:

Table 2.9	Well Depths and Screen Lengths	6

Attached Tables:

Table 1PCB Concrete and Soil ResultsTable 2VOC Water ResultsTable 3SVOC Water ResultsTable 4PAH Water ResultsTable 5Metals Water ResultsTable 6VOC Soil Results

Phase II ESA, Former Richmond Creamery The Johnson Company

- Table 7PAH Soil Results
- Table 8Toxicity Equivalent PAHs
- Table 9Metals XRF Soil Screening Results
- Table 10Metals Soil Laboratory Results
- Table 11Metals XRF Soil Screening Compared to Laboratory Results
- Table 12SVOC Soil Results
- Table 13Pesticide Soil Results
- Table 14Asbestos Soil Results
- Table 15Groundwater Elevation Levels

LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 All Sampling Locations
- Figure 3 PAH Results in Soil Samples
- Figure 4 Metals Results in Soil and Groundwater
- Figure 5 Groundwater Equipotential Map

LIST OF APPENDICES

- Appendix 1 Photographic Plates
- Appendix 2 Asbestos Inspection Report
- Appendix 3 Lead Based Paint and Mold Inspection Report
- Appendix 4 D.O.T. Unknown Fingerprint Analysis and Containerized Materials Inventory
- Appendix 5 Well Construction Logs
- Appendix 6 Laboratory Analytical Data
- Appendix 7 Field Forms

1.0 INTRODUCTION

1.1 BACKGROUND

The Johnson Company was contracted by the Chittenden County Regional Planning Commission (CCRPC) of Winooski, Vermont to perform Phase II Environmental Site Assessment (ESA) activities at the Former Richmond Creamery located at 74 Jolina Court in Richmond, Vermont (the Site; see Figure 1). The CCRPC is utilizing U.S. Environmental Protection Agency (EPA) grant money to assess environmental conditions at the Site, and thus assist in its redevelopment. The objective of this work was to evaluate to evaluate Site impacts from asbestos, mold, lead-based paint, petroleum, chlorinated solvents, PCBs, and metals. This Phase II ESA was performed in accordance with the American Society of Testing and Materials (ASTM) Standard Practice for Phase II ESAs, ASTM E 1903-97, with additional innovative technologies employed as recommended by the U.S. Environmental Protection Agency's (EPA) Triad Approach for streamlined Brownfields site assessments and cleanups.

The Site is comprised of approximately 6 acres located within a mixed-use area of residential and commercial development. The Site is located in the Town of Richmond, in close proximity to the downtown area, and encompasses the following buildings: a former cheese processing factory, a former storage shed, a boiler building, and a concrete tower that houses the former water supply well. The remainder of the property is covered by herbaceous vegetation, a dirt roadway, a wooded slope, a drainage ditch, and a small portion of a field used for agricultural purposes.

The factory was constructed in the early 1900's, and has been out of use since 1999. Historical and current photos are included in Photographic Plates (Appendix 1). Much of the Site has fallen into disrepair since the active operation of the factory, which partially can be attributed to recurring acts of vandalism. There are three levels in the building: a basement, which runs under the entire footprint and housed the milk production areas and freezers; the first floor, which is only on the northern and western sides of the footprint and was primarily used for storage; and the second floor, near the center and northeastern sides, which contained offices, bathrooms, and storage areas.

1.1.1 <u>Previous and Related Investigation Results</u>

A Phase I Environmental Site Assessment of the Site was prepared by Heindel and Noyes, Inc., (H&N) dated December 2, 2002. In October, 2008, The Johnson Company performed an update of the H&N Phase I ESA for CCRPC. Based on the findings of the Phase I investigation and Update, the former use of the Site for dairy processing and cheesemaking did not appear to have resulted in gross contamination of environmental media. However, some discrete areas of concern were identified as a result of the former industrial uses and the age of the building, and the following recognized environmental concerns (RECs) were identified:

- Containerized potentially hazardous materials in the former factory and storage buildings. Some of these containers were observed to be uncovered, which presents risk for spills or releases.
- Water supply well, not abandoned or used since connection to Town of Richmond municipal water supply. If unsecured, this well can provide a conduit for hazardous materials to be released to groundwater.
- Property records indicate Standard Oil Company formerly owned a portion of the Site, and a 1926 Sanborn map shows the approximate location of three oil storage tanks.
- A hollow pit of unconfirmed contents, covered by a concrete slab, is present on the Site.
- Polynuclear aromatic hydrocarbons (PAHs) from idling rail cars, in addition to other materials that may have spilled or been released from rail cars, such as metals and asbestos used in brake linings of rail cars, may be present in soils in the vicinity of the former rail spur that crossed the northeastern corner of the Site.
- Potential impacts to soil and groundwater resulting from possible releases during factory operations. Due to the machinery formerly present at the Site, the use of lubricating oils and cleaning chemicals is suspected, although in many areas of the factory it is likely that these lubricants and cleaning products were food-grade and not a major source of contamination to environmental media.
- The presence of hydraulic fluid buckets in the storage shed indicates that this product was used in some machinery or equipment at the Site. Some hydraulic fluids historically contained PCBs before their use in unenclosed systems was banned in the late-1970's. There is not evidence to suggest the widespread release of hydraulic fluids in a food-manufacturing facility.

Although not Recognized Environmental Conditions, potential impacts from the following items were also assessed in the Phase II ESA:

- A 10,000-gallon above ground storage tank (AST) containing some residual fuel oil sludge is present on the Site. The piping for this AST was routed overhead, and no staining or olfactory evidence of releases to the ground surface were observed.
- Residual ammonia potentially present in the abandoned refrigeration system.
- Asbestos was previously identified in the shingles that cover the outside of the factory building; asbestos may also be present in building materials in the factory building and in soils.
- Lead may be present in soils and paint on the factory building.
- Pesticides may be present in soils on the Site due to the proximity to cleared cropland.

2.0 METHODOLOGY AND RESULTS

The scope of work for this assessment was developed in accordance with the US EPA's Triad Approach¹ for streamlined brownfield site assessments. This investigation was conducted in accordance with the procedures described in the Generic Quality Assurance Project Plan (QAPP) (RFA# 07285) and the Site-specific Former Richmond Creamery QAPP Addendum F, Revision 3, dated March 19, 2009. In order to better assess the extent of and risks posed by contaminants already identified or suspected to be present at the Site, environmental investigations consisting of the following items were conducted: a) an asbestos assessment; b) a lead paint and mold assessment; c) concrete floor and soil sampling for PCBs; d) an assessment of containerized materials; e) sampling of a sump observed to be present in the factory building; f) soil quality screening and sampling; and g) groundwater monitoring well installation and sampling. Details pertaining to each aspect of the Phase II site investigation are included in the following sections. Field forms documenting sample collection are included in Appendix 7. Samples were placed in coolers and were shipped using Chain of Custody protocol via courier to Eastern Analytical, Inc. of Concord, New Hampshire and Phoenix Environmental Laboratories, Inc. of Manchester, Connecticut for analysis. Eastern Analytical, Inc. performed all soil analyses except PCBs, which were analyzed by Phoenix Environmental Laboratories, Inc. The asbestos

¹ U.S. Environmental Protection Agency, *Using the Triad Approach to Streamline Brownfields Site Assessment and RFCleanup*; Brownfields Technology Primer Series, EPA 542-B-03-002, June 2003.

and lead paint/mold assessments were subcontracted and analyses of building materials are discussed in corresponding sections.

2.1 ASBESTOS INSPECTION

2.1.1 Asbestos Inspection: Building Materials

2.1.1.1 Asbestos Inspection: Building Materials - Methodology

An asbestos inspection was completed by Anglo-American Environmental (AAE) on March 23-24, 2009. The asbestos inspection was performed in accordance with the Vermont Regulations for Asbestos Control V.S.A. Title 18, Chapter 26 and 40 CFR Part 763, "Asbestos Containing Materials in Schools: Final Rule and Notice" (EPA/AHERA) by a Vermont-certified Asbestos Inspector. A total of 69 asbestos samples were collected and submitted to EMSL Laboratory of Woburn, Massachusetts for analysis using Polarized Light Microscopy (PLM; EPA Method 600/R-93/119). Of the 69 samples, 68 were analyzed by PLM and 1 was analyzed using the 400 Point Count procedure with PLM, which is used to quantify levels around 1 percent.

2.1.1.2 Asbestos Inspection: Building Materials - Results

The full asbestos inspection report provided by AAE is included in Appendix 2. The results of the asbestos sampling indicate that asbestos is present in multiple building materials in or associated with the factory building. Asbestos-containing building materials (ACBM) included the following items:

- Basement: gray ceiling/wall panels in milk receiving room; milk silo room; production areas #1, 2, and 3; storage area #5
- First floor:
 - gray ceiling panels in ammonia compressor room, storage room #6/culture room, closet under stairs,
 - tan 9 inch x 9 inch vinyl floor tile in lab
- Second floor:
 - tan 9 inch x 9 inch vinyl floor tile in reception area, conference room (including closet)

- o gray 9 inch x 9 inch vinyl floor tile in bathroom, office floor, storage room floor
- o gold adhesive beneath gray tile in front reception area
- o cream/green linoleum in office bathroom
- o sheetrock compound at hallway wall edge and stairs
- o blue vinyl floor tile near bathrooms
- o black tar on cork in ceiling in the attic stock room
- o exterior blue siding

2.1.2 Asbestos Sampling: Soils

2.1.2.1 Asbestos Sampling: Soils - Methodology

To assess potential asbestos impacts to soils from building materials and historical railroad operations, samples were collected by The Johnson Company from surficial soils outside the perimeter of the factory building and cooler building, and in the vicinity of the railroad spur and analyzed for asbestos. A total of 15 samples were submitted to URS Corporation of Salem, New Hampshire under subcontract to Eastern Analytical, Inc. for analysis using PLM and Dispersion Staining (EPA-600/M4-82-020 EPA Method 600/R-93/116). URS Corporation also subcontracted AmeriSci Boston of Weymouth, Massachusetts to conduct asbestos analysis of two samples using Transmission Electron Microscopy (TEM), which can detect smaller fibers than PLM; however, since no comparable standards exist for this method, the results were only reported as present or not present.

Surficial (0-0.5 feet below ground surface) soil samples were collected on March 23, 2009 for analysis of asbestos. Soil samples were collected with a decontaminated hand auger and submitted for laboratory analysis under chain of custody protocol. PLM analyses were performed on the five samples (SS-RR-01, SS-RR-04, SS-RR-05, SS-RR-08, and SS-RR-09) collected along the former rail spur, eight samples (SS-FB-ACM-01 through 08) collected from the perimeter of the factory building, and two samples (SS-CB-01 and 02) collected from outside the cooler building. Samples from SS-RR-05 and SS-FB-ACM-05 were also analyzed via TEM analysis.

2.1.2.1 Asbestos Sampling: Soils - Results

The PLM asbestos analysis did not detect any types of asbestos (Chrysotile, Amosite, Crocidolite, or other) using their quantitative methods. In the TEM analysis, Chrysotile was reported to be present in both samples SS-FB-ACM-05 and SS-RR-05. Based on the absence of any asbestos in the PLM samples, it is likely that the Chrysotile detected in both samples is in low amounts as a percentage of the soil volume. Therefore, although no remedial actions would be required due to the presence of asbestos, best-management practices should be employed to limit exposure to dust during soil-disturbing activities.

2.2 LEAD PAINT AND MOLD INSPECTION

2.2.1 Lead Paint Inspection

2.2.1.1 Lead Paint Inspection Methodology

EverGreen Environmental Health and Safety, Inc. (EHS) conducted an inspection for lead-based paint on March 24, 2009. The lead paint inspection was performed by a certified lead technician. Screening for lead-based paint was conducted using an Innov-X tube type portable X-Ray Fluorescence (XRF) instrument. Six confirmatory paint chip samples were collected and submitted to Galson Laboratories of East Syracuse, NY for lead analysis using a modified EPA method 6010C/6020A by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP/AES).

2.2.1.2 Lead Paint Inspection Results

The full lead-based paint inspection report provided by EHS is included in Appendix 3. The definition of lead-based paint includes any paint that contains 1.0 milligrams per square centimeter (mg/cm^2) or more of lead or tests greater than 0.5 percent by weight. Twenty-nine out of 107 XRF screening locations exhibited detections of lead, and the four positive XRF detections submitted for laboratory analysis were confirmed. The XRF indicated positive but low readings (>1.0 mg/cm²) at several locations, indicating the possibility that lead paint may have been used in the past, but was removed and re-coated with paint containing a lower lead content. The laboratory reported positive results of 0.0082 percent lead by weight at one location where XRF screening did not indicate elevated lead concentrations. The majority of the

Phase II ESA, Former Richmond Creamery The Johnson Company basement area where food production occurred was relatively free of lead-based paint, with detections only in a maintenance storage area, in the Micro-Scan room, on a steel stairway, and on painted cement block behind paneling in the Production room. Lead-based coatings were detected in 28 percent of the building components tested in the first floor Storage Rooms A-D and utility rooms, and were limited to door and window components and wood or brick walls. No lead was present on interior surfaces on the second floor "Tower Block", whereas the Red Brick second floor section had detections of lead-based paint in 48 percent of the interior surfaces tested, on windows, doors, and walls. Building exterior surfaces that exhibited lead detections include a first floor loading dock door, light blue shingles on the exterior of a tower block, and slight positives associated with the coatings on the foundation. The red brick and white paint on the exterior tested negative for lead-based paint.

2.2.3 Mold Inspection

2.2.3.1 Mold Inspection Methodology

The mold assessment was conducted by EHS on March 24, 2008. The mold assessment consisted of visual observations of the interior of the factory building, and submittal of samples from four locations to Galson Laboratories of East Syracuse, NY for mold identification by a validated in-house microscopy method.

2.2.3 <u>Mold Inspection Results</u>

The full mold inspection report prepared by EHS is provided in Appendix 3. Conditions that are conducive to mold growth, such as standing water and leaks were observed throughout the interior of the factory building. Four mold types were identified: mycelial fragments, Aspergillus/Penicillium, Cladiosporium, and Basidiospores. Unidentified/other mold types were reported in three of the four samples. All four of the identified mold types are prevalent in outdoor environments in northern New England and common to indoor environments with high moisture contents. Aspergillus/Penicillium-like molds are capable of producing toxic material that can be inhaled when disturbed, whereas Cladiosporium is relatively non-toxic but can cause an allergenic response in affected people.

2.3 POLYCHLORINATED BIPHENYL (PCB) SAMPLING

2.3.1 Indoor Concrete Sampling for PCBs

2.3.1.1 Indoor Concrete Sampling for PCBs Methodology

Sampling indoor concrete for PCBs was conducted on March 23-24, 2009. A total of 10 bulk concrete samples and 1 duplicate sample were collected from the concrete slab inside the factory building. Concrete samples were collected from the former production areas, the ammonia compressor room, the maintenance area, and a room containing a used oil drum. Wherever possible, concrete samples were collected in areas where staining was observed. Two concrete samples were also collected from the concrete slab in the storage shed building. PCB concrete sampling locations are shown on Figure 2. Samples were collected using an impact hammer drill with a 1 inch diameter drill bit. The drill was used to create two to six co-located, 0.5 inch deep holes in the concrete at each location. The concrete dust created during drilling was collected using a stainless steel scoopula and placed into a glass jar. The scoopula and the drill bit were decontaminated between locations by wiping with a hexane-saturated cloth. The bulk concrete dust samples were analyzed at Phoenix Analytical, Inc. for PCBs via EPA Method 8082 with Soxhlet extraction.

2.3.1.2 Indoor Concrete Sampling for PCBs Results

PCB results are summarized in Table 1. Concentrations of PCBs in concrete were not reported in exceedence of laboratory reporting limits, and did not exceed the TSCA regulatory limit of 1 part per million (ppm; equivalent to $1,000 \mu g/kg$) of total PCBs.

2.3.2 Soil Sampling for PCBs

2.3.2.1 Soil Sampling for PCBs Methodology

Soil sampling for PCBs was conducted on March 23-24, 2009. Eight soil samples were collected from the soil near the storage shed/AST and loading areas of the factory building, three samples were collected from the soil near the base of the power poles that previously held transformers, and one soil sample was collected from a downgradient sediment outfall location near the property boundary. PCB soil sampling locations are shown on Figure 2. Soil samples were collected from 0 to 0.5 feet below ground surface using a trowel and/or hand auger. The

trowel and/or hand auger was decontaminated between sampling locations with Alconox and deionized water. Additionally, the concrete floor of the factory building was cored at two locations (CC-1 and CC-2) using a small-diameter concrete corer. Refusal was encountered immediately beneath the slab at location CC-1, and there was not sufficient soil to collect a sample. Soil beneath the slab at CC-2 was collected from the 0 to 0.5 foot depth with a hand auger. Soil samples were analyzed at Phoenix Analytical, Inc. for PCBs via EPA Method 8082 with Soxhlet extraction. Surface soil samples from the sub-slab and exterior locations were also submitted to Eastern Analytical, Inc. for additional analyses, discussed in Section 2.9 – Shallow Soil Sampling.

2.3.2.2 Soil Sampling for PCBs Results

PCB results are summarized in Table 1. Concentrations of PCBs in soils were not reported in exceedance of laboratory reporting limits. The laboratory was not aware of the new Vermont Department of Health soil screening limits, and the laboratory reporting limits of individual PCB Aroclors ranged from 160 to 340 μ g/kg, above the residential screening level of 120 μ g/kg. It has been The Johnson Company's experience at other sites that the historical use of PCBs at a Site would be indicated through the presence of PCB concentrations in a variety of sampled media at concentrations well above the residential screening level and above the TSCA regulatory limit of 1,000 μ g/kg. Given the lack of any PCB detections either inside or outside the building, it was determined that the slightly high laboratory reporting limits did not result in a significant data gap that would require re-sampling at the Site.

2.4 HOLLOW PIT CHARACTERIZATION

An excavator was used to uncover the soil above the pit and penetrate the concrete cover on March 23, 2009. The contents of the pit were observed to be concrete rubble. Photos of the pit contents are included in Appendix 1. To confirm the pit did not contain water or soil, a concrete corer was used to core a four inch hole at an additional location of the concrete pit cover on March 24, 2009. The depth to the top of rubble in the pit was measured at approximately 6 feet. An extendable hand auger was inserted into the cored hole, and no sample was retrieved. After further inspection, it was confirmed that the bottom of the pit at both locations was covered with concrete rubble. A Photoionization Detector (PID) was lowered into the pit and only trace readings (0.2 PPM) were observed. The historical contents of the tank are unknown, but no visual or olfactory evidence of petroleum products or chemical storage were observed. Because the installation of wells downgradient of the pit were dependent on sampling results but no sampling results could be obtained, two wells were installed in a presumed downgradient direction of the pit to the south (See Section 2.10 – Groundwater Quality Investigation).

2.5 CONTAINERIZED MATERIALS CHARACTERIZATION

A containerized materials inventory was completed on March 31, 2009. This task was not fully detailed in the QAPP, and was completed with continuing guidance from VT DEC to gain a better understanding of containerized materials at the Site. A subsequent Site visit was conducted by personnel from VT DEC, Precision Industrial Maintenance, the Site owner, and The Johnson Company on April 6, 2009. Precision Industrial Maintenance conducted a fingerprinting analysis of unknown materials on April 23, 2009 to allow for the classification of unknown wastes into US Department of Transportation (USDOT) designated hazard material classes for transportation to proper disposal facilities. Unknown materials were grouped into nine categories, and physical properties of each category were recorded. Physical properties reported during the field fingerprint analysis included: phase, air reactivity, oxidizer, peroxide, pH, flash, H2OR, soluble, cyanide, sulfide. The containerized materials inventory and fingerprint analysis are included in Appendix 4. There were approximately 61 containers or sets of containers (i.e., a group of six 4 pound metal containers marked "Ruboroleum" was considered as one set) identified in the receiving dock area and adjacent storage area, basement compressor room, basement production area, basement freezer room, basement production "RO" area, maintenance area and adjacent room, second floor attic storage area, upper attic, and ammonia compressor room. Many of the containers were labeled as being for machine or building maintenance, or dairy equipment cleaning.

The VT DEC contacted the property owner on June 1, 2009 to request that the property owner address containerized materials present in the former factory building. According to the VT DEC, the drums have been removed from the property and properly disposed of under the oversight of VT RCRA.

2.6 ASSESSMENT OF AMMONIA REFRIDGERATION SYSTEM

A licensed refrigeration contractor conducted a Site visit on April 14, 2009 to inspect the status of the ammonia refrigeration system. Governed Air of Vermont, Inc. of South Burlington, Vermont concluded that ammonia was still present in significant quantities in the ammonia tank (an approximately 250 gallon tank was observed to be about ½ full). Since the ammonia is contained inside the building, a release could be expected to volatilize quickly and not present a risk to soil or groundwater; however, such a release would pose a significant health and safety hazard to workers or visitors to the Site. A photo of the ammonia tank is included in Appendix 1.

2.7 ASSESSMENT OF WATER SUPPLY WELL

An attempt was made to access the existing onsite water supply well on April 14, 2009. The water supply well is enclosed in a concrete structure, approximately 20 feet high, which has no ladders, doors, or other forms of direct access on the sides. It is suspected that there may have been a bridge or platform from the level of the former rail spur located to the north of the tower, but none exists now. The well could not be safely accessed from the top of the structure. There is a platform at the top of the tower, and a steel ladder descends into the structure. Since the condition of the interior ladder could not be verified and the opening was relatively small, the interior of the tower was deemed to be a confined space and was not entered by The Johnson Company staff. A water level indicator was lowered into the opening, but it indicated that access to the well was blocked from within the concrete structure at approximately ground level. Photographs of the well tower are included in Appendix 1.

2.8 CHARACTERIZATION OF SUMP

2.8.1 <u>Sump Characterization Methodology</u>

A concrete structure with a considerable quantity of water, possibly a sump, was observed in the ammonia compressor room. Photos of the aqueous sump contents are included in Appendix 1. The depth to the top of the water was approximately 4.5 feet below the top of the concrete structure, which is raised approximately 1.5 feet above the floor surface. A peristaltic pump was used to sample the aqueous contents of the sump, and samples were submitted for volatile organic compounds (VOCs) via EPA Method 8260, semi-volatile organic compounds (SVOCs) via EPA Method 8270, and the Vermont Groundwater Enforcement Standard (VGES) list of metals via EPA Method 6020. The VGES list of metals includes antimony, arsenic, barium, cadmium, chromium, lead, manganese, mercury, nickel, selenium, and thallium.

2.8.2 <u>Sump Characterization Results</u>

2.8.2.1 Sump VOC Results

The VOC analytical results for the sump are included in Table 2. No VOC compounds were detected above laboratory reporting limits or Vermont Groundwater Enforcement Standards (VGES).

2.8.2.2 Sump SVOC Results

The SVOC analytical results for the sump are included in Table 3 and PAH analytical results are included in Table 4. No SVOC or PAH compounds were detected above laboratory reporting limits or VGES.

2.8.2.3 Sump Metals Results

The metals analytical results for the sump are included in Table 5. Arsenic, barium, and manganese were detected above laboratory reporting limits. The arsenic concentration (0.012 milligrams per liter, mg/L) slightly exceeded the VGES (0.010 mg/L). Additional discussion of arsenic in groundwater is provided in Section 2.10.2.5, below.

2.9 SHALLOW SOIL SAMPLING

2.9.1 Shallow Soil Borings Methodology

Surficial (0-0.5 feet below ground surface (bgs)) and near surface (1.5-2.0 feet bgs) soil samples were collected between March 23, 2009 and April 20, 2009. Soil samples were collected with a hand auger, which was decontaminated with Alconox and deionized water after collecting each sample. Samples were placed on ice, and submitted for laboratory analysis under chain of custody protocol. Soil samples were submitted for volatile organic compounds (VOCs) via EPA Method 8260, semi-volatile organic compounds (SVOCs) and/or polycyclic aromatic hydrocarbons (PAHs) via EPA Method 8270 with Selective Ion Monitoring (SIM) for the PAH range, and pesticides via EPA Method 8081. Soil samples were also collected for field screening using an Innov-X XRF analyzer. Following review of screening results, selected samples were submitted for laboratory analysis of the Regional Screening Levels (RSL) list of metals via EPA Method 6020. The RSL list of metals includes aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, silver, thallium, tin, vanadium, and zinc. With the exception of asbestos and PCB results (discussed in Sections 2.1 and 2.2, respectively) shallow soil sampling results are discussed below.

2.9.2 Shallow Soil Sampling Results

2.9.2.1 Shallow Soil Sampling Results - VOCs

Shallow soil sampling locations were based on the QAPP, field observations, and PID screening. Three locations were selected for full VOC analysis: one 0-0.5 foot bgs sediment sample located on the southern downgradient side of the property near an outlet to the Winooski River (WR-01), a sub-slab soil sample from 0-0.5 foot below the bottom of the concrete slab in the factory building (Sub Slab 2), and a 1.5-2.0 feet bgs soil boring (SB-08) from a location where drilling was refused due to bedrock (selected for VOC analysis based on visual observations of oily staining and elevated PID readings). Surface and near-surface soil samples were collected for analysis of petroleum-related VOCs at nine locations: five in the vicinity of the oil storage tanks identified on a 1926 Sanborn map (SS-T-1 through SS-T-5); two near an existing AST (SS-AST-1 and SS-AST-2); one near the boiler building (SS-BB-1); and one (SS-PT-3) between two points (SS-AST-2 and SB-08) where soil was observed to be impacted based on visual observations and elevated PID readings.

The soil sampling VOC analytical results are provided in Table 6. Results were compared to Federal residential Regional Screening Levels (RSLs) and Vermont Department of Health (VDH) screening levels for those compounds with established VDH values. Where VDH criteria exist, the VT DEC has directed that they be used instead of the RSLs, regardless of whether they are higher or lower than the RSLs. VOCs were reported above laboratory reporting limits in samples collected from SS-AST-1, SS-AST-2, SB-08. One VOC (toluene) was reported in sample SS-WR-01. Naphthalene was reported in samples SB-08 (6.80 milligrams per kilogram (mg/kg) at 1.5-2.0 feet bgs), SS-AST-2 (5.10 mg/kg at 0-0.5 feet bgs, and 8.40 mg/kg

at 1.5-2.0 bgs). RSL and/or VDH screening values were not exceeded in concentrations reported for soil samples. It should be noted that the VDH value used as a screening level for naphthalene is 1,070 mg/kg, although the residential screening level is 3.9 mg/kg, which is significantly lower and would have triggered exceedances for soil sampling locations SB-08 and SS-AST-2.

2.9.2.2 Shallow Soil Sampling Results - SVOCs and PAHs

Soil samples from two of the locations identified above, WR-01 (surface), and SB-08 (1.5-2.0 feet bgs), were submitted for full SVOC analysis. Twenty-one locations (surface and near-surface) were selected for polycyclic aromatic hydrocarbon (PAH) analysis using EPA Method 8270: 10 in the vicinity of a former rail spur (SS-RR-01 through SS-RR-10); 2 not near the rail spur (SS-NR-01 and SS-NR-02); 2 near the AST (SS-AST-1 and SS-AST-2); two near the boiler building (SS-BB-01 and SS-BB-02); 5 in the vicinity of the oil storage tanks identified on a 1926 Sanborn map (SS-T-1 through SS-T-5); and 1 (SS-PT-3) between two points (SS-AST-2 and SB-08) where soil was observed to be impacted based on visual observations and elevated PID readings.

The SVOC soil laboratory results are summarized in Table 12, and PAH results are summarized in Table 7. Several PAH compounds were detected above laboratory reporting limits. The VDH screening level for carcinogenic PAH compounds requires calculation of the total equivalent (TE) risk caused by all of these PAHs for comparison against a value expressed as the benzo(a)pyrene criterion. For these calculations, each carcinogenic PAH is assigned a toxic equivalent factor (TEF) that indicates how toxic the compound is compared to benzo(a)pyrene (i.e., benzo(a)pyrene has a TEF of 1, whereas chrysene is considered less toxic and has a TEF of 0.001). These calculations are summarized in Table 8, and the results are shown on Figure 3. The results were compared to the VDH benzo(a)pyrene-TE criterion of 0.01 mg/kg. The VDH benzo(a)pyrene-TE screening value was exceeded in all samples where PAHs were reported in exceedance of laboratory detection limits, including all surface (0-0.5 foot depth) soil sampling results. The VDH benzo(a)pyrene-TE screening value was not exceeded in near surface (1.5-2.0 foot depth) samples collected at SS-NR-01, SB-08, SS-T-1, SS-T-2 and SS-PT-3. The SS-RR-03 and 05 samples were collected from locations to the south of the former

rail spur in currently wooded areas, and may indicate a release of coal or other burned materials. The two non-railroad surficial soil samples at SS-NR-01 and 02 contained carcinogenic PAHs that exceeded the benzo(a)pyrene-TE criterion, with the lowest TE at SS-NR-01 (0.05 mg/kg), and a somewhat higher value of 0.36 mg/kg at SS-NR-02.

Since so many of the samples exceeded the residential carcinogenic screening level, the industrial RSL was listed for comparison of individual PAH compounds in Table 8. The industrial RSL for benzo(a)pyrene of 0.2 mg/kg was slightly exceeded in the surficial samples at SS-WR-01, SS-NR-02, and several railroad locations, and was more substantially exceeded at the surficial and near surface samples from railroad locations SS-RR-03, SS-RR-05, and the surficial sample at SS-AST-2.

2.9.2.3 Shallow Soil Sampling Results - Metals

Surface soil samples were collected for metals screening from locations near the former railroad spur, factory building, former cooler building, boiler building, storage shed, and AST. These screening samples (31 in total) were screened for metals using the Innov-X XRF Analyzer. XRF screening results are summarized in Table 9. Following review of XRF screening results, one confirmatory sample from each of the following locations was submitted for laboratory metals analysis: the former railroad spur; the former cooler building; the factory building; and the storage shed.

The RSL metals laboratory soil results are summarized in Table 10. A comparison of XRF screening and laboratory metals results is provided in Table 11 and discussed in Section 3.1.2. With the exception of arsenic and cadmium, results were compared to residential RSLs. Arsenic results were compared to the typical Vermont background level of 12 mg/kg, and the VDH value of 34.5 mg/kg was applied for cadmium. Soil screening levels were exceeded for lead (700 mg/kg in storage shed sample SS-SS-03), mercury (3.7 mg/kg in factory building sample SS-FB-05), and manganese (2,540 mg/kg in the oil storage tank SS-T-5 surficial depth sample).

2.9.2.4 Shallow Soil Sampling Results - Pesticides

Surface soil samples were collected from two locations (SS-PS-01 and SS-PS-02) near adjacent cropland to evaluate potential soil impacts from pesticides. The pesticide soil results are provided in Table 13. No pesticides were reported above laboratory detection limits.

2.10 GROUNDWATER QUALITY INVESTIGATION

2.10.1 <u>Groundwater Quality Investigation Methodology</u>

Between April 14 and 15, 2009, nine deep soil borings and monitoring wells were installed in at the Site. All of the wells were installed by ENPRO Services of Vermont, Inc. using their PowerProbe track-mounted drill rig under the direction of The Johnson Company. Wells were constructed with 2 inch diameter PVC pipe and factory-slotted screens. The annular space was filled with sand, and a hydrated bentonite seal was placed between the top of the sand and the ground surface. Wells were completed with flush-mounted, protective road boxes set in concrete. Screen lengths varied based on the total depth of the well, as summarized in Table 2.9, below. Well construction logs are provided in Appendix 5.

Table 2.9 Well Depths and Screen Lengths					
Well Name	Approximate Total Depth	Screen Length			
MW-1	18 feet	9.6 feet			
MW-2	17 feet	10 feet			
MW-3	20 feet	10 feet			
MW-4	18 feet	10 feet			
MW-5	16 feet	10 feet			
MW-6	14 feet	10 feet			
MW-7	10 feet	7.8 feet			
MW-8	9 feet	6 feet			
MW-9	16 feet	10 feet			

Screening for VOCs using a 10.6 eV PID was conducted as the butyrate soil core liners were cut open immediately after removal from the hole. Soils were screened for VOCs at 2 foot intervals, and one confirmatory soil sample from each monitoring well boring was submitted for laboratory analysis of VOCs via EPA Method 8260. In addition, a minimum of one metals screening sample was collected from each 4-foot core liner. These metals screening samples were analyzed for metals using the Innov-X XRF Analyzer. A total of 35 metals screening

samples were collected and analyzed from the deep soil borings. The results of the XRF sampling were used to select one sample from each boring for laboratory analysis of the RSL list of metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, silver, thallium, tin, vanadium, and zinc) via EPA Method 6020.

Wells were developed on April 14-15 by using both a surge block/hand pump and a peristaltic pump to remove fines. After installation, the top of casing at each well was surveyed for elevation and all wells were located with a Trimble sub-meter GPS unit. Water levels were measured before sampling on April 20, 2009 and May 15, 2009.

On April 20, 2009, wells MW-1 through MW-9 were purged and sampled using low-flow procedures for laboratory analysis of VOCs via EPA Method 8260B, SVOCs via EPA Method 8270 and the VGES list of metals via EPA Method 6020, which includes antimony, arsenic, barium, cadmium, chromium, lead, manganese, mercury, nickel, selenium, and thallium. Groundwater samples from MW-1 were submitted for analysis of the petroleum range of VOCs only, but not for SVOCs. There was insufficient groundwater recharge to sample MW-3 and MW-4 for SVOCs and MW-4 for metals. A laboratory preparation error was noted during initial review of laboratory analytical results, and wells MW-2 and MW-5 through MW-9 were resampled for SVOCs on May 20, 2009 using low-flow techniques.

2.10.2 Groundwater Quality Investigation Results

2.10.2.1 Locations of Groundwater Monitoring Wells

Since no oil storage tanks were detected, MW-1 was installed in the approximate vicinity of the mapped oil storage tanks. MW-2 was installed in a location presumed to be upgradient of the factory building (north). MW-3 and MW-7 were installed in locations presumed to be downgradient of the factory building (south). MW-6 was installed in a location presumed to be downgradient of the wastewater tank (south). Since the hollow pit could not be sampled due to the concrete debris contents, MW-4 and MW-5 were installed at locations presumed to be downgradient of the hollow pit (southwest). During drilling, soils from the 7 to 12 foot depth in

the MW-6 boring appeared to be visually impacted, with odors, discoloration and elevated PID readings. Based on these observations, soil borings were attempted in a presumed downgradient direction from MW-6 (southwest), but were refused due to shallow (2-4 feet) bedrock. With the exception of SB-08, where odor and some black petroleum staining were observed, soils from these additional borings did not appear to be visually impacted or have elevated PID readings. Shallow bedrock also prevented the installation of two monitoring wells at locations presumed to be downgradient of the AST/boiler building. Instead, two wells, MW-8 and MW-9, were installed in the vicinity of MW-6 and SB-08, where impacted soils were observed.

2.10.2.2 Groundwater Flow Direction

The measurements of groundwater depths from April 20, 2009 and May 15, 2009 are provided in Table 15, and water table equipotential map from the May 15, 2009 recordings (when water levels are believed to have been most stable) is provided in Figure 5. Localized groundwater flow direction on the western portion of the Site where the wells are located is toward the drainage ditch to the southeast of the building, which flows into the Winooski River to the south. The shallow groundwater flow direction is apparently significantly influenced by areas of shallow bedrock, which were encountered during drilling to the east of the building, as shown on Figure 5. Water table measurements indicate that the groundwater flows in a southeast direction toward the drainage ditch that runs from the northwest of the property towards the southeast. Ultimately, this had the effect of changing the purpose of some of the wells; for example, MW-5, which was supposed to be downgradient of the pit is actually downgradient of the abandoned wastewater equalization tank. As a result, no wells were positioned directly downgradient of the hollow pit, although the drainage ditch is relatively close in the downgradient direction and no staining was observed on the banks of the ditch.

2.10.2.3 Groundwater and Soil Boring VOC Results

The groundwater VOC results are provided in Table 2. Results were compared to Vermont Groundwater Enforcement Standards (VGES). Four petroleum-related VOCs were reported above laboratory reporting limits in MW-2, the only well with any VOC detections. However, all concentrations in MW-2 were reported below VGES. A summary of laboratory VOC concentrations in soil borings is included in Table 6. The only VOCs detected in any monitoring well soil boring were toluene and naphthalene, both in the MW-4 boring at concentrations well below residential RSLs. As discussed above, no VOCs were detected in groundwater in the MW-4 monitoring well.

2.10.2.4 Groundwater and Soil Boring SVOC and PAH Results

The groundwater SVOC results are provided in Table 3, and PAH concentrations in groundwater are summarized in Table 4. Results were compared to VGES criteria. No SVOCs or PAHs were detected above laboratory reporting limits in groundwater.

The SVOC analytical results from the soil borings are provided in Table 12 and laboratory PAH concentrations in soil borings are summarized in Table 7. PAH compounds were detected above laboratory reporting limits in two monitoring well soil borings – MW-4 and MW-9. As detailed in Section 2.9.3 and summarized in Table 8, the effects of carcinogenic PAHs were summed and compared against the benzo(a)pyrene-TE criterion. The VDH benzo(a)pyrene-TE screening value was exceeded in both soil boring MW-4 (13-14 feet) and soil boring MW-9 (4.5-5.0 feet). The MW-4 soil boring is located at the southeastern end of the pit, downgradient of the building, and the MW-9 boring was located near the southern edge of the Site, near the road. Although these results were above the residential screening limit, they are much lower than the detections in the rail spur and former AST areas.

2.10.2.5 Groundwater and Soil Boring Metals Results

A summary of laboratory metals concentrations in groundwater is included in Table 5. Arsenic and manganese concentrations exceeded VGES in samples collected from several monitoring wells, as shown on Figure 4. Arsenic was present at elevated concentrations (above the VGES of 0.01 mg/L) in MW-2 and MW-5, on the northern and southern sides of the building, respectively. Manganese was reported at concentrations above the 0.30 mg/L VGES in all wells except MW-2. The XRF screening results are included in Table 9, and laboratory metals analytical results for soil is included in Table 10. A comparison of XRF screening and laboratory metals results is provided in Table 11 and discussed in Section 3.1.2. Laboratory results were compared to residential RSLs, with the exception of arsenic (compared to the typical Vermont background level of 12 mg/kg), and cadmium (compared to the VDH value of 34.5 mg/kg). With the exception of arsenic, reported at a concentration of 43 mg/kg in the 1.5-2.0 foot depth sample collected from soil boring MW-3, screening levels were not exceeded in monitoring well soil borings.

A comparison of the locations of elevated arsenic and manganese in soil and groundwater does not indicate a source area for either element. Manganese was detected at the highest concentrations immediately downgradient of the rock outcrop on the southwest portion of the property. Although no bedrock wells were installed, no water was encountered above the bedrock outcrop in borings installed near the building or along the access road in the southwestern corner of the property; therefore, the water table appears to be in bedrock on part of the Site. Manganese is naturally-occurring in rock and soil, and is typically mobilized in slow moving, low-oxygen water through chemical reactions. These low-oxygen conditions may be naturally occurring, or can result from the oxidation of petroleum releases. Based on the location of the highest manganese detections in groundwater monitoring wells (in the southwestern corner of the Site), the combination of the bedrock outcrop and a fuel release appear to be having a significant influence on manganese concentrations. Arsenic is also a naturally-occurring metal, but many studies have shown that it becomes more soluble in groundwater under reducing conditions; either by directly reducing the element from arsenic (V) to arsenic (III), which is more soluble, or by reducing another element (e.g., ferric iron to ferrous iron), which releases the arsenic from its binding site. Reducing conditions are created when organic carbon sources are introduced to groundwater and soil bacteria oxidize the carbon during the natural attenuation process. At this Site, the sources of organic carbon are likely to be petroleum products, as evidenced by fuel-like odors in deep soils in the borings for MW-2, MW-6, and SB-08. The absence of elevated VOCs in groundwater at all wells indicates that natural attenuation, through

oxidation, has occurred. The dissolved oxygen concentrations measured in the field were generally low in these wells, although these values should be considered of screening quality only. Based on the VOC and metals results and the generally low dissolved oxygen concentrations in the impacted wells, the groundwater chemistry has likely converted to lower oxygen, more reducing conditions. These conditions appear to have resulted in the increased mobilization of arsenic and manganese. Since the source of drinking water at the Site is municipal rather than a groundwater well and the arsenic and manganese in groundwater will not be available for contact, ingestion, or inhalation, the elevated levels of these metals in groundwater would not be a concern for future Site activities. Releases of these elements to surface water is not expected to significantly impact the Site, since exposure to high oxygen conditions would likely convert both metals to less soluble, and therefore less mobile and bioavailable, forms.

3.0 QUALITY ASSURANCE / QUALITY CONTROL MEASURES

Field sampling and on-site and laboratory analysis activities were conducted in accordance with an EPA-approved Quality Assurance Project Plan (QAPP) for this project. Quality assurance and quality control measures appear to have been satisfactory during the course of the project. No data were rejected due to improper collection techniques or sample delivery issues.

3.1.1 <u>Duplicate Samples</u>

A comparison of primary and duplicate samples is provided in tables where there were reported detections in an adjacent column called Relative Percent Difference (RPD). The RPD is defined as 100 times the difference between the two samples, divided by the mean of the two samples. A small RPD indicates good correlation between the two samples, in groundwater, RPD values of less than 30 percent are desirable, whereas for soils, larger RPDs are acceptable because the materials are heterogeneous. Metals in MW-9 were the only compounds detected in groundwater samples with a corresponding duplicate sample, and the RPD value was 0 percent for all metals reported above laboratory detection limits, indicating an extremely good correlation between samples. For soil samples, metals and PAHs were the only analytes detected in both primary and duplicate samples. The RPD ranged from 0 to 21 percent for metals, and from 0 to 86 percent for PAHs. These RPD values are considered to be acceptable.

3.1.2 Laboratory vs. XRF Screening Results

A comparison between the results of soil samples analyzed by field screening methods to those obtained from laboratory analyses was also performed. The results of comparative analyses for metals are included in Table 11. The RPDs between XRF screening and laboratory analysis ranged from 0 to 198 percent. The XRF metals screening values were generally similar to or within a factor of two in comparison with the laboratory analytical values for lead, manganese and nickel. The results for arsenic, mercury, and iron tended to have much larger differences between screening and laboratory values, with the screening value being biased high. Following XRF screening of the samples collected on March 23, 2009 and March 24, 2009, the testing time settings on the XRF analyzer were adjusted to obtain greater accuracy, which resulted in a stronger correlation between some screening and laboratory results. Two of the three laboratory results that were reported in exceedance of residential screening levels (mercury in SS-FB-03 and arsenic in MW-3) were also reported above residential screening levels in XRF samples, indicating that the XRF is a useful screening tool. Once soil heterogeneity is accounted for, the results are considered acceptable for screening purposes.

3.1.3 Laboratory QA/QC

One set of laboratory SVOC groundwater results collected on April 20, 2009 was rejected due to analysis because of an error in laboratory preparation; the results from these samples have not been included or summarized because they are not useable. Samples were subsequently recollected on May 15, 2009 and the results of the resample were determined to be within acceptable laboratory QA/QC protocol. With this exception, all samples were deemed to have adhered to acceptance policies by the analytical laboratories and all laboratory quality control issues (calibration check standards, method blanks, matrix spike samples, laboratory control samples, surrogate recoveries, etc.) were found to be appropriate.

The laboratory reporting limits for PCBs were below the new VT DOH residential screening level. The lack of any detections above the laboratory reporting limit in any sampled

media indicate that the historical use of PCBs at this Site is unlikely, and collecting a second set of soil samples for PCB analysis is not recommended for this Site.

The laboratory reporting limits for a small number of other analytes were above their respective screening levels or standards. These analytes were identified in the QAPP before sampling. In all cases, the absence of similar groups of analytes (VOCs or SVOCs) in all sampled media indicated that the affected analytes were likely not present at concentrations of concern.

3.1.4 <u>QA/QC Conclusions</u>

As a result of the analysis of the quality assurance and quality control issues related to this project, the analytical data for the project are deemed useable, accurate and complete for the purposes of this report.

3.0 CONCLUSIONS

3.1 OVERVIEW

The results of this ESA indicate that many of the compounds tested in soil and groundwater at the Site are not of significant concern, including PCBs, VOCs in most soil and all groundwater, SVOCs in some soils and all groundwater, and most metals in soils and groundwater.

Some metals and SVOCs were detected in soil above regulatory limits, and some metals were detected in groundwater above regulatory limits at the Site. In addition, the presence of asbestos containing building materials, lead-based paint, mold, ammonia and containerized materials were investigated in the factory building. These constituents of concern are discussed below.

3.2 METALS

Metals were field screened and selected samples were submitted for laboratory analysis. Residential soil screening levels were exceeded in surface soil samples submitted to the laboratory at locations near the factory building (3.7 mg/kg mercury in SS-FB-05), storage shed (700 mg/kg lead in SS-SS-03) and approximate location of mapped storage tanks (2,540 mg/kg manganese in SS-T-5). In addition, residential soil screening levels were exceeded in one slightly deeper soil boring sample (43 mg/kg arsenic in MW-3).

Arsenic at or above the Vermont Groundwater Enforcement Standard (VGES) of 0.01 mg/L was reported in monitoring wells MW-2 and MW-5, which are located approximately 50 feet north and 110 feet south of the factory building, respectively, and in the sample collected from the sump inside the building's eastern end. Based on the depth to the bottom of the sump and the depth to groundwater, the water in the Sump is assumed to be groundwater and connected to the groundwater in MW-2. There is no apparent correlation between the elevated arsenic concentration outside the southeastern corner of the building (at the MW-3 soil boring) and the groundwater samples, which were not located downgradient of MW-3. Therefore, the elevated arsenic concentrations in groundwater are likely to be naturally occurring. Since the Site is supplied by municipal water, groundwater is not likely to be used for drinking at the Site, although it is currently accessible via the sump.

Manganese was detected in groundwater samples from all but two sampled wells at the Site, but not detected in the Sump sample. As with arsenic, there was no apparent correlation between elevated manganese soil concentrations located in the former reported oil tank area and the widespread elevated manganese groundwater concentrations. Manganese is likely to be naturally occurring, since it is believed that cheesemaking processes did not incorporate significant quantities of manganese. There did not appear to be a correlation between pH levels and manganese detections; very acidic or very basic groundwater may have the potential to mobilize manganese, but this does not appear to be occurring.

The former water supply well in the well tower could not be safely accessed or sampled. However, based on the widely distributed presence of manganese and arsenic detections, if the well is screened in shallow groundwater, it may contain elevated concentrations of both of these elements above VGES limits. Discrete areas where elevated metals concentrations should be addressed include the area between the southeast corner of the building and the hollow pit, at MW-3 and SS-FB-05, where the presence of elevated concentrations of mercury and arsenic indicate possible dumping or disposal. The extents of these soils have not been delineated, but are assumed to include the volume to a depth of 2 feet bounded by the building and road (approximately 280 square feet), resulting in a total volume of approximately 21 cubic yards of soil. A small area (approximately 160 square feet) of lead-impacted surficial soils is present on the eastern side of the storage shed to a depth of 0.5 feet; the estimated volume is 3 cubic yards. Additional sampling would refine these volume estimates. Although elevated concentrations of manganese were present in one soil sample near the western edge of the former oil storage area, as stated previously the source of this manganese is believed to be naturally occurring and a volume of impacted soils has not been calculated.

3.4 SVOCS

A Toxic Equivalent Factor (TEF) was applied to the carcinogenic polycyclic aromatic hydrocarbon (PAH) range of semi-volatile organic compound (SVOC) soil results. The products of the results multiplied by the TEF were summed and compared to the Vermont Department of Health (VDH) benzo(a)pyrene-TE criterion of 0.01 mg/kg. The VDH benzo(a)pyrene-TE screening value was exceeded in all samples where PAHs were reported in exceedance of laboratory detection limits, including all shallow soil sampling surface (0-0.5 foot depth) results. Surficial and near surface samples that contained the highest PAH concentrations are present near the former rail spur, and in the center of the former rail spur appears to be impacted by PAHs to a depth of 2 feet, resulting in an estimated soil volume of 560 cubic yards; this area is currently well vegetated with grass, brush, and/or trees. The discrete area containing elevated PAHs in the former oil storage area is estimated to cover approximately 300 square feet to an average depth of 1.5 feet, which results in a soil volume of 17 cubic yards; however, this soil is immediately adjacent to an operating railroad, and is likely to receive PAH deposition after remediation and may require additional controls to control direct-contact risks.

3.5 VOCS

In addition, one SVOC (and VOC), naphthalene, was detected above the residential RSL (3.9 mg/kg) but below the VDH criterion of 1,070 mg/kg at two locations: SS-AST-2 (surficial and near surface soils to 2 feet below ground surface), and SB-08 (1.5-2.0 feet). Both locations had elevated photoionization detector readings and visual evidence of petroleum staining. These areas of impact are expected to be relatively limited in area, based on the lack of elevated detections at nearby sampling locations.

3.6 ASBESTOS-CONTAINING MATERIALS

The asbestos inspection reported the following asbestos-containing building materials (ACBM) associated with the factory building:

- Basement: gray ceiling/wall panels in milk receiving room; milk silo room; production areas #1, 2, and 3; storage area #5
- First floor:
 - gray ceiling panels in ammonia compressor room, storage room #6/culture room, closet under stairs,
 - o tan 9 inch x 9 inch vinyl floor tile in lab
- Second floor:
 - tan 9 inch x 9 inch vinyl floor tile in reception area, conference room (including closet)
 - o gray 9 inch x 9 inch vinyl floor tile in bathroom, office floor, storage room floor
 - o gold adhesive beneath gray tile in front reception area
 - o cream/green linoleum in office bathroom
 - o sheetrock compound at hallway wall edge and stairs
 - o blue vinyl floor tile near bathrooms
 - o black tar on cork in ceiling in the attic stock room
 - exterior blue siding

3.7 LEAD-BASED PAINT

There were positive detections of lead-based paints and coatings on surfaces on all parts of the factory building, with limited presence in the basement. Building exterior surfaces that exhibited lead detections include a first floor loading dock door, light blue shingles on an upper portion of the building, and slight positives associated with the coatings on the foundation.

3.8 MOLD ISSUES

At the time of the assessment, conditions for mold growth, including excessive moisture as a result of past or current roof leaks and the absence of heating or air conditioning in the building, were favorable. Four mold types were identified: mycelial fragments, Aspergillus/Penicillium, Cladiosporium, and Basidiospores. Unidentified/other mold types were also reported in 3 of the 4 samples. All four of the identified mold types are prevalent in outdoor environments in northern New England and common to indoor environments with high moisture contents.

3.9 CONTAINERIZED MATERIALS

Numerous containerized materials in the factory building used for various cleaning, maintenance, and compressor- related purposes were observed and inventoried, and the majority were labeled. A Department of Transportation (D.O.T) fingerprint analysis was conducted for containerized materials that were not labeled.

3.10 AMMONIA

Ammonia was confirmed to be present in a storage tank, and it is likely that residual ammonia is also present in the refrigeration system.

4.0 **RECOMMENDATIONS**

Based on the findings of this Phase II ESA, The Johnson Company provides the following recommendations:

 Although metals concentrations were detected in groundwater wells at concentrations exceeding Vermont Groundwater Enforcement Standards (VGES), VOCs and SVOCs were not detected above VGES, and there is no evidence to suggest existing impacts to groundwater from Site activities. The elevated concentrations of arsenic and manganese in groundwater appear to be related to the successful degradation of petroleum products at the Site, and groundwater is not a source of drinking water at the Site.

- No remedial actions are recommended for groundwater unless a use is identified for the existing water supply well, in which case additional sampling should be conducted in advance of use. No additional water supply wells should be installed on the property without advance coordination with the Sites Management Section of VT DEC.
- A hollow pit of concrete rubble does not appear to be impacting groundwater or soil and no remedial actions are recommended to address the pit. However, this pit could pose a safety hazard for future redevelopment activities and should be managed appropriately.
- Additional sampling should be conducted to delineate the areal and vertical extent of the soils impacted by metals (arsenic, lead, manganese, and mercury) outside of the southeastern corner of the building.
- Additional sampling should be conducted to delineate the areal extent of surficial soils impacted by PAHs and naphthalene. If residential redevelopment is planned, these results should be used as part of a risk assessment to evaluate the potential human health risks associated with PAHs and naphthalene at the Site.
- Since no groundwater remediation is recommended, the existing onsite monitoring wells should be closed to prevent a conduit for contamination during any future Site uses.
- Once the building plans for the Site have been finalized, a Corrective Action Plan (CAP) should be developed in accordance with the VT DEC guidelines to address the following issues of concern at the Site:
 - Metals and PAH impacted shallow soils
 - o Ammonia present in the abandoned refrigeration system
 - Containerized materials present in the factory building, if they have not already been removed by the owners
 - The water supply well
 - The sump inside the building
 - o Asbestos, lead paint, and mold

Details of the CAP recommendations listed above are provided as follows:

- Once the building plans for the Site have been finalized, a Corrective Action Plan (CAP) should be developed in accordance with the VT DEC guidelines to address the following issues of concern at the Site:
 - o Metals and PAH impacted shallow soils
 - o Ammonia present in the abandoned refrigeration system
 - The water supply well
 - The sump inside the building
 - Asbestos, lead paint, and mold

Details of the CAP recommendations listed above are provided as follows:

- Metals (arsenic, lead, manganese, and mercury) were reported in four surface and near-surface soil samples at concentrations above soil screening levels for residential soils. The soils outside the southeast corner of the building should be removed or covered, as should the soils on the northeast side of the storage shed. In addition, PAHs were reported at concentrations exceeding residential and industrial screening levels in locations surrounding the former rail spur and in the reported vicinity of the former tanks, in addition to isolated locations in other portions of the property. Currently, a complete vegetative covering at the rail spur area limits exposure to PAH compounds; however, if the Site use changes, remediation or land use restrictions should be applied to limit future exposures. In the former tank area, no action is recommended due to its proximity to the functioning rail line, which will be a continuing source of PAHs in the future.
- The presence of ammonia was confirmed in the abandoned refrigeration system. In its current condition, the ammonia refrigeration system does not pose an environmental hazard. However, it could pose a health and safety risk for future redevelopment activities. Ammonia in the storage tank should be pumped and reclaimed, and any

residual ammonia present in refrigeration system removed prior to demolition or reuse of the building.

- An onsite former water supply well could not be accessed during the Phase II field investigation. The well is not easily accessible and is unlikely to serve as a conduit for contamination into groundwater. However, elevated concentrations of arsenic and manganese have been detected in shallow groundwater at the Site. Although the screened interval of the supply well is not known, it should be sampled before any future uses. Alternatively, if it will not be used and future redevelopment activities would result in Site modifications making the well more accessible, the well should be demolished and properly decommissioned.
- Concentrations of arsenic were observed above VGES in a sump located in the factory building. Metals concentrations were consistent with surrounding shallow groundwater, and no remedial actions are recommended. However, exposure to the water in the sump should be prevented during redevelopment activities by removing the sump. Alternatively, since the sump may be connected to groundwater and it may not be possible to completely pump out, the sump could also be covered to secure access and prevent ingestion of the water.
- Asbestos containing building materials and lead-based paint should be handled and disposed of appropriately during demolition or reuse of the building. Asbestos was not detected in soil samples analyzed with Polarized Light Microscopy (PLM). However, chrysotile was reported in both soil samples analyzed with Transmission Electron Microscopy. Although no remedial actions would be required due to the presence of asbestos, best-management practices should be employed to limit exposure to dust during soil-disturbing activities.
- The presence of four mold types was confirmed in the factory building mold inspection. Although no remedial actions are recommended, best-management practices should be employed to limit exposure to mold during demolition or renovation activities, and conditions conducive to mold growth should be addressed prior to building reuse.

4.0 LIMITATIONS

This information is intended for the sole use of the Chittenden County Regional Planning Commission for the specific purpose of documenting Site contamination at the Richmond Creamery in Richmond, Vermont. No other uses, expressed or implied, are warranted. The design of the investigation was based on sound scientific techniques and experience with similar investigations. However, the conclusions of this assessment are based on limited information. Should additional information become available pertaining to environmental concerns, The Johnson Company reserves the right to re-evaluate conclusions made herein.

The conclusions of this report were derived from information provided to The Johnson Company from the following sources: the U.S. EPA; the Vermont Department of Environmental Conservation; Eastern Analytical, Inc.; Phoenix Environmental Laboratories, Inc.; Anglo-American Environmental, Inc.; EverGreen Environmental Health and Safety; Precision Industrial Maintenance, Inc., and subsurface investigations. Independent verification of the work performed by others was not always possible; therefore its accuracy and reliability cannot be warranted. No safe access to the on-site water supply well was possible, and groundwater from this well was not sampled. In addition, no sample could be collected using the available equipment from the bottom of the hollow pit, and groundwater monitoring wells were not sited directly downgradient of the pit, as the presumed direction of groundwater flow was incorrect. As a result, groundwater downgradient of the hollow pit has not been characterized.

This Report was prepared pursuant to Agreements between the Chittenden County Regional Planning Commission and The Johnson Company dated September 12, 2008 and December 18, 2008. All uses of this Report are subject to the conditions and restrictions contained in the Agreement. The observations and investigations described in this Report are based solely on the Scope of Services provided pursuant to the Agreement and subsequent amendments. The Johnson Company has not performed any additional observations, investigations, studies or other testing not specified in the Agreement or subsequent amendments. The Johnson Company shall not be liable for the existence of any condition the discovery of which would have required the performance of services not authorized under the Agreement. This work has been undertaken in accordance with generally accepted consulting practices. No other warranty, expressed or implied, is made. This Report reflects Site conditions observed and described by records available to The Johnson Company as of the date of report preparation. The passage of time may result in significant changes in Site conditions, technology, or economic conditions, which could alter the findings and/or recommendations of the Report. Accordingly, the Client (Chittenden County Planning Commission) and any other party to whom the Report is provided recognize and agree that The Johnson Company shall bear no liability for deviations from observed conditions or available records after the time of Report preparation.

5.0 REFERENCES

- Agency of Toxic Substances and Disease Registry (ATSDR), 1995. "ToxFAQsTM for Vanadium and Compounds", U.S. Department of Health and Human Services, accessed at <u>www.atsdr.cdc.gov/tfacts58.html</u>.
- JCO, 2008. "Phase I Environmental Site Assessment: Former Saputo Cheese/Richmond Creamery, 125 Bridge Street and 74 Jolina Court, Richmond, Vermont", The Johnson Company, Inc. October 29, 2008.
- Heindel and Noyes, 2002. "Former Saputo Cheese/Richmond Creamery, 634 Bridge Street, Richmond, Vermont, Phase I Environmental Site Assessment", Heindel and Noyes, dated December 2, 2002.
- JCO, 2007. "Generic Quality Assurance Project Plan RFA #07825: Brownfields Site Assessments in Vermont", The Johnson Company, Inc. August, 2007.
- JCO, 2008. "Generic Quality Assurance Project Plan Update RFA #07825: Brownfields Site Assessments in Vermont", The Johnson Company, Inc. August, 2008
- JCO, 2009. "Site-Specific Quality Assurance Project Plan RFA #07285 Addendum F, Revision 3, VT DEC SMS#2008-3835: Former Richmond Creamery, Richmond, Vermont", The Johnson Company, Inc. March 19, 2009.

TABLES

Table 1 PCB Concrete and Soil Results

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Concrete Samples

		RSL								
		Criterion	CSFF-1	CSFF-2	CSFF-3	CSFF-3 (DUP)	CSFF-4	CSFF-5	CSFF-6	CSFF-7
Parameter	Units	(µg/kg)	3/23/2009	3/23/2009	3/23/2009	3/23/2009	3/23/2009	3/23/2009	3/23/2009	3/23/2009
PCB-1016	µg/Kg	Total	< 170	< 160	< 160	< 160	< 160	< 170	< 160	< 160
PCB-1221	µg/Kg	Total	< 170	< 160	< 160	< 160	< 160	< 170	< 160	< 160
PCB-1232	µg/Kg	Total	< 170	< 160	< 160	< 160	< 160	< 170	< 160	< 160
PCB-1242	µg/Kg	Total	< 170	< 160	< 160	< 160	< 160	< 170	< 160	< 160
PCB-1248	µg/Kg	Total	< 170	< 160	< 160	< 160	< 160	< 170	< 160	< 160
PCB-1254	µg/Kg	Total	< 170	< 160	< 160	< 160	< 160	< 170	< 160	< 160
PCB-1260	µg/Kg	Total	< 170	< 160	< 160	< 160	< 160	< 170	< 160	< 160
PCB-1262	µg/Kg	Total	< 170	< 160	< 160	< 160	< 160	< 170	< 160	< 160
PCB-1268	µg/Kg	Total	< 170	< 160	< 160	< 160	< 160	< 170	< 160	< 160
Total PCBs	µg/Kg	1000	ND	ND	ND	ND	ND	ND	ND	ND

		RSL										
Parameter	Units	Criterion	С	SFF-8	C	SFF-9	C	SFF-10	0	CSS-1	C	SS-2
		(µg/kg)	3/2	23/2009	3/	23/2009	3/2	23/2009	3/2	23/2009	3/2	3/2009
PCB-1016	µg/Kg	Total	V	170	V	170	V	160	۷	160	V	160
PCB-1221	µg/Kg	Total	V	170	V	170	V	160	V	160	V	160
PCB-1232	µg/Kg	Total	V	170	V	170	V	160	V	160	V	160
PCB-1242	µg/Kg	Total	V	170	V	170	V	160	V	160	V	160
PCB-1248	µg/Kg	Total	V	170	V	170	V	160	V	160	V	160
PCB-1254	µg/Kg	Total	V	170	V	170	V	160	V	160	V	160
PCB-1260	µg/Kg	Total	V	170	V	170	V	160	V	160	V	160
PCB-1262	µg/Kg	Total	V	170	V	170	V	160	V	160	V	160
PCB-1268	µg/Kg	Total	V	170	V	170	V	160	V	160	V	160
Total PCBs	µg/Kg	1000		ND		ND		ND		ND		ND

Table 1 PCB Concrete and Soil Results

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Soil Samples

		RSL		SS-SS-PCB-	SS-SS-PCB-		SS-AST-PCB-	SS-FB-PCB-	SS-FB-PCB-	SS-FB-PCB-
Parameter	Units	Criterion	Sub Slab 2	01	02	SS-SS-PCB-03	01	01	02	03
		(µg/kg)	3/24/2009	3/24/2009	3/24/2009	3/24/2009	3/24/2009	3/24/2009	3/24/2009	3/24/2009
PCB-1016	µg/Kg	Total	< 220	< 180	< 340	< 190	< 200	< 190	< 210	< 200
PCB-1221	µg/Kg	Total	< 220	< 180	< 340	< 190	< 200	< 190	< 210	< 200
PCB-1232	µg/Kg	Total	< 220	< 180	< 340	< 190	< 200	< 190	< 210	< 200
PCB-1242	µg/Kg	Total	< 220	< 180	< 340	< 190	< 200	< 190	< 210	< 200
PCB-1248	µg/Kg	Total	< 220	< 180	< 340	< 190	< 200	< 190	< 210	< 200
PCB-1254	µg/Kg	Total	< 220	< 180	< 340	< 190	< 200	< 190	< 210	< 200
PCB-1260	µg/Kg	Total	< 220	< 180	< 340	< 190	< 200	< 190	< 210	< 200
PCB-1262	µg/Kg	Total	< 220	< 180	< 340	< 190	< 200	< 190	< 210	< 200
PCB-1268	µg/Kg	Total	< 220	< 180	< 340	< 190	< 200	< 190	< 210	< 200
Total PCBs	µg/Kg	120*	ND	ND	ND	ND	ND	ND	ND	ND

		RSL	SS-	FB-PCB-	SS	TR-PCB-	SS-	TR-PCB-				
Parameter	Units	Criterion		04		01		02	SS-T	R-PCB-03	SS	-WR-01
		(µg/kg)	3/2	24/2009	3/	24/2009	3/	24/2009	3/	24/2009	3/2	4/2009
PCB-1016	µg/Kg	Total	V	200	V	230	V	230	V	240	٨	260
PCB-1221	µg/Kg	Total	۷	200	۷	230	V	230	<	240	٨	260
PCB-1232	µg/Kg	Total	٧	200	V	230	V	230	V	240	Λ	260
PCB-1242	µg/Kg	Total	V	200	V	230	V	230	V	240	Λ	260
PCB-1248	µg/Kg	Total	V	200	V	230	V	230	V	240	٨	260
PCB-1254	µg/Kg	Total	V	200	V	230	V	230	V	240	٨	260
PCB-1260	µg/Kg	Total	۷	200	۷	230	V	230	<	240	٨	260
PCB-1262	µg/Kg	Total	۷	200	V	230	V	230	V	240	Λ	260
PCB-1268	µg/Kg	Total	V	200	V	230	V	230	V	240	A	260
Total PCBs	µg/Kg	120*		ND		ND		ND		ND		ND

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID	VGES			Sump		MW-1		MW-2		MW-3		MW-4		MW-5
Date	Standard	Units	4/	14/2009	4/2	20/2009	4/	20/2009	4	/20/2009	4/	/20/2009	4/	20/2009
Parameter														
Dichlorodifluoromethane	1,000	μg/L	Y	5			V	1000	Y	5	Y	5	V	5
Chloromethane	-	μg/L	Y	2			×	2	Y	2	Y	2	Y	2
Vinyl chloride	2	μg/L	Y	2			V	2	Y	2	Y	2	V	2
Bromomethane	10	μg/L	v	2			V	2	Y	2	V	2	V	2
Chloroethane	-	μg/L	V	5			V	5	V	5	Y	5	Y	5
Trichlorofluoromethane	2,100	μg/L	V	5			V	5	V	5	Y	5	V	5
Diethyl Ether	-	μg/L	Y	5			×	5	Y	5	Y	5	Y	5
Acetone	700	μg/L	v	10			v	10	Y	10	Y	10	V	10
1,1-Dichloroethene	70	μg/L	V	1			Y	1	V	1	Y	1	V	1
Methylene chloride	5	μg/L	v	5			v	5	V	5	Y	5	V	5
Carbon disulfide	-	μg/L	V	5			V	5	V	5	Y	5	V	5
Methyl-t-butyl ether(MTBE)	40	μg/L	V	5	V	5	V	5	V	5	Y	5	V	5
trans-1,2-Dichloroethene	100	μg/L	v	2			v	2	V	2	Y	2	V	2
1,1-Dichloroethane	70	μg/L	V	2			Y	2	V	2	Y	2	V	2
2,2-Dichloropropane	-	μg/L	v	2			v	2	V	2	Y	2	V	2
cis-1,2-Dichloroethene	70	μg/L	V	2			V	2	V	2	Y	2	V	2
2-Butanone(MEK)	4,200	μg/L	V	10			V	10	V	10	Y	10	V	10
Bromochloromethane	90	μg/L	v	2			V	2	Y	2	v	2	Y	2
Tetrahydrofuran(THF)	-	μg/L	v	10			Y	10	Y	10	Y	10	V	10
Chloroform	-	μg/L	v	2			V	2	V	2	V	2	Y	2
1,1,1-Trichloroethane	200	μg/L	v	2			v	2	V	2	V	2	Y	2
Carbon tetrachloride	5	μg/L	v	2			V	2	V	2	Y	2	V	2
1,1-Dichloropropene	-	μg/L	v	2			V	2	V	2	v	2	V	2
Benzene	5	μg/L	v	1	Y	1	V	1	Y	1	Y	1	V	1
1,2-Dichloroethane	5	μg/L	v	2	V	2	V	2	V	2	V	2	V	2
Trichloroethene	5	μg/L	v	2			v	2	V	2	V	2	Y	2
1,2-Dichloropropane	5	μg/L	V	2			Y	2	Y	2	Y	2	Y	2
Dibromomethane	-	μg/L	v	2			V	2	V	2	v	2	V	2
Bromodichloromethane	90.0	μg/L	v	1			V	1	Y	1	Y	1	V	1
4-Methyl-2-pentanone(MIBK)	560.0	μg/L	V	10			V	10	V	10	V	10	V	10
cis-1,3-Dichloropropene	-	μg/L	V	1			V	1	Y	1	Y	1	V	1
Toluene	1,000	μg/L	V	1	V	1	V	1	V	1	Y	1	V	1
trans-1,3-Dichloropropene	-	µg/L	v	1			k	1	X	1	<	1	V	1
1,1,2-Trichloroethane	5.0	μg/L	v	2			V	2	Y	2	V	2	V	2

Richmond Creamery, Richmond, VT

JCO Project #1-0346-3

Sample ID	VGES			Sump		MW-1		MW-2		MW-3		MW-4		MW-5
Date	Standard	Units	4/ ⁻	14/2009	4/2	20/2009	4/	20/2009	4	/20/2009	4/	20/2009	4/2	20/2009
Parameter														
2-Hexanone	-	μg/L	v	10			V	10	Y	10	Y	10	V	10
Tetrachloroethene	5	μg/L	Y	2			Y	2	Y	2	Y	2	V	2
1,3-Dichloropropane	0.5*	μg/L	v	2			V	2	V	2	V	2	Y	2
Dibromochloromethane	60	μg/L	Y	2			V	2	Y	2	Y	2	V	2
1,2-Dibromoethane(EDB)	0.05*	μg/L	v	1	V	1	V	1	V	1	Y	1	V	1
Chlorobenzene	100	μg/L	Y	2			V	2	Y	2	×	2	V	2
1,1,1,2-Tetrachloroethane	70	μg/L	V	2			V	2	V	2	A	2	V	2
Ethylbenzene	700	μg/L	V	1	Y	1	V	1	V	1	Y	1	A	1
mp-Xylene	-	μg/L	v	1	Y	1		2	V	1	V	1	V	1
o-Xylene	-	µg/L	v	1	V	1	V	1	×	1	Y	1	Y	1
Total Xylenes	10,000	ug/L	V	2	V	2		3	×	2	<	2	V	2
Styrene	100	μg/L	v	1			Y	1	×	1	X	1	V	1
Bromoform	-	µg/L	V	2			V	2	Y	2	K	2	V	2
IsoPropylbenzene	-	µg/L	V	1			V	1	Y	1	X	1	V	1
Bromobenzene	-	µg/L	v	2			V	2	Y	2	¥	2	V	2
1,1,2,2-Tetrachloroethane	70	µg/L	v	2			<	2	×	2	<	2	V	2
1,2,3-Trichloropropane	5	µg/L	Y	2			X	2	Y	2	¥	2	V	2
n-Propylbenzene	-	µg/L	V	1			V	1	Y	1	K	1	V	1
2-Chlorotoluene	100	μg/L	v	2			V	2	Y	2	Y	2	V	2
4-Chlorotoluene	100	µg/L	V	2			V	2	¥	2	<	2	V	2
1,3,5-Trimethylbenzene	-	μg/L	V	1	V	1		30	Y	1	K	1	V	1
1,2,4-Trimethylbenzene	-	µg/L	Y	1	Y	1		16	Y	1	Y	1	V	1
Total Trimethylbenzenes	350	ug/L	V	2	V	2		46	Y	2	K	2	V	2
tert-Butylbenzene	-	µg/L	v	1			V	1	Y	1	Y	1	V	1
sec-Butylbenzene	-	µg/L	V	1			V	1	¥	1	<	1	V	1
1,3-Dichlorobenzene	600	µg/L	v	1			<	1	×	1	<	1	V	1
p-Isopropyltoluene	-	µg/L	Y	1				1	Y	1	¥	1	V	1
1,4-Dichlorobenzene	75	µg/L	v	1			V	1	V	1	<	1	A	1
1,2-Dichlorobenzene	600	µg/L	<	1			<	1	<	1	<	1	V	1
n-Butylbenzene	-	µg/L	¥	1			v	1	¥	1	¥	1	×	1
1,2-Dibromo-3-chloropropane	0.2*	µg/L	v	1			<	1	<	1	<	1	×	1
1,2,4-Trichlorobenzene	70	µg/L	v	1			v	1	×	1	Y	1	×	1
Hexachlorobutadiene	1	µg/L	v	1			V	1	<	1	X	1	Y	1
Naphthalene	20	µg/L	v	5	V	5	v	5	<	5	V	5	<	5
1,2,3-Trichlorobenzene	-	µg/L	<	1	5 2202200000000000000000000000000000000		<	1	V	1	V	1	X	1

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID	VGES			MW-6		MW-7		MW-8		MW-9	M٧	V-9 (DUP)		ip Blank
Date	Standard	Units	4	/20/2009	4	/20/2009	4	/20/2009	4	/20/2009	4	/20/2009	3	/10/2009
Parameter														
Dichlorodifluoromethane	1,000	μg/L	V	5	V	5	Y	5	V	5	V	5	v	5
Chloromethane	-	μg/L	v	2	V	2	V	2	V	2	V	2	v	2
Vinyl chloride	2	μg/L	V	2	۷	2	Y	2	V	2	V	2	V	2
Bromomethane	10	μg/L	V	2	V	2	V	2	Y	2	V	2	V	2
Chloroethane	-	µg/L	Y	5	Y	5	V	5	V	5	V	5	V	5
Trichlorofluoromethane	2,100	µg/L	V	5	Y	5	V	5	V	5	V	5	Y	5
Diethyl Ether	-	µg/L	Y	5	Y	5	V	5	V	5	V	5	Y	5
Acetone	700	µg/L	V	10	Y	10	V	10	V	10	V	10	V	10
1,1-Dichloroethene	70	µg/L	V	1	V	1	V	1	V	1	V	1	۷	1
Methylene chloride	5	µg/L	Y	5	V	5	X	5	V	5	۷	5	A	5
Carbon disulfide	-	µg/L	V	5	V	5	V	5	V	5	¥	5	V	5
Methyl-t-butyl ether(MTBE)	40	µg/L	V	5	V	5	V	5	V	5	×	5	Y	5
trans-1,2-Dichloroethene	100	µg/L	V	2	V	2	K	2	V	2	V	2	V	2
1,1-Dichloroethane	70	µg/L	V	2	۷	2	Y	2	V	2	V	2	V	2
2,2-Dichloropropane	-	µg/L	Y	2	V	2	X	2	V	2	۷	2	A	2
cis-1,2-Dichloroethene	70	µg/L	V	2	V	2	V	2	V	2	¥	2	V	2
2-Butanone(MEK)	4,200	µg/L	V	10	V	10	V	10	V	10	×	10	Y	10
Bromochloromethane	90	µg/L	V	2	V	2	K	2	V	2	V	2	V	2
Tetrahydrofuran(THF)	-	µg/L	V	10	V	10	V	10	V	10	V	10	۷	10
Chloroform	-	µg/L	Y	2	Y	2	V	2	V	2	Y	2	V	2
1,1,1-Trichloroethane	200	µg/L	V	2	Y	2	V	2	V	2	V	2	Y	2
Carbon tetrachloride	5	µg/L	Y	2	Y	2	V	2	V	2	V	2	Y	2
1,1-Dichloropropene	-	µg/L	Y	2	Y	2	V	2	V	2	V	2	V	2
Benzene	5	µg/L	V	1	V	1	V	1	V	1	V	1	۷	1
1,2-Dichloroethane	5	µg/L	Y	2	Y	2	V	2	V	2	Y	2	V	2
Trichloroethene	5	µg/L	V	2	Y	2	V	2	V	2	V	2	Y	2
1,2-Dichloropropane	5	µg/L	Y	2	Y	2	V	2	V	2	V	2	Y	2
Dibromomethane	-	µg/L	Y	2	Y	2	V	2	V	2	V	2	V	2
Bromodichloromethane	90.0	µg/L	V	1	V	1	V	1	V	1	V	1	۷	1
4-Methyl-2-pentanone(MIBK)	560.0	µg/L	V	10	V	10	V	10	V	10	V	10	V	10
cis-1,3-Dichloropropene	-	µg/L	V	1	V	1	V	1	V	1	V	1	V	1
Toluene	1,000	µg/L	Y	1	V	1	×	1	¥	1	<	1	Y	1
trans-1,3-Dichloropropene	-	µg/L	V	1	V	1	×	1	<	1	V	1	A	1
1,1,2-Trichloroethane	5.0	µg/L	V	2	V	2	<	2	V	2	V	2	V	2

Richmond Creamery, Richmond, VT

JCO Project #1-0346-3

Sample ID	VGES			MW-6		MW-7		MW-8		MW-9		N-9 (DUP)		rip Blank
Date	Standard	Units	4	/20/2009	4	/20/2009	4/	/20/2009	4	/20/2009	4	/20/2009	3	/10/2009
Parameter														
2-Hexanone	-	µg/L	V	10	V	10	Y	10	V	10	V	10	V	10
Tetrachloroethene	5	µg/L	V	2	V	2	V	2	Y	2	V	2	V	2
1,3-Dichloropropane	0.5*	µg/L	Y	2	V	2	V	2	V	2	V	2	v	2
Dibromochloromethane	60	µg/L	V	2	V	2	V	2	V	2	v	2	v	2
1,2-Dibromoethane(EDB)	0.05*	µg/L	Y	1	Y	1	Y	1	V	1	V	1	v	1
Chlorobenzene	100	µg/L	V	2	v	2	V	2	V	2	V	2	v	2
1,1,1,2-Tetrachloroethane	70	µg/L	Y	2	Y	2	V	2	Y	2	V	2	v	2
Ethylbenzene	700	µg/L	Y	1	V	1	V	1	V	1	V	1	v	1
mp-Xylene	-	µg/L	V	1	V	1	Y	1	V	1	V	1	V	1
o-Xylene	-	µg/L	v	1	V	1	V	1	V	1	V	1	V	1
Total Xylenes	10,000	ug/L	V	2	V	2	Y	2	V	2	V	2	V	2
Styrene	100	µg/L	Y	1	Y	1	V	1	V	1	V	1	V	1
Bromoform	-	µg/L	Y	2	V	2	V	2	V	2	Y	2	Y	2
IsoPropylbenzene	-	µg/L	Y	1	V	1	Y	1	V	1	V	1	V	1
Bromobenzene	-	µg/L	Y	2	V	2	Y	2	V	2	V	2	Y	2
1,1,2,2-Tetrachloroethane	70	µg/L	Y	2	X	2	V	2	V	2	V	2	V	2
1,2,3-Trichloropropane	5	µg/L	V	2	V	2	V	2	V	2	V	2	V	2
n-Propylbenzene	-	µg/L	Y	1	V	1	V	1	V	1	Y	1	Y	1
2-Chlorotoluene	100	µg/L	Y	2	V	2	V	2	V	2	V	2	V	2
4-Chlorotoluene	100	µg/L	Y	2	V	2	Y	2	V	2	V	2	Y	2
1,3,5-Trimethylbenzene	-	µg/L	Y	1	V	1	V	1	V	1	V	1	V	1
1,2,4-Trimethylbenzene	-	µg/L	Y	1	Y	1	V	1	V	1	V	1	V	1
Total Trimethylbenzenes	350	ug/L	Y	2	V	2	V	2	V	2	V	2	Y	2
tert-Butylbenzene	-	µg/L	Y	1	V	1	V	1	V	1	V	1	۷	1
sec-Butylbenzene	-	µg/L	Y	1	V	1	Y	1	V	1	V	1	Y	1
1,3-Dichlorobenzene	600	µg/L	Y	1	X	1	V	1	۷	1	V	1	V	1
p-Isopropyltoluene	-	µg/L	V	1	V	1	V	1	Y	1	V	1	V	1
1,4-Dichlorobenzene	75	µg/L	Y	1	V	1	<	1	V	1	V	1	v	1
1,2-Dichlorobenzene	600	µg/L	V	1	V	1	<	1	×	1	V	1	v	1
n-Butylbenzene	-	µg/L	V	1	V	1	×	1	V	1	V	1	v	1
1,2-Dibromo-3-chloropropane	0.2*	µg/L	V	1	<	1	<	1	<	1	V	1	V	1
1,2,4-Trichlorobenzene	70	µg/L	V	1	Y	1	V	1	V	1	V	1	Y	1
Hexachlorobutadiene	1	µg/L	V	1	V	1	V	1	V	1	V	1	V	1
Naphthalene	20	µg/L	×	5	V	5	V	5	V	5	×	5	v	5
1,2,3-Trichlorobenzene	-	µg/L	Y	1	V	1	×	1	V	1	V	1	v	1

Table 3 SVOC Water Results

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID	VGES		5	Sump	I	MW-2	I	MW-5	I	MW-6		MW-7		MW-8	I	MW-9	MW-	-9 (DUP)
Date	Standard	Units	4/1	4/2009	5/1	5/2009	5/1	15/2009	5/	15/2009	5/	15/2009	5/	15/2009	5/	15/2009		5/15/2009
Parameter																		
Phenol	2,100	µg/L	V	1	<	1	<	1	<	1	<	1	<	1	<	1	<	1
2-Chlorophenol	,	µg/L	<	1	۷	1	۲	1	۲	1	<	1	<	1	۷	1	<	1
2,4-Dichlorophenol	-	µg/L	V	1	<	1	<	1	V	1	۲	1	<	1	٧	1	<	1
2,4,5-Trichlorophenol	-	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	۷	1	<	1
2,4,6-Trichlorophenol	-	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	۷	1	<	1
Pentachlorophenol	1*	µg/L	<	5	<	5	<	5	<	5	<	5	<	5	v	5	<	5
2-Nitrophenol	-	µg/L	Ý	1	, v	1	, ,	1	Ý	1	V	1	, v	1	' v	1	<	1
4-Nitrophenol	-	µg/L	, K	5	, v	5	` <	5	, <	5	` <	5	` <	5	' v	5	<	5
2,4-Dinitrophenol	-	µg/L	Ý	5	' v	5	, ,	5	Ý	5	V	5	, K	5	' v	5	<	5
2-Methylphenol	-	µg/L	Ŷ	1	Ŷ	1	Ŷ	1	Ŷ	1	v	1	Ŷ	1	' v	1	Ż	1
3/4-Methylphenol	-	µg/L	Ŷ	1	' v	1	' v	1	Ŷ	1	' v	1	, K	1	' v	1	Ŷ	1
2,4-Dimethylphenol	-	ua/L	Ŷ	1	, ,	1	` v	1	'	1	' v	1	۲ ۷	1	v	1	Ż	1
4-Chloro-3-methylphenol	-	µg/L	/	1	/ /	1	~ ~	1	\ <	1	/ v	1	- 	1	' v	1	Ż	1
4,6-Dinitro-2-methylphenol	-	µg/L µg/L	\ \	5	<i>\</i> \	5	v v	5	v v	5	<i>\</i> \	5	<i>\</i> \	5	v	5	~	5
Benzoic Acid	- 1*	µg/L µg/L	< <	5	× ۷	5	< <	5	< <	5	< <	5	۲ ۲	5	v v	5	۲ ۲	5
N-Nitrosodimethylamine	-	ua/L	× ۲	1	v v	1	< <	1	< <	1	v v	1	v v	1	v v	1	< <	5
n-Nitrosodimetnylamine	-	µg/L µg/L	۲ ×	1	< <	1	< <	1	< <	1	< <	1	< <	1	v v	1	< <	1
n-Nitroso-di-n-propylamine	-	µg/L µg/L	< <	1	< <	1	< <	1	< <	1	< <	1	< <	1	v v	1	< <	1
h-Nitrosodiphenylamine bis(2-Chloroethyl)ether	300	10	< <	1		1		1		1	< <	1		1		1	< <	1
bis(2-chloroisopropyl)ether	- 300	μg/L μg/L	< <	1	< <	1	< <	1	< <	1	< <	1	< <	1	۷v	1	< <	1
		10												-				
bis(2-Chloroethoxy)methane	-	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	<	1	<	1
1,3-Dichlorobenzene	600	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	۲	1	<	1
1,4-Dichlorobenzene	75	µg/L	<	1	<	1	<	1	<	•	<	1	<	1	۲	1	<	
1,2-Dichlorobenzene	600	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	۷	1	<	1
1,2,4-Trichlorobenzene	70	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	<	1	<	1
2-Chloronaphthalene	-	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	<	1	<	1
4-Chlorophenyl-phenylether	-	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	<	1	<	1
4-Bromophenyl-phenylether	-	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	<	1	<	1
Hexachloroethane	-	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	<	1	<	1
Hexachlorobutadiene	1	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	<	1	<	1
Hexachlorocyclopentadiene	50	µg/L	<	5	<	5	<	5	<	5	<	5	<	5	۲	5	<	5
Hexachlorobenzene	1	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	<	1	<	1
4-Chloroaniline	-	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	۲	1	<	1
2-Nitroaniline	-	µg/L	<	5	<	5	<	5	<	5	<	5	<	5	۷	5	<	5
3-Nitroaniline	-	µg/L	<	1	۷	1	۲	1	۷	1	Y	1	v	1	۷	1	<	1
4-Nitroaniline	-	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	٧	1	<	1
Benzyl alcohol	-	µg/L	۷	1	۷	1	<	1	<	1	v	1	۷	1	۷	1	<	1
Nitrobenzene	-	µg/L	۷	1	٧	1	۷	1	۷	1	۷	1	۷	1	٧	1	۷	1
Isophorone	100	µg/L	٧	1	٧	1	٧	1	٧	1	v	1	٧	1	v	1	٧	1
2,4-Dinitrotoluene	-	µg/L	V	1	۷	1	۷	1	v	1	v	1	۷	1	v	1	۷	1
2,6-Dinitrotoluene	-	µg/L	٧	1	٧	1	٧	1	٧	1	v	1	٧	1	٧	1	٧	1
Benzidine	-	µg/L	۷	5	٧	5	۷	5	۷	5	v	5	v	5	٧	5	۷	5
3,3'-Dichlorobenzidine	-	µg/L	V	1	۷	1	<	1	v	1	v	1	<	1	v	1	۷	1
Pyridine	-	μg/L	<	5	۷	5	۷	5	۷	5	v	5	v	5	v	5	۲	5
Azobenzene	-	µg/L	۷	1	۷	1	<	1	۷	1	۷	1	۷	1	v	1	<	1
Carbazole	-	µg/L	<	1	v	1	<	1	<	1	v	1	<	1	v	1	۷	1
Dimethylphthalate	-	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	۷	1	<	1
Diethylphthalate	-	µg/L	<	1	<	1	<	1	<	1	<	1	<	1	۲	1	<	1
Di-n-butylphthalate	-	µg/L	Ś	5	' v	5	' v	5	Ý	5	V	5	, V	5	v	5	, v	5
Butylbenzylphthalate	-	µg/L	/	1	/ v	1	' '	1	/	1	/ v	1	/	1	' v	1	' v	1
bis(2-Ethylhexyl)phthalate	6	µg/L	/ v	5	/ v	5	/	5	/	5	~	5	~	5	' v	5	' v	5
Di-n-octylphthalate	-	µg/L	/ v	1	/ v	1	/ v	1	/ v	1	\ \	1	~	1	/ V	1	/ v	1
Dibenzofuran	-	µg/L	\ \	1	, ,	1	~ ~	1	~ ~	1	` <	1	` <	1	<i>.</i> v	1	, v	1
DIDENZUIUIAN	-	µy/∟			S		5		5									1 1

Note: Groundwater was resampled for SVOCs due to a lab error in preparing the 4/20/09 samples.

Table 4 PAH Water Results

Richmond Creamery, Richmond, VT

JCO Project #1-0346-3

Sample ID	VGES		S	ump	Ν	IW-2	Ν	IW-5	N	IW-6
Date	Standards	Units	4/2	0/2009	5/1	5/2009	5/1	5/2009	5/1	5/2009
Parameter										
Naphthalene	20	ug/l	۷	0.1	۷	0.1	۷	0.1	<	0.1
2-Methylnaphthalene	-	ug/l	۷	0.1	V	0.1	۷	0.1	۷	0.1
Acenaphthylene	-	ug/l	<	0.1	۷	0.1	۷	0.1	<	0.1
Acenaphthene	-	ug/l	۷	0.1	۷	0.1	۷	0.1	<	0.1
Fluorene	280	ug/l	۷	0.1	<	0.1	V	0.1	<	0.1
Phenanthrene	280	ug/l	<	0.1	۷	0.1	<	0.1	<	0.1
Anthracene	-	ug/l	۷	0.1	۷	0.1	۷	0.1	<	0.1
Fluoranthene	-	ug/l	<	0.1	V	0.1	۷	0.1	<	0.1
Pyrene	-	ug/l	۷	0.1	۷	0.1	۷	0.1	<	0.1
Benz[a]anthracene	-	ug/l	۷	0.1	۷	0.1	۷	0.1	<	0.1
Chrysene	-	ug/l	<	0.1	V	0.1	۷	0.1	<	0.1
Benzo[b]fluoranthene	-	ug/l	۷	0.1	۷	0.1	۷	0.1	<	0.1
Benzo[k]fluoranthene	-	ug/l	۷	0.1	V	0.1	۷	0.1	۷	0.1
Benzo[a]pyrene	0.2	ug/l	<	0.1	۷	0.1	<	0.1	<	0.1
Indeno[1,2,3-cd]pyrene	-	ug/l	۷	0.1	<	0.1	<	0.1	<	0.1
Dibenz[a,h]anthracene	-	ug/l	<	0.1	<	0.1	۷	0.1	<	0.1
Benzo[g,h,i]perylene	-	ug/l	<	0.1	<	0.1	<	0.1	<	0.1

Sample ID	VGES		I I	MW-7	Ν	/W-8	1	NW-9	MW	•9 (DUP)
Date	Standards	Units	5/1	9/2009	5/1	5/2009	5/1	5/2009	5/1	5/2009
Parameter										
Naphthalene	20	ug/l	۷	0.1	۷	0.1	۷	0.1	<	0.1
2-Methylnaphthalene	-	ug/l	۷	0.1	۷	0.1	V	0.1	<	0.1
Acenaphthylene	-	ug/l	۷	0.1	۷	0.1	<	0.1	<	0.1
Acenaphthene	-	ug/l	۷	0.1	۷	0.1	۷	0.1	<	0.1
Fluorene	280	ug/l	۷	0.1	۷	0.1	۷	0.1	<	0.1
Phenanthrene	280	ug/l	٧	0.1	V	0.1	۷	0.1	۷	0.1
Anthracene	-	ug/l	۷	0.1	V	0.1	۷	0.1	<	0.1
Fluoranthene	-	ug/l	۷	0.1	۷	0.1	<	0.1	<	0.1
Pyrene	-	ug/l	۷	0.1	٧	0.1	۷	0.1	<	0.1
Benz[a]anthracene	-	ug/l	۷	0.1	۷	0.1	V	0.1	<	0.1
Chrysene	-	ug/l	۷	0.1	۷	0.1	<	0.1	<	0.1
Benzo[b]fluoranthene	-	ug/l	۷	0.1	۷	0.1	۷	0.1	<	0.1
Benzo[k]fluoranthene	-	ug/l	۷	0.1	٧	0.1	۷	0.1	<	0.1
Benzo[a]pyrene	0.2	ug/l	۷	0.1	٧	0.1	۷	0.1	<	0.1
Indeno[1,2,3-cd]pyrene	-	ug/l	۷	0.1	<	0.1	<	0.1	<	0.1
Dibenz[a,h]anthracene	-	ug/l	۷	0.1	<	0.1	v	0.1	<	0.1
Benzo[g,h,i]perylene	-	ug/l	۷	0.1	<	0.1	V	0.1	<	0.1

Table 5 Metals Water ResultsRichmond Creamery, Richmond, VTJCO Project #1-0346-3

Sample ID	VGES			Sump		MW-1		MW-2		MW-3		MW-4		MW-5
Date	Standard		4/	14/2009	4	/20/2009	4/	/20/2009	4/	20/2009	4	/20/2009	4/	20/2009
Parameter														
Antimony	0.006	mg/L	<	0.001	۷	0.001	۷	0.001	۷	0.001		NS	۷	0.001
Arsenic	0.010	mg/L		0.012	۷	0.001		0.016		0.002		NS		0.010
Barium	2.000	mg/L		0.033		0.012		0.028		0.050		NS		0.027
Cadmium	0.005	mg/L	<	0.001	۷	0.001	۷	0.001	V	0.001		NS	۷	0.001
Chromium	0.100	mg/L		0.003	۷	0.001	<	0.001	<	0.001		NS	<	0.001
Lead	0.015	mg/L	۷	0.001		0.001	۷	0.001		0.004		NS	<	0.001
Manganese	0.300	mg/L		0.016		0.31		0.23		0.400		NS		0.86
Mercury	0.002	mg/L	۷	0.0001	٨	0.0001	۷	0.0001	V	0.0001		NS	۷	0.0001
Nickel	0.100	mg/L	<	0.001		0.007		0.004		0.003		NS		0.005
Selenium	0.050	mg/L	۷	0.001	۷	0.001	۷	0.001		0.005		NS	۷	0.001
Thallium	0.002	mg/L	<	0.001	V	0.001	<	0.001	۲	0.001		NS	<	0.001

Sample ID	VGES			MW-6		MW-7		MW-8		MW-9	M٧	V-9 (DUP)	Relative
Date	Standard		4/	20/2009	4	/20/2009	4/	20/2009	4/	20/2009	4/	20/2009	Percent
Parameter													Difference
Antimony	0.006	mg/L	۷	0.001	۷	0.001	<	0.001	٨	0.001	۷	0.001	0%
Arsenic	0.010	mg/L		0.004		0.003	۷	0.001		0.002		0.002	0%
Barium	2.000	mg/L		0.028		0.006		0.029		0.046		0.046	0%
Cadmium	0.005	mg/L	٧	0.001	٧	0.001	۷	0.001	٧	0.001	٧	0.001	0%
Chromium	0.100	mg/L	٨	0.001	V	0.001	۷	0.001	V	0.001	۷	0.001	0%
Lead	0.015	mg/L	٧	0.001	٧	0.001	۷	0.001	V	0.001	۷	0.001	0%
Manganese	0.300	mg/L		1.5		0.65		5.8		1.4		1.4	0%
Mercury	0.002	mg/L	٨	0.0001	٨	0.0001	۷	0.0001	٨	0.0001	۷	0.0001	0%
Nickel	0.100	mg/L		0.002		0.007		0.005		0.004		0.004	0%
Selenium	0.050	mg/L	V	0.001	۷	0.001	۷	0.001	٨	0.001	۷	0.001	0%
Thallium	0.002	mg/L	<	0.001	<	0.001	۷	0.001	<	0.001	<	0.001	0%

White text/black cell = Result exceeds screening criterion

NS = Not sampled

Parameter		RSL or VDH		SS	-T-1		Γ	SS	-Т-2			SS	-T-3		S	S-T-3 ((DUP)		SS	-T-4			SS	-T-5			SS-A	ST-1	
Sample Depth (Feet)		Criterion	(0-0.5	1	.5-2.0	(0-0.5		.5-2.0	(0-0.5	1	.5-2.0		0-0.	5	0	-0.5	1.	5-2.0	C)-0.5	1.	5-2.0	0)-0.5	1.	5-2.0
Date	Units	(mg/kg)	4/2	0/2009	4/2	0/2009	4/2	20/2009	4/2	0/2009	4/2	20/2009	4/2	20/2009		4/20/2	009	4/2	0/2009	4/20)/2009	4/2	0/2009	4/2	0/2009	4/1	4/2009	4/14	1/2009
Parameter																		-				-							
Dichlorodifluoromethane	mg/kg	190																											
Chloromethane	mg/kg	1.7																											
Vinyl chloride	mg/kg	0.06*					Ì																						
Bromomethane	mg/kg	7.9																											
Chloroethane (Ethyl chloride)	mg/kg	15,000																											
Trichlorofluoromethane	mg/kg	800																											
Diethyl Ether	mg/kg	16,000					1																						
Acetone	mg/kg	61,000																											
1,1-Dichloroethene	mg/kg	250																											
Methylene chloride	mg/kg	11					1																						
Carbon disulfide	mg/kg	670																											
Methyl-t-butyl ether(MTBE)	mg/kg	39	<	0.10	<	0.10	<	0.20	<	0.20	<	0.10	<	0.10		<	0.20	<	0.10	<	0.10	<	0.10	<	0.10	<	0.20	<	0.20
trans-1,2-Dichloroethene ¹	mg/kg	135																											
1.1-Dichloroethane	mg/kg	3.4					\vdash	<u> </u>							+														
2,2-Dichloropropane	mg/kg	None					1																						l
cis-1,2-Dichloroethene ¹	mg/kg	673																											
2-Butanone(MEK) ¹	mg/kg	40.400																											
Bromochloromethane	mg/kg	None					-								-														├───
Tetrahydrofuran(THF)	mg/kg	None					-								-														├───
Chloroform	mg/kg	0.3																											├───
1,1,1-Trichloroethane	mg/kg	9,000													-														<u> </u>
Carbon tetrachloride	mg/kg	0.25																											<u> </u>
1,1-Dichloropropene	mg/kg	None													-														<u> </u>
Benzene ¹	mg/kg	6.24	<	0.07	<	0.06	<	0.06	<	0.06	<	0.07	<	0.06		<	0.10	<	0.06	<	0.06	<	0.07	<	0.06	<	0.09	<	0.09
1.2-Dichloroethane	mg/kg	0.24	<	0.07	<	0.06	<	0.06	<	0.06	< <	0.07	<	0.06	-		0.10	<	0.06	<	0.06		0.07	< <	0.06	<	0.09	< <	0.09
,	0 0		<	0.07	 	0.00	< .	0.00		0.00	<pre></pre>	0.07	<pre></pre>	0.00		< _	0.10	•	0.00	`	0.00		0.07	 	0.00	<pre></pre>	0.09	`	0.09
Trichloroethene ¹ 1,2-Dichloropropane	mg/kg	0.86					-								-														├───
	mg/kg														-														┝────
Dibromomethane	mg/kg	780 10					-								-														┝────
Bromodichloromethane 4-Methyl-2-pentanone(MIBK)	mg/kg	5,300													-														┝────
cis-1,3-Dichloropropene	mg/kg	1.70													-														┝────
Toluene	mg/kg	5,000	<	0.07	<	0.06	<	0.06	-	0.06	<	0.07	<	0.06			0.10	-	0.06	-	0.06	_	0.07	-	0.06	-	0.09		0.13
trans-1,3-Dichloropropene	mg/kg	5,000	<	0.07	<	0.06	<	0.06	<	0.06	<	0.07	<	0.06	_	<	0.10	<	0.06	<	0.06	<	0.07	<	0.06	<	0.09		0.13
1.1.2-Trichloroethane	mg/kg	1.10													-														┝────
2-Hexanone	mg/kg	None													-														┝───
	mg/kg																												<u> </u>
Tetrachloroethene ¹	mg/kg	0.80													_														┝───
1,3-Dichloropropane	mg/kg	1,600					_	ļ					<u> </u>		-										<u> </u>	<u> </u>			
Dibromochloromethane	mg/kg	5.80		0.07		0.00		0.00		0.00		0.07		0.00	-		0.40		0.00		0.00		0.07		0.00		0.00		0.00
1,2-Dibromoethane(EDB)	mg/kg	0.034*	<	0.07	<	0.06	<	0.06	<	0.06	<	0.07	<	0.06		<	0.10	<	0.06	<	0.06	<	0.07	<	0.06	<	0.09	<	0.09
Chlorobenzene	mg/kg	310			<u> </u>	<u> </u>	<u> </u>	L				I	<u> </u>	I	-														┝────
1,1,1,2-Tetrachloroethane	mg/kg	2		0.07		0.00	-	0.00		0.00		0.07		0.00			0.40		0.00		0.00		0.07		0.00		0.00		0.00
Ethylbenzene	mg/kg	5.7	<	0.07	<	0.06	<	0.06	<	0.06	<	0.07	<	0.06	_		0.10	<	0.06	<	0.06	<	0.07	<	0.06	<	0.09	<	0.09
mp-Xylene	mg/kg	4,500	<	0.07	<	0.06	<	0.06	<	0.06	<	0.07	<	0.06	-		0.10	<	0.06	<	0.06	<	0.07	<	0.06	<	0.09		0.16
o-Xylene	mg/kg	5,300	<	0.07	<	0.06	<	0.06	<	0.06	<	0.07	<	0.06		<	0.10	<	0.06	<	0.06	<	0.07	<	0.06	<	0.09	<	0.09

¹=VDH value used for screening

Parameter		RSL or VDH		SS	-T-1			SS	-T-2			SS	-T-3		SS-T	-3 (DUP)	SS	-T-4			SS	-T-5			SS-A	ST-1	i T
Sample Depth (Feet)		Criterion	0)-0.5	1.	5-2.0	(0-0.5	1.	.5-2.0	(0-0.5	1	.5-2.0	()-0.5	(0-0.5	1.	5-2.0	C)-0.5	1.	5-2.0	0	0-0.5	1./	5-2.0
Date	Units	(mg/kg)	4/2	0/2009	4/2	0/2009	4/2	0/2009	4/2	0/2009	4/2	20/2009	4/2	0/2009	4/2	0/2009	4/2	0/2009	4/20)/2009	4/2	0/2009	4/2	0/2009	4/1	4/2009	4/14	4/2009
Parameter																												
Styrene	mg/kg	6,500																										
Bromoform	mg/kg	61																										
IsoPropylbenzene (Cumene)	mg/kg	2,200																										
Bromobenzene	mg/kg	94																										
1,1,2,2-Tetrachloroethane	mg/kg	0.59																										
1,2,3-Trichloropropane	mg/kg	0.091*																										
n-Propylbenzene	mg/kg	None																										
2-Chlorotoluene	mg/kg	1,600																										
4-Chlorotoluene	mg/kg	5,500																										
1,3,5-Trimethylbenzene	mg/kg	47	<	0.07	۷	0.06	<	0.06	۷	0.06	<	0.07	<	0.06	<	0.10	<	0.06	<	0.06	۷	0.07	<	0.06	۷	0.09	<	0.09
tert-Butylbenzene	mg/kg	None																										
1,2,4-Trimethylbenzene	mg/kg	67	<	0.07	۷	0.06	<	0.06	۷	0.06	<	0.07	<	0.06	<	0.10	<	0.06	<	0.06	۷	0.07	<	0.06	۷	0.09	<	0.09
sec-Butylbenzene	mg/kg	None																										
1,3-Dichlorobenzene	mg/kg	None																										
p-Isopropyltoluene	mg/kg	None																										
1,4-Dichlorobenzene	mg/kg	2.60																										
1,2-Dichlorobenzene	mg/kg	2,000																										
n-Butylbenzene	mg/kg	None																										
1,2-Dibromo-3-chloropropane	mg/kg	0.0056*																										
1,2,4-Trichlorobenzene	mg/kg	87																										
Hexachlorobutadiene	mg/kg	6.2																										
Naphthalene ¹	mg/kg	1,070	<	0.40	۷	0.30	۷	0.30	۷	0.40	<	0.40	<	0.40	<	0.60	<	0.30	۷	0.30	۷	0.40	<	0.30	<	0.50	<	0.60
1,2,3-Trichlorobenzene	mg/kg	None																										

¹=VDH value used for screening

Parameter		RSL or VDH		SS-A	ST-	2		SS-	BB-1		SS	-PT-3	SS	-PT-3		SS-PT-	3 (DU	P)	Sul	b Slab 2	SS	-WR-01	S	B-08
Sample Depth (Feet)		Criterion	()-0.5	1.	5-2.0	0-	-0.5	1.	5-2.0	0	-0.5	1.	5-2.0	0	-0.5	1.5	, 5-2.0		0-0.5	(0-0.5	1	.5-2.0
Date	Units	(mg/kg)	4/2	0/2009		0/2009	4/20)/2009		0/2009	4/20	0/2009	4/20)/2009	4/20	0/2009	4/20)/2009		24/2009	3/2	4/2009		15/2009
Parameter		(1														
Dichlorodifluoromethane	mg/kg	190																	<	0.10	<	0.20	<	0.10
Chloromethane	mg/kg	1.7																	<	0.10	<	0.20	<	0.10
Vinyl chloride	mg/kg	0.06*																	<	0.10	<	0.20	<	0.10
Bromomethane	mg/kg	7.9																	<	0.10	<	0.20	<	0.10
Chloroethane (Ethyl chloride)	mg/kg	15,000																	<	0.10	<	0.20	<	0.10
Trichlorofluoromethane	mg/kg	800																	<	0.10	<	0.20	<	0.10
Diethyl Ether	mg/kg	16,000																	<	0.05	<	0.10	<	0.05
Acetone	mg/kg	61,000																	<	2.00	<	4.00	<	2.00
1,1-Dichloroethene	mg/kg	250																	<	0.05	<	0.10	<	0.05
Methylene chloride	mg/kg	11																	<	0.10	<	0.20	<	0.10
Carbon disulfide	mg/kg	670																	<	0.10	<	0.20	<	0.10
Methyl-t-butyl ether(MTBE)	mg/kg	39	<	0.10	<	0.10	<	0.10	<	0.20	<	0.20	<	0.10	۷	0.20	<	0.10	<	0.10	<	0.20	<	0.10
trans-1,2-Dichloroethene ¹	mg/kg	135																	<	0.05	<	0.10	<	0.05
1,1-Dichloroethane	mg/kg	3.4																	<	0.05	<	0.10	<	0.05
2,2-Dichloropropane	mg/kg	None																	<	0.05	<	0.10	<	0.05
cis-1,2-Dichloroethene ¹	mg/kg	673																	<	0.05	<	0.10	<	0.05
2-Butanone(MEK) ¹	mg/kg	40,400																	<	0.50	<	1.00	<	0.50
Bromochloromethane	mg/kg	None																	<	0.05	<	0.10	<	0.05
Tetrahydrofuran(THF)	mg/kg	None														1			<	0.50	<	< 1	<	0.50
Chloroform	mg/kg	0.3														1			<	0.05	<	0.10	<	0.05
1.1.1-Trichloroethane	mg/kg	9,000																	<	0.05	<	0.10	<	0.05
Carbon tetrachloride	mg/kg	0.25																	<	0.05	<	0.10	<	0.05
1,1-Dichloropropene	mg/kg	None																	<	0.05	<	0.10	<	0.05
Benzene ¹	mg/kg	6.24	<	0.06	<	0.06	<	0.07	<	0.08	<	0.09	<	0.06	<	0.09	<	0.05	<	0.05	<	0.10	<	0.05
1,2-Dichloroethane	mg/kg	0.45	<	0.06	<	0.06	<	0.07	<	0.08	<	0.09	<	0.06	<	0.09	<	0.05	<	0.05	<	0.10	<	0.05
Trichloroethene ¹	mg/kg	0.86																	<	0.05	<	0.10	<	0.05
1,2-Dichloropropane	mg/kg	0.93																	<	0.05	<	0.10	<	0.05
Dibromomethane	mg/kg	780																	<	0.05	<	0.10	<	0.05
Bromodichloromethane	mg/kg	10																	<	0.05	<	0.10	<	0.05
4-Methyl-2-pentanone(MIBK)	mg/kg	5,300																	<	0.50	<	1.00	<	0.50
cis-1,3-Dichloropropene	mg/kg	1.70																	<	0.05	<	0.10	<	0.05
Toluene	mg/kg	5,000		0.14		0.05	<	0.07	۷	0.08	۷	0.09	<	0.06	۷	0.09	<	0.05	<	0.05		0.10	<	0.05
trans-1,3-Dichloropropene	mg/kg	1.70																	<	0.05	<	0.10	<	0.05
1,1,2-Trichloroethane	mg/kg	1.10																	<	0.05	<	0.10	<	0.05
2-Hexanone	mg/kg	None																	<	0.10	<	0.20	<	0.10
Tetrachloroethene ¹	mg/kg	0.80																	<	0.05	<	0.10	<	0.05
1,3-Dichloropropane	mg/kg	1,600	1													1			<	0.05	<	0.10	<	0.05
Dibromochloromethane	mg/kg	5.80	1													1		1	<	0.05	<	0.10	<	0.05
1,2-Dibromoethane(EDB)	mg/kg	0.034*	<	0.06	<	0.06	<	0.07	<	0.08	<	0.09	<	0.06	<	0.09	<	0.05	<	0.05	<	0.10	<	0.05
Chlorobenzene	mg/kg	310																	<	0.05	<	0.10	<	0.05
1,1,1,2-Tetrachloroethane	mg/kg	2	1													1			<	0.05	<	0.10	<	0.05
Ethylbenzene	mg/kg	5.7		0.07		0.37	<	0.07	<	0.08	<	0.09	<	0.06	<	0.09	<	0.05	<	0.05	<	0.10		0.18
mp-Xylene	mg/kg	4,500	1	1.30	ſ	2.30	<	0.07	<	0.08	<	0.09	<	0.06	۷	0.09	<	0.05	<	0.05	<	0.10		0.18
o-Xylene	mg/kg	5,300	ľ	1.20	ſ	1.50	<	0.07	<	0.08	<	0.09	<	0.06	<	0.09	<	0.05	<	0.05	<	0.10		0.10

¹=VDH value used for screening

Parameter		RSL or VDH		SS-A	ST-2	2		SS-	BB-1		SS	-PT-3	SS	-PT-3		SS-PT-	3 (DU	P)	Sub	Slab 2	SS	-WR-01	S	SB-08
Sample Depth (Feet)		Criterion	0)-0.5	1.	5-2.0	0-	-0.5	1.	5-2.0	0	-0.5	1.5	5-2.0	0	-0.5	1.5	5-2.0	(0-0.5	(0-0.5	1	.5-2.0
Date	Units	(mg/kg)	4/2	0/2009	4/2	0/2009	4/20	/2009	4/20)/2009	4/20)/2009	4/20)/2009	4/20)/2009	4/20	/2009	3/2	4/2009	3/2	4/2009	4/1	15/2009
Parameter																								
Styrene	mg/kg	6,500																	<	0.05	>	0.10	۸	0.05
Bromoform	mg/kg	61																	<	0.05	۸	0.10	<	0.05
IsoPropylbenzene (Cumene)	mg/kg	2,200																	<	0.05	<	0.10		0.72
Bromobenzene	mg/kg	94																	<	0.05	>	0.10	<	0.05
1,1,2,2-Tetrachloroethane	mg/kg	0.59																	<	0.05	۸	0.10	<	0.05
1,2,3-Trichloropropane	mg/kg	0.091*																	<	0.05	<	0.10	۸	0.05
n-Propylbenzene	mg/kg	None																	<	0.05	<	0.10		1.8
2-Chlorotoluene	mg/kg	1,600																	<	0.05	۸	0.10	۸	0.05
4-Chlorotoluene	mg/kg	5,500																	<	0.05	<	0.10	۸	0.05
1,3,5-Trimethylbenzene	mg/kg	47		9.30		4.80	<	0.07	۷	0.08	۷	0.09	<	0.06	<	0.09	۷	0.05	<	0.05	<	0.10		1.10
tert-Butylbenzene	mg/kg	None																	<	0.05	<	0.10	<	0.05
1,2,4-Trimethylbenzene	mg/kg	67		5.10		9.70	<	0.07	۷	0.08	<	0.09	<	0.06	<	0.09	۷	0.05	<	0.05	>	0.10		7.90
sec-Butylbenzene	mg/kg	None																	<	0.05	۸	0.10		2.8
1,3-Dichlorobenzene	mg/kg	None																	<	0.05	<	0.10	۸	0.05
p-Isopropyltoluene	mg/kg	None																	<	0.05	<	0.10		2.3
1,4-Dichlorobenzene	mg/kg	2.60																	<	0.05	<	0.10	<	0.05
1,2-Dichlorobenzene	mg/kg	2,000																	<	0.05	<	0.10	۸	0.05
n-Butylbenzene	mg/kg	None																	<	0.05	>	0.10		4.1
1,2-Dibromo-3-chloropropane	mg/kg	0.0056*																	<	0.05	۸	0.10	>	0.05
1,2,4-Trichlorobenzene	mg/kg	87																	<	0.05	۸	0.10	۸	0.05
Hexachlorobutadiene	mg/kg	6.2																	<	0.05	۸	0.10	<	0.05
Naphthalene ¹	mg/kg	1,070		5.10		8.40	۷	0.40	<	0.50	<	0.50	<	0.30	<	0.50	۷	0.30	<	0.10	<	0.20	T	6.80
1,2,3-Trichlorobenzene	mg/kg	None																	<	0.05	<	0.10	<	0.05

¹=VDH value used for screening

Parameter		RSL or VDH	м	W-1	M	W-2	M	W-3	N	/W-4		MW-5		MW-6		MW-7	N	1W-8		WW-9
Sample Depth (Feet)		Criterion		5-16.0		0-13.0		0-14.0		.0-14.0		1.0-12.0		7.5-8.0		6.5-7.0		.0-7.5		.5-5.0
Date	Units	(mg/kg)	-	4/2009		4/2009	-	4/2009	-	14/2009		14/2009		5/2009		15/2009		5/2009		5/2009
Parameter	onita	(ing/kg/	-4/1-	1/2000		4/2005	-7/1	4/2005		14/2005		14/2005	-7/	0/2003	-17	10/2000	-47	0/2000	- 17	0,2000
Dichlorodifluoromethane	mg/kg	190			<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10
Chloromethane	mg/kg	1.7			<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10
Vinyl chloride	mg/kg	0.06*			<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10
Bromomethane	mg/kg	7.9			<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10
Chloroethane (Ethyl chloride)	mg/kg	15,000			<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10
Trichlorofluoromethane	mg/kg	800			<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10
Diethyl Ether	mg/kg	16,000			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
Acetone	mg/kg	61,000			<	2.00	<	3.00	<	2.00	<	2.00	<	2.00	<	2.00	<	2.00	<	2.00
1,1-Dichloroethene	mg/kg	250			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
Methylene chloride	mg/kg	11			<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10
Carbon disulfide	mg/kg	670			<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10
Methyl-t-butyl ether(MTBE)	mg/kg	39	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10
trans-1,2-Dichloroethene ¹	mg/kg	135			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
1,1-Dichloroethane	mg/kg	3.4			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
2,2-Dichloropropane	mg/kg	None			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
cis-1,2-Dichloroethene ¹	mg/kg	673			>	0.05	>	0.07	<	0.06	<	0.05	<	0.05	<	0.05	۷	0.05	۷	0.06
2-Butanone(MEK) ¹	mg/kg	40,400			۷	0.50	۷	0.70	۷	0.60	<	0.50	<	0.50	۷	0.50	۷	0.50	۷	0.60
Bromochloromethane	mg/kg	None			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	۲	0.05	<	0.06
Tetrahydrofuran(THF)	mg/kg	None			<	0.50	<	0.70	<	0.60	<	0.50	<	0.50	<	0.50	<	0.50	<	0.60
Chloroform	mg/kg	0.3			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
1,1,1-Trichloroethane	mg/kg	9,000			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
Carbon tetrachloride	mg/kg	0.25			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
1,1-Dichloropropene	mg/kg	None			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
Benzene ¹	mg/kg	6.24	<	0.05	<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
1,2-Dichloroethane	mg/kg	0.45	<	0.05	<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
Trichloroethene ¹	mg/kg	0.86			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
1,2-Dichloropropane	mg/kg	0.93			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
Dibromomethane	mg/kg	780			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
Bromodichloromethane	mg/kg	10			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
4-Methyl-2-pentanone(MIBK)	mg/kg	5,300			<	0.50	<	0.70	<	0.60	<	0.50	<	0.50	<	0.50	<	0.50	<	0.60
cis-1,3-Dichloropropene	mg/kg	1.70			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
Toluene	mg/kg	5,000	<	0.05	<	0.05	<	0.07		0.20	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
trans-1,3-Dichloropropene	mg/kg	1.70			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
1,1,2-Trichloroethane	mg/kg	1.10			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
2-Hexanone	mg/kg	None			<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10	<	0.10
Tetrachloroethene	mg/kg	0.80			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
1,3-Dichloropropane	mg/kg	1,600			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
Dibromochloromethane	mg/kg	5.80		0.05	<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
1,2-Dibromoethane(EDB)	mg/kg	0.034*	<	0.05	<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
Chlorobenzene 1,1,1,2-Tetrachloroethane	mg/kg	310 2			< <	0.05	< <	0.07	<	0.06	<	0.05	< <	0.05	< <	0.05	< <	0.05	< <	0.06
Ethylbenzene	mg/kg mg/kg	5.7	<	0.05	< <	0.05	<	0.07	< <	0.06	< <	0.05	<	0.05	< <	0.05	< <	0.05	< <	0.06
mp-Xylene	mg/kg	4,500	<	0.05	<	0.05	< <	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
o-Xylene	mg/kg	5,300	<	0.05	<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	<	0.05	<	0.06
0-Aylelle	mg/kg	5,500	<	0.05	<	0.05	<	0.07	<	0.00	<	0.05	<	0.05	<	0.05	< .	0.05	<	0.00

¹=VDH value used for screening

Parameter		RSL or VDH	М	W-1	N	IW-2	N	IW-3	N	IW-4		MW-5		MW-6		/W-7	Ν	1W-8	N	/W-9
Sample Depth (Feet)		Criterion	15.	5-16.0	12	.0-13.0	13	.0-14.0	13	.0-14.0	1'	1.0-12.0		7.5-8.0	e	5.5-7.0	7	.0-7.5	4	.5-5.0
Date	Units	(mg/kg)	4/14	4/2009	4/1	4/2009	4/1	4/2009	4/1	4/2009	4/	14/2009	4/	15/2009	4/1	5/2009	4/1	5/2009	4/1	5/2009
Parameter																				
Styrene	mg/kg	6,500			۷	0.05	۷	0.07	<	0.06	۰	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
Bromoform	mg/kg	61			۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
IsoPropylbenzene (Cumene)	mg/kg	2,200			۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
Bromobenzene	mg/kg	94			۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
1,1,2,2-Tetrachloroethane	mg/kg	0.59			۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
1,2,3-Trichloropropane	mg/kg	0.091*			۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
n-Propylbenzene	mg/kg	None			۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
2-Chlorotoluene	mg/kg	1,600			۷	0.05	۷	0.07	۷	0.06	۸	0.05	۷	0.05	۷	0.05	۷	0.05	۸	0.06
4-Chlorotoluene	mg/kg	5,500			۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
1,3,5-Trimethylbenzene	mg/kg	47	<	0.05	۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
tert-Butylbenzene	mg/kg	None			۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
1,2,4-Trimethylbenzene	mg/kg	67	<	0.05	۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
sec-Butylbenzene	mg/kg	None			۷	0.05	۷	0.07	<	0.06	۸	0.05	۷	0.05	۷	0.05	۷	0.05	۸	0.06
1,3-Dichlorobenzene	mg/kg	None			۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
p-Isopropyltoluene	mg/kg	None			۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
1,4-Dichlorobenzene	mg/kg	2.60			۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
1,2-Dichlorobenzene	mg/kg	2,000			۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
n-Butylbenzene	mg/kg	None			۷	0.05	۷	0.07	<	0.06	<	0.05	۷	0.05	۷	0.05	۷	0.05	<	0.06
1,2-Dibromo-3-chloropropane	mg/kg	0.0056*			۷	0.05	۷	0.07	<	0.06	۸	0.05	<	0.05	۷	0.05	<	0.05	۸	0.06
1,2,4-Trichlorobenzene	mg/kg	87			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	۷	0.05	<	0.06
Hexachlorobutadiene	mg/kg	6.2			۷	0.05	۷	0.07	<	0.06	۸	0.05	۷	0.05	۷	0.05	<	0.05	۸	0.06
Naphthalene ¹	mg/kg	1,070	۷	0.30	<	0.10	<	0.10		0.10	<	0.10	<	0.10	<	0.10	۷	0.10	<	0.10
1,2,3-Trichlorobenzene	mg/kg	None			<	0.05	<	0.07	<	0.06	<	0.05	<	0.05	<	0.05	۷	0.05	<	0.06

¹=VDH value used for screening

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Parameter		D // .	SS	-WR-01	SS	-NR-01	SS	-NR-01	SS	-NR-02	SS	-NR-02	SS	-RR-01	SS	-RR-01
Depth (feet)		Residential		0-0.5		0-0.5	1	.5-2.0	(0-0.5	1	.5-2.0	()-0.5	1.	.5-2.0
Date	Units	RSL or VDH Criterion	3/2	23/2009	3/2	23/2009	3/2	23/2009	3/2	23/2009	3/2	3/2009	3/2	3/2009	3/2	3/2009
Naphthalene ¹	mg/kg	1,070	۷	0.02	<	0.02	<	0.02	<	0.02	×	0.02	<	0.02	v	0.02
2-Methylnaphthalene	mg/kg	310	٧	0.02		0.03	Y	0.02	×	0.02	V	0.02	v	0.02		0.02
Acenaphthylene	mg/kg	None		0.03	Y	0.02	v	0.02		0.02	v	0.02	v	0.02	Y	0.02
Acenaphthene	mg/kg	3,400	v	0.02	v	0.02	v	0.02	v	0.02	v	0.02	v	0.02	×	0.02
Fluorene	mg/kg	2,300		0.02	v	0.02	×	0.02	v	0.02	v	0.02	<	0.02	٧	0.02
Phenanthrene	mg/kg	None		0.24		0.04	V	0.02		0.16	v	0.02		0.04		0.03
Anthracene	mg/kg	17,000		0.06	V	0.02	Y	0.02		0.03	V	0.02	v	0.02	V	0.02
Fluoranthene	mg/kg	1,700		0.54		0.08	V	0.02		0.49		0.05		0.09		0.04
The following PAH comp	ounds a	re compared	to a	VDH of C).01 n	ng/kg ^{PAH} u	ising [·]	Toxic Equ	ivalen	cy Factor	s in Ta	able 8:				
		Industrial RSL														
PyrenePAH	mg/kg	17,000		0.47		0.07	V	0.02		0.49		0.04		0.10		0.04
Benzo[a]anthracene	mg/kg	20		0.27		0.05	۷	0.02		0.26		0.03		0.07		0.04
Chrysene	mg/kg	210		0.28		0.04	۷	0.02		0.24		0.02		0.05		0.03
Benzo[b]fluoranthene	mg/kg	20		0.40		0.06	V	0.02		0.33		0.03		0.07		0.04
Benzo[k]fluoranthene	mg/kg	21		0.14		0.02	v	0.02		0.13	v	0.02		0.02	v	0.02
Benzo[a]pyrene	mg/kg	0.2		0.28		0.04	v	0.01		0.25		0.02		0.05		0.03
Indeno[1,2,3-cd]pyrene	mg/kg	20.1		0.13		0.03	۷	0.02		0.12	٧	0.02		0.03	۷	0.02
Dibenz[a,h]anthracene	mg/kg	0.2		0.04	v	0.02	۷	0.02		0.04	۷	0.02	v	0.02	٧	0.02
Benzo[g,h,i]perylene	mg/kg	None		0.14		0.04	۷	0.02		0.13	۷	0.02		0.03	۷	0.02

¹ VDH Value used for screening

PAH - PAH toxic equivalent factor applied to compare

against VDH criterion (see Table 8); Industrial RSL shown for comparison

·

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Parameter		B	SS	-RR-02	S	S-RR-02	S	S-RR-03	S	S-RR-03	SS	S-RR-04	S	S-RR-04	S	S-RR-05
Depth (feet)		Residential RSL or VDH		0-0.5		1.5-2.0		0-0.5		1.5-2.0		0-0.5		1.5-2.0		0-0.5
Date	Units	Criterion	3/2	23/2009	3	/23/2009	3/	23/2009	3	/23/2009	3/	23/2009	3	3/23/2009	3/	23/2009
Naphthalene ¹	mg/kg	1,070		0.03	۷	0.02	۷	0.02		0.05		0.16		0.17		0.15
2-Methylnaphthalene	mg/kg	310		0.03	۷	0.02	V	0.02		0.03		0.29		0.27		0.22
Acenaphthylene	mg/kg	None	v	0.02	v	0.02		0.04		0.09		0.14		0.16		0.24
Acenaphthene	mg/kg	3,400	<	0.02	V	0.02	۷	0.02		0.09	v	0.02		0.05	٨	0.02
Fluorene	mg/kg	2,300	v	0.02	V	0.02	V	0.02		0.13	Y	0.02		0.06		0.02
Phenanthrene	mg/kg	None		0.05		0.03		0.16		1.70		0.31		0.95		0.43
Anthracene	mg/kg	17,000	v	0.02	V	0.02		0.02		0.37		0.08		0.14		0.09
Fluoranthene	mg/kg	1,700		0.21		0.10		0.59		2.90		0.82		1.80		1.50
The following PAH comp	ounds a	re compared	to a \	/DH of 0.0 ²	1 mg	/kg ^{PAH} usin	g To	xic Equivale	ency	/ Factors in	Tabl	e 8:				
		Industrial RSL														
PyrenePAH	mg/kg	17,000		0.22		0.10		0.43		1.90		0.72		1.20		1.40
Benzo[a]anthracene	mg/kg	20		0.13		0.06		0.25		1.10		0.37		0.71		0.78
Chrysene	mg/kg	210		0.13		0.07		0.30		1.20		0.35		0.85		0.92
Benzo[b]fluoranthene	mg/kg	20		0.21		0.11		0.46		1.70		1.10		1.20		1.70
Benzo[k]fluoranthene	mg/kg	21		0.06		0.03		0.15		0.49		0.37		0.43		0.55
Benzo[a]pyrene	mg/kg	0.2		0.13		0.06		0.30		1.10		0.40		0.58		1.10
Indeno[1,2,3-cd]pyrene	mg/kg	20.1		0.07		0.03		0.15		0.43		0.27		0.23		0.51
Dibenz[a,h]anthracene	mg/kg	0.2		0.02	×	0.02		0.05		0.14		0.09		0.08		0.14
Benzo[g,h,i]perylene	mg/kg	None		0.07		0.04		0.16		0.40		0.22		0.18		0.52

¹ VDH Value used for screening

PAH - PAH toxic equivalent factor applied to compare

against VDH criterion (see Table 8); Industrial RSL shown

for comparison

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Parameter		B	SS-RR-05 (DUP)	Relative	S	S-RR-05	S	S-RR-05 (DUP)	Relative	S	S-RR-06	S	S-RR-07
Depth (feet)		Residential	0-0.5	Percent		1.5-2.0		1.5-2.0	Percent		0-0.5		0-0.5
Date	Units	RSL or VDH Criterion	3/23/2009	Difference	3	/23/2009		3/23/2009	Difference	3	/23/2009	3	/23/2009
Naphthalene ¹	mg/kg	1,070	0.13	14%		0.10		0.15	40%	v	0.02	V	0.02
2-Methylnaphthalene	mg/kg	310	0.17	26%		0.11		0.16	37%		0.03	v	0.02
Acenaphthylene	mg/kg	None	0.37	43%		0.46		10.10	183%		0.02		0.05
Acenaphthene	mg/kg	3,400	< 0.02	0%	v	0.02		0.03	40%	v	0.02	v	0.02
Fluorene	mg/kg	2,300	0.03	40%		0.05		0.11	75%	v	0.02	V	0.02
Phenanthrene	mg/kg	None	0.47	9%		0.84		1.60	62%		0.05		0.05
Anthracene	mg/kg	17,000	0.14	43%		0.19		0.42	75%	٧	0.02		0.02
Fluoranthene	mg/kg	1,700	1.90	24%		3.70		6.80	59%		0.17		0.28
The following PAH comp	ounds a	re compared	to a VDH of 0.01 m	ng/kg ^{PAH} using	g To	xic Equival	enc	y Factors in Tabl	e 8:				
		Industrial RSL											
PyrenePAH	mg/kg	17,000	2.00	35%		3.5		6.30	44%		0.13		0.28
Benzo[a]anthracene	mg/kg	20	1.00	25%		1.70		30.10	179%		0.09		0.19
Chrysene	mg/kg	210	1.30	34%		2.10		3.80	58%		0.11		0.19
Benzo[b]fluoranthene	mg/kg	20	20.10	169%		4.00		6.50	48%		0.18		0.34
Benzo[k]fluoranthene	mg/kg	21	0.77	33%		1.30		2.40	59%		0.05		0.11
Benzo[a]pyrene	mg/kg	0.2	1.50	31%		2.70		4.60	52%		0.09		0.26
Indeno[1,2,3-cd]pyrene	mg/kg	20.1	0.87	52%		1.30		2.20	51%		0.05		0.14
Dibenz[a,h]anthracene	mg/kg	0.2	0.23	49%		0.36		0.59	48%	v	0.02		0.04
Benzo[g,h,i]perylene	mg/kg	None	0.92	56%		1.40		2.20	44%		0.05		0.16

¹ VDH Value used for screening

PAH - PAH toxic equivalent factor applied to compare

against VDH criterion (see Table 8); Industrial RSL shown for comparison

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Parameter		- · · · · ·	S	S-RR-07	S	S-RR-08	S	S-RR-08	S	S-RR-09	S	S-RR-10	S	S-RR-10		NW-1		MW-2
Depth (feet)		Residential RSL or VDH		1.5-2.0		0-0.5		1.5-2.0		0-0.5		0-0.5		1.5-2.0	3	3.5-4.0	12	.0-13.0
Date	Units	Criterion	3	/23/2009	3	/23/2009	3	/23/2009	3	/23/2009	3/	23/2009	3	/23/2009	4/ [.]	14/2009	4/1	4/2009
Naphthalene ¹	mg/kg	1,070	V	0.02		0.07		0.06		0.07	v	0.02		0.02	v	0.02	V	0.02
2-Methylnaphthalene	mg/kg	310	V	0.02		0.12		0.08		0.11		0.20		0.07	Y	0.02	٧	0.02
Acenaphthylene	mg/kg	None		0.09	v	0.02	Y	0.02	v	0.02		0.04		0.06	V	0.02	v	0.02
Acenaphthene	mg/kg	3,400	v	0.02	v	0.02	Y	0.02	Y	0.02	Y	0.02	v	0.02	Y	0.02	v	0.02
Fluorene	mg/kg	2,300	V	0.02	v	0.02	Y	0.02	v	0.02	Y	0.02	Y	0.02	V	0.02	v	0.02
Phenanthrene	mg/kg	None		0.14		0.11		0.16		0.15		0.13		0.29	V	0.02	V	0.02
Anthracene	mg/kg	17,000		0.05	٧	0.02	Y	0.02	۷	0.02		0.04		0.05	Y	0.02	٧	0.02
Fluoranthene	mg/kg	1,700		0.54		0.10		0.20		0.24		0.34		0.56	v	0.02	v	0.02
The following PAH comp	ounds a	are compared	to a	a VDH of 0.	01 m	g/kg ^{PAH} usi	ng T	oxic Equiva	alenc	y Factors in	Tabl	e 8:						
		Industrial RSL																
PyrenePAH	mg/kg	17,000		0.54		0.09		0.18		0.22		0.35		0.54	v	0.02	v	0.02
Benzo[a]anthracene	mg/kg	20		0.33		0.06		0.08		0.08		0.22		0.33	V	0.02	v	0.02
Chrysene	mg/kg	210		0.31		0.09		0.13		0.18		0.24		0.38	V	0.02	V	0.02
Benzo[b]fluoranthene	mg/kg	20		0.51		0.09		0.17		0.24		0.37		0.53	v	0.02	V	0.02
Benzo[k]fluoranthene	mg/kg	21		0.15		0.02		0.05		0.08		0.13		0.15	Y	0.02	v	0.02
Benzo[a]pyrene	mg/kg	0.2		0.38		0.05		0.08		0.12		0.25		0.36	v	0.01	v	0.01
Indeno[1,2,3-cd]pyrene	mg/kg	20.1		0.23		0.03		0.05		0.10		0.17		0.21	V	0.02	v	0.02
Dibenz[a,h]anthracene	mg/kg			0.06	v	0.02	V	0.02		0.03		0.05		0.06	v	0.02	Y	0.02
Benzo[g,h,i]perylene	mg/kg	None		0.27		0.04		0.06		0.10		0.18		0.23	v	0.02	V	0.02

¹ VDH Value used for screening

PAH - PAH toxic equivalent factor applied to compare

against VDH criterion (see Table 8); Industrial RSL shown

for comparison

Table 7 PAH Soil Results Richmond Creamery, Richmond, VT

JCO Project #1-0346-3

Parameter			Ν	/W-3		MW-4	ľ	/W-5	Ν	/W-6	I	MW-7	N	1W-8	N	IW-9		SB-08	SS	-AST-1
Depth (feet)		Residential	13	.0-14.0	13	.0-14.0	11	.0-12.0	7.	.5-8.0	6	6.5-7.0	7.	.0-7.5	4.	5-5.0		1.5-2.0		0-0.5
Date	Units	RSL or VDH Criterion	4/1	4/2009	4/ 1	4/2009	4/1	4/2009	4/1	5/2009	4/1	15/2009	4/1	5/2009	4/1	5/2009	4/	15/2009	4/ 1	4/2009
Naphthalene ¹	mg/kg	1,070	Л	0.02		0.05	v	0.02	V	0.04	v	0.02	V	0.02	V	0.02		1.50		0.05
2-Methylnaphthalene	mg/kg	310	٧	0.02		0.05	٧	0.02	V	0.04	v	0.02	۷	0.02	۷	0.02		11.00		0.10
Acenaphthylene	mg/kg	None	v	0.02		0.07	v	0.02	Y	0.04	v	0.02	Y	0.02		0.06		0.21		0.07
Acenaphthene	mg/kg	3,400	v	0.02	v	0.02	v	0.02		0.05	v	0.02	v	0.02	~	0.02		0.54	۷	0.02
Fluorene	mg/kg	2,300	v	0.02		0.04	v	0.02		0.34	v	0.02	v	0.02		0.03		1.90	۷	0.02
Phenanthrene	mg/kg	None	V	0.02		0.28	۷	0.02		0.52	v	0.02	v	0.02		0.27		4.20		0.05
Anthracene	mg/kg	17,000	V	0.02		0.08	٧	0.02	۷	0.04	v	0.02	۷	0.02		0.09	v	0.08		0.13
Fluoranthene	mg/kg	1,700	v	0.02		0.52	v	0.02		0.04	v	0.02	Y	0.02		0.62		0.20		0.02
The following PAH comp	<mark>ounds a</mark>		to a	VDH of (0.01	<mark>mg/kg^{PAF}</mark>	^I usin	<mark>g Toxic E</mark>	quiva	l <mark>lency Fa</mark>	ctors	s in Table	8:							
PyrenePAH	malka	Industrial RSL	v	0.02		0.45	Y	0.02		0.10	v	0.02	Y	0.02		0.46		0.60		0.05
Benzo[a]anthracene	mg/kg mg/kg	17,000 20	v v	0.02		0.45	v v	0.02		0.04	v v	0.02	د د	0.02		0.48	×	0.00	×	0.03
Chrysene	mg/kg	210	' V	0.02		0.29	<	0.02	×	0.04	, V	0.02	, <	0.02		0.30	V	0.08		0.02
Benzo[b]fluoranthene	mg/kg	20	۷	0.02		0.43	۷	0.02	v	0.04	V	0.02	۲	0.02		0.41	V	0.08		0.03
Benzo[k]fluoranthene	mg/kg	21	V	0.02		0.16	v	0.02	v	0.04	V	0.02	<	0.02		0.14	×	0.08	۲	0.02
Benzo[a]pyrene	mg/kg	0.2	Y	0.01		0.29	<	0.01	<	0.04	<	0.01	<	0.01		0.28	v	0.08		0.02
Indeno[1,2,3-cd]pyrene	mg/kg	20.1	٧	0.02		0.16	v	0.02	۷	0.04	×	0.02	۷	0.02		0.15	V	0.08		0.05
Dibenz[a,h]anthracene	mg/kg	0.2	V	0.02		0.04	٧	0.02	v	0.04	V	0.02	v	0.02		0.04	V	0.08	۷	0.02
Benzo[g,h,i]perylene	mg/kg	None	۷	0.02		0.14	٧	0.02	×	0.04	۲	0.02	<	0.02		0.13	¥	0.08		0.07

¹ VDH Value used for screening

PAH - PAH toxic equivalent factor applied to compare

against VDH criterion (see Table 8); Industrial RSL shown for comparison

K:\1-0346-3\Phase II\Data\Richmond Analytical Results 123009.xls PAH-Soil

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Parameter		- · · · · ·	S	S-AST-1	S	S-AST-2	S	SS-AST-2		SS-T-1		SS-T-1		SS-T-2		SS-T-2		SS-T-3
Depth (feet)		Residential		1.5-2.0		0-0.5		1.5-2.0		0-0.5		1.5-2.0		0-0.5		1.5-2.0		0-0.5
Date	Units	RSL or VDH Criterion	4	/14/2009	4	/20/2009	4	4/20/2009	4	/20/2009	4	/20/2009	4	/20/2009	4	/20/2009	4	/20/2009
Naphthalene ¹	mg/kg	1,070		0.06		4.10		7.30	V	0.02	v	0.02	V	0.02	v	0.02	V	0.02
2-Methylnaphthalene	mg/kg	310		0.13		38.00		47.00	V	0.02	A	0.02	V	0.02	V	0.02	A	0.02
Acenaphthylene	mg/kg	None		0.12		1.80		0.55		0.12	V	0.02		0.08	V	0.02		0.10
Acenaphthene	mg/kg	3,400	Y	0.02		16.00		2.90	v	0.02	V	0.02	v	0.02	V	0.02	v	0.02
Fluorene	mg/kg	2,300	V	0.02		30.00		7.20	V	0.02	V	0.02	۷	0.02	Y	0.02	V	0.02
Phenanthrene	mg/kg	None		0.04		48.00		11.00		0.07	v	0.02		0.04	V	0.02		0.06
Anthracene	mg/kg	17,000		0.09	V	0.80	V	0.07		0.04	A	0.02		0.03	V	0.02		0.05
Fluoranthene	mg/kg	1,700		0.05		8.50		1.50		0.41	V	0.02		0.23	V	0.02		0.30
The following PAH comp	ounds a	are compared	to	a VDH of 0.	.01 m	g/kg ^{PAH} usir	ng T	Foxic Equiva	alenc	y Factors i	n Ta	ble 8:						
		Industrial RSL																
PyrenePAH	mg/kg	17,000		0.07		37.00		4.60		0.58	V	0.02		0.28	V	0.02		0.35
Benzo[a]anthracene	mg/kg	20	V	0.02		2.00		0.52		0.23	V	0.02		0.13	V	0.02		0.16
Chrysene	mg/kg	210		0.23		1.30		0.40		0.28	V	0.02		0.15	V	0.02		0.18
Benzo[b]fluoranthene	mg/kg	20		0.08		1.40		0.46		0.59	V	0.02		0.29	V	0.02		0.38
Benzo[k]fluoranthene	mg/kg	21		0.02	v	0.80		0.15		0.19	V	0.02		0.10	V	0.02		0.13
Benzo[a]pyrene	mg/kg	0.2		0.07		1.30		0.39		0.40	V	0.01		0.21	V	0.01		0.25
Indeno[1,2,3-cd]pyrene	mg/kg	20.1		0.17	v	0.80		0.16		0.28	V	0.02		0.13	V	0.02		0.16
Dibenz[a,h]anthracene	mg/kg	0.2		0.03	v	0.80	v	0.07		0.05	V	0.02		0.03	V	0.02		0.03
Benzo[g,h,i]perylene	mg/kg	None		0.20	v	0.80		0.18		0.28	V	0.02		0.13	V	0.02		0.16

¹ VDH Value used for screening

PAH - PAH toxic equivalent factor applied to compare

against VDH criterion (see Table 8); Industrial RSL shown for comparison

K:\1-0346-3\Phase II\Data\Richmond Analytical Results 123009.xls PAH-Soil

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Parameter		B	S	S-T-3 (DUP)	Relative		SS-T-3		SS-T-4		SS-T-4		SS-T-5		SS-T-5	S	S-BB-1
Depth (feet)		Residential		0-0.5	Percent		1.5-2.0		0-0.5		1.5-2.0		0-0.5		1.5-2.0		0-0.5
Date	Units	RSL or VDH Criterion		4/20/2009	Difference	4/	/20/2009	4	/20/2009	4	/20/2009	4/	20/2009	4/	/20/2009	4/	/20/2009
Naphthalene ¹	mg/kg	1,070	V	0.02	0%	4	0.02	<	0.02	V	0.02	۷	0.02	V	0.02	<	0.02
2-Methylnaphthalene	mg/kg	310	V	0.02	0%	Y	0.02	V	0.02	V	0.02	v	0.02	Y	0.02		0.02
Acenaphthylene	mg/kg	None		0.06	50%	¥	0.02	Y	0.02	v	0.02		0.10	v	0.02	V	0.02
Acenaphthene	mg/kg	3,400	V	0.02	0%	Y	0.02		0.11	V	0.02	v	0.02	V	0.02	v	0.02
Fluorene	mg/kg	2,300	V	0.02	0%	¥	0.02	V	0.02	V	0.02	v	0.02	V	0.02	٧	0.02
Phenanthrene	mg/kg	None		0.05	18%	V	0.02		0.14	V	0.02		0.06		0.14		0.03
Anthracene	mg/kg	17,000	V	0.02	86%	Y	0.02		0.06	V	0.02		0.05		0.04	Y	0.02
Fluoranthene	mg/kg	1,700		0.23	26%		0.02		0.42		0.04		0.34		0.18		0.10
The following PAH comp	ounds a	re compared	to	a VDH of 0.0	01 mg/kgPAł	l us	ing a Toxid	c Ec	quivalency	Fa	ctor in Tab	le 8					
		Industrial RSL															
PyrenePAH	mg/kg	17,000		0.31	12%		0.04		0.46		0.04		0.39		0.16		0.11
Benzo[a]anthracene	mg/kg	20		0.12	29%	4	0.02		0.20	<	0.02		0.18		0.08		0.05
Chrysene	mg/kg	210		0.15	18%		0.02		0.24		0.02		0.22		0.08		0.06
Benzo[b]fluoranthene	mg/kg	20		0.30	24%		0.03		0.47		0.04		0.46		0.11		0.11
Benzo[k]fluoranthene	mg/kg	21		0.10	26%	Y	0.02		0.14	V	0.02		0.16		0.04		0.03
Benzo[a]pyrene	mg/kg	0.2		0.20	22%		0.02		0.32		0.02		0.29		0.08		0.07
Indeno[1,2,3-cd]pyrene	mg/kg	20.1		0.16	0%	¥	0.02		0.22	V	0.02		0.18		0.05		0.04
Dibenz[a,h]anthracene	mg/kg	0.2		0.03	0%	4	0.02		0.04	V	0.02		0.04	V	0.02	V	0.02
Benzo[g,h,i]perylene	mg/kg	None		0.17	6%		0.02		0.21		0.02		0.17		0.05		0.04

¹ VDH Value used for screening

PAH - PAH toxic equivalent factor applied to compare

against VDH criterion (see Table 8); Industrial RSL shown

for comparison

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Parameter		Desidential	S	SS-BB-1	S	S-PT-3	S	S-PT-3 (DUP)	Relative	S	S-PT-3	S	S-PT-3 (DUP)
Depth (feet)		Residential RSL or VDH		1.5-2.0		0-0.5		0-0.5	Percent		1.5-2.0		1.5-2.0
Date	Units	Criterion	4	/20/2009	4/2	20/2009		4/20/2009	Difference	4/	20/2009		4/20/2009
Naphthalene ¹	mg/kg	1,070	v	0.02	<	0.02	۷	0.02	0%	V	0.02	Y	0.02
2-Methylnaphthalene	mg/kg	310		0.03	Y	0.02		0.02	0%	V	0.02	V	0.02
Acenaphthylene	mg/kg	None		0.02	v	0.02	V	0.02	0%	v	0.02	Y	0.02
Acenaphthene	mg/kg	3,400	v	0.02	V	0.02	V	0.02	0%	V	0.02	Y	0.02
Fluorene	mg/kg	2,300	v	0.02	V	0.02	V	0.02	0%	V	0.02	Y	0.02
Phenanthrene	mg/kg	None		0.10		0.02		0.03	40%	V	0.02	V	0.02
Anthracene	mg/kg	17,000		0.02	V	0.02	V	0.02	0%	V	0.02	V	0.02
Fluoranthene	mg/kg	1,700		0.19		0.04		0.05	22%	V	0.02	Y	0.02
The following PAH comp	ounds a	re compared	to	a VDH of (0.01	mg/kgPA	١H	using a Toxic E	Equivalency	Fac	tor in Tab	ole i	8:
		Industrial RSL											
PyrenePAH	mg/kg	17,000		0.22		0.04		0.05	22%	V	0.02	Y	0.02
Benzo[a]anthracene	mg/kg	20		0.10	V	0.02		0.02	0%	V	0.02	Y	0.02
Chrysene	mg/kg	210		0.12		0.02		0.03	40%	V	0.02	Y	0.02
Benzo[b]fluoranthene	mg/kg	20		0.21		0.04		0.05	22%	V	0.02	Y	0.02
Benzo[k]fluoranthene	mg/kg	21		0.07	V	0.02	A	0.02	0%	V	0.02	Y	0.02
Benzo[a]pyrene	mg/kg	0.2		0.12		0.02		0.03	40%	V	0.01	Y	0.01
Indeno[1,2,3-cd]pyrene	mg/kg	20.1		0.07	V	0.02	۷	0.02	0%	V	0.02	Y	0.02
Dibenz[a,h]anthracene	mg/kg	0.2	V	0.02	V	0.02	V	0.02	0%	V	0.02	V	0.02
Benzo[g,h,i]perylene	mg/kg	None		0.06	4	0.02	V	0.02	0%	V	0.02	V	0.02

¹ VDH Value used for screening

PAH - PAH toxic equivalent factor applied to compare

against VDH criterion (see Table 8); Industrial RSL shown

for comparison

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID	B(a)P	SS-V	/R-01		SS-N	R-01		SS-N	IR-01		SS-N	R-02		SS-N	R-02
Sample Depth (Feet)	TE ¹	0-	0.5		0-0	.5		1.5	-2.0		0-0).5		1.5-	2.0
	Factor	Result	B(a)P TE	R	lesult	B(a)P TE	F	Result	B(a)P TE	F	Result	B(a)P TE	R	lesult	B(a)P TE
		(mg	/kg)		(mg/	kg)		(mg	/kg)		(mg	/kg)		(mg	/kg)
Benzo(a)anthracene	0.100	0.27	0.03		0.05	0.01	V	0.02	0		0.26	0.03		0.03	0.003
Chrysene	0.001	0.28	0.0003		0.04	0.00004	<	0.02	0		0.24	0.0002		0.02	0.00002
Benzo(b)fluoranthene	0.100	0.4	0.04		0.06	0.01	۷	0.02	0		0.33	0.03		0.03	0.003
Benzo(k)fluoranthene	0.010	0.1	0.00		0.02	0.0002	V	0.02	0		0.13	0.0013	<	0.02	0
Benzo(a)pyrene	1.000	0.28	0.28		0.04	0.04	V	0.01	0		0.25	0.25		0.02	0.02
Indeno(1,2,3-cd)pyrene	0.100	0.1	0.01		0.03	0.003	×	0.02	0		0.12	0.01	<	0.02	0
Dibenz(a,h)anthracene	1.000	0.0	0.04	۲	0.02	0	×	0.02	0		0.04	0.04	<	0.02	0
Total B(a)P-TE (mg/kg) ²			0.40			0.05			0			0.36			0.03

Sample ID	B(a)P		SS-R	R-01		SS-RF	ג-01		SS-R	R-02		SS-R	R-02	SS-F	R-03
Sample Depth (Feet)	TE ¹		0-0).5		1.5-2	2.0		0-0	0.5		1.5-	2.0	0-	0.5
	Factor	R	esult	B(a)P TE	R	esult	B(a)P TE	R	esult	B(a)P TE	F	Result	B(a)P TE	Result	B(a)P TE
			(mg	/kg)		(mg/	kg)		(mg	/kg)		(mg	/kg)	(mg	/kg)
Benzo(a)anthracene	0.100		0.07	0.007		0.04	0.004		0.13	0.013		0.06	0.006	0.25	0.025
Chrysene	0.001		0.05	0.00005		0.03	0.00003		0.13	0.00013		0.07	0.00007	0.30	0.00030
Benzo(b)fluoranthene	0.100		0.07	0.007		0.04	0.004		0.21	0.021		0.11	0.011	0.46	0.046
Benzo(k)fluoranthene	0.010		0.02	0.0002	Y	0.02	0		0.06	0.001		0.03	0.000	0.15	0.002
Benzo(a)pyrene	1.000		0.05	0.05		0.03	0.03		0.13	0.13		0.06	0.06	0.30	0.30
Indeno(1,2,3-cd)pyrene	0.100		0.03	0.003	۷	0.02	0		0.07	0.007		0.03	0.003	0.15	0.015
Dibenz(a,h)anthracene	1.000	×	0.02	0	Y	0.02	0		0.02	0.020	<	0.02	0	0.05	0.05
Total B(a)P-TE (mg/kg) ²				0.07			0.04			0.19			0.08		0.44

Sample ID	B(a)P	SS-R	R-03	SS-R	R-04	SS-	RR-04	SS-R	R-05	SS-R	R-05
Sample Depth (Feet)	TE ¹	1.5	-2.0	0-0	.5	1.	5-2.0	0-0	0.5	1.5-	·2.0
	Factor	Result	B(a)P TE								
		(mg	/kg)	(mg/	'kg)	(m	g/kg)	(mg	/kg)	(mg	/kg)
Benzo(a)anthracene	0.100	1.1	0.110	0.37	0.037	0.71	0.071	0.78	0.078	1.7	0.170
Chrysene	0.001	1.2	0.00120	0.35	0.00035	0.85	0.00085	0.92	0.0009	2.1	0.0021
Benzo(b)fluoranthene	0.100	1.7	0.170	1.1	0.110	1.2	0.120	1.7	0.170	4.0	0.400
Benzo(k)fluoranthene	0.010	0.49	0.005	0.37	0.004	0.43	0.004	0.55	0.006	1.3	0.013
Benzo(a)pyrene	1.000	1.1	1.10	0.40	0.40	0.58	0.58	1.1	1.10	2.7	2.70
Indeno(1,2,3-cd)pyrene	0.100	0.43	0.043	0.27	0.027	0.23	0.023	0.51	0.051	1.3	0.130
Dibenz(a,h)anthracene	1.000	0.14	0.140	0.09	0.090	0.08	0.080	0.14	0.140	0.36	0.360
Total B(a)P-TE (mg/kg) ²			1.57		0.67		0.88		1.55		3.78

Note: Where the result did not exceed the reporting limit, a 0 value has been used in the TE calculation because using 1/2 the reporting limit results in an exceedence of the criterion

¹ = Toxicity Equivalent Factor (TEF) for comparison to benzo(a)pyrene = B(a)P TE

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID	B(a)P	SS-RR-	05 (Dup)	SS-RR-0	5 (Dup)		SS-R	R-06		SS-R	R-07	SS-I	RR-07
Sample Depth (Feet)	TE ¹	0-	0.5	1.5-	2.0		0-0	0.5		0-0	.5	0.5	-1.0
	Factor	Result	B(a)P TE	Result	B(a)P TE	F	lesult	B(a)P TE	F	Result	B(a)P TE	Result	B(a)P TE
		(mg	/kg)	(mg/	/kg)		(mg	/kg)		(mg	/kg)	(mg	j/kg)
Benzo(a)anthracene	0.100	1.0	0.100	3.1	0.310		0.09	0.009		0.19	0.019	0.33	0.033
Chrysene	0.001	1.3	0.0013	3.8	0.0038		0.11	0.0001		0.19	0.0002	0.31	0.0003
Benzo(b)fluoranthene	0.100	2.1	0.210	6.5	0.650		0.18	0.018		0.34	0.034	0.51	0.051
Benzo(k)fluoranthene	0.010	0.77	0.0077	2.4	0.0240		0.05	0.001		0.11	0.001	0.15	0.002
Benzo(a)pyrene	1.000	1.5	1.50	4.6	4.60		0.09	0.09		0.26	0.26	0.38	0.38
Indeno(1,2,3-cd)pyrene	0.100	0.87	0.087	2.2	0.220		0.05	0.005		0.14	0.014	0.23	0.023
Dibenz(a,h)anthracene	1.000	0.23	0.23	0.59	0.59	V	0.02	0		0.04	0.040	0.06	0.060
Total B(a)P-TE (mg/kg) ²			2.14		6.40			0.12			0.37		0.55

Sample ID	B(a)P		SS-R	R-08		SS-R	R-08		SS-R	R-09		SS-R	R-10		SS-R	R-10
Sample Depth (Feet)	TE ¹		0-0).5		1.5-2	2.0		0-0).5		0-0	.5		1.5-	2.0
	Factor	R	esult	B(a)P TE	R	esult	B(a)P TE	F	lesult	B(a)P TE	F	Result	B(a)P TE	R	lesult	B(a)P TE
			(mg	/kg)		(mg/	kg)		(mg	/kg)		(mg	/kg)		(mg	/kg)
Benzo(a)anthracene	0.100		0.06	0.006		0.08	0.008		0.08	0.008		0.22	0.022		0.33	0.033
Chrysene	0.001		0.09	0.0001		0.13	0.0001		0.18	0.0002		0.24	0.0002		0.38	0.0004
Benzo(b)fluoranthene	0.100		0.09	0.009		0.17	0.017		0.24	0.024		0.37	0.037		0.53	0.053
Benzo(k)fluoranthene	0.010		0.02	0.0002		0.05	0.0005		0.08	0.0008		0.13	0.0013		0.15	0.0015
Benzo(a)pyrene	1.000		0.05	0.05		0.08	0.08		0.12	0.12		0.25	0.25		0.36	0.36
Indeno(1,2,3-cd)pyrene	0.100		0.03	0.003		0.05	0.005		0.10	0.010		0.17	0.017		0.21	0.021
Dibenz(a,h)anthracene	1.000	A	0.02	0	V	0.02	0		0.03	0.03		0.05	0.05		0.06	0.06
Total B(a)P-TE (mg/kg) ²				0.07			0.11			0.19			0.38			0.53

Sample ID	B(a)P		SS-A	ST-1		SS-AS	ST-1		SS-A	ST-2		SS-A	ST-2		SB	-08
Sample Depth (Feet)	TE ¹		0-0).5		1.5-2	2.0		0-0	0.5		1.5-	2.0		1.5	-2.0
	Factor	R	esult	B(a)P TE	R	esult	B(a)P TE	F	Result	B(a)P TE	F	Result	B(a)P TE	F	Result	B(a)P TE
			(mg	/kg)		(mg/	kg)		(mg	/kg)		(mg	/kg)		(mg	/kg)
Benzo(a)anthracene	0.100	۷	0.02	0.00	۷	0.02	0.0000		2.00	0.20		0.52	0.0520	۷	0.08	0
Chrysene	0.001		0.02	0.00002		0.23	0.0002		1.30	0.00		0.40	0.0004	٧	0.08	0
Benzo(b)fluoranthene	0.100		0.03	0.003		0.08	0.0080		1.40	0.14		0.46	0.0460	v	0.08	0
Benzo(k)fluoranthene	0.010	٧	0.02	0.00		0.02	0.0002	v	0.80	0.00		0.15	0.0015	v	0.08	0
Benzo(a)pyrene	1.000		0.02	0.02		0.07	0.0700		1.30	1.30		0.39	0.3900	۷	0.08	0
Indeno(1,2,3-cd)pyrene	0.100		0.05	0.005		0.17	0.0170	V	0.80	0.00		0.16	0.0160	۷	0.08	0
Dibenz(a,h)anthracene	1.000	۷	0.02	0.00		0.03	0.0300	¥	0.80	0.00	v	0.07	0.0000	Y	0.08	0
Total B(a)P-TE (mg/kg) ²				0.03			0.13			1.64			0.51			0

Note: Where the result did not exceed the reporting limit, a 0 value has been used in the TE calculation because using 1/2 the reporting limit results in an exceedence of the criterion

¹ = Toxicity Equivalent Factor (TEF) for comparison to benzo(a)pyrene = B(a)P TE

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID	B(a)P		MM	V-1		MW	-2		MV	V-3		MW	-4		MM	/-5
Sample Depth (Feet)	TE ¹		3.5	-4.0		12.0-	13.0		13	-14		13-	14		11	-12
	Factor	R	esult	B(a)P TE	R	lesult	B(a)P TE	F	Result	B(a)P TE	F	Result	B(a)P TE	F	Result	B(a)P TE
			(mg	/kg)		(mg/	kg)		(mg	/kg)		(mg	/kg)	(r	ng/kg)	
Benzo(a)anthracene	0.100	٨	0.02	0	۷	0.02	0	V	0.02	0		0.24	0.024	٧	0.02	0
Chrysene	0.001	A	0.02	0	v	0.02	0	V	0.02	0		0.29	0.000	٨	0.02	0
Benzo(b)fluoranthene	0.100	V	0.02	0	v	0.02	0	V	0.02	0		0.43	0.043	v	0.02	0
Benzo(k)fluoranthene	0.010	٨	0.02	0	v	0.02	0	V	0.02	0		0.16	0.002	V	0.02	0
Benzo(a)pyrene	1.000	v	0.01	0	v	0.01	0	v	0.01	0		0.29	0.290	۷	0.01	0
Indeno(1,2,3-cd)pyrene	0.100	Å	0.02	0	v	0.02	0	Y	0.02	0		0.16	0.016	Y	0.02	0
Dibenz(a,h)anthracene	1.000	<	0.02	0	v	0.02	0	¥	0.02	0		0.04	0.040	<	0.02	0
Total B(a)P-TE (mg/kg) ²				0			0			0			0.41			0

Sample ID	B(a)P		MV	V-6		MW	-7		MV	V-8		MW	-9		SS-	T-1
Sample Depth (Feet)	TE ¹		7.5	-8.0		6.5-	7.0		7-	7.5		4.5-	5.0		0-0	.5
	Factor	R	esult	B(a)P TE	R	esult	B(a)P TE	F	Result	B(a)P TE	F	Result	B(a)P TE	F	Result	B(a)P TE
			(mg	/kg)		(mg/	kg)		(mg	/kg)		(mg/	/kg)		(mg/	'kg)
Benzo(a)anthracene	0.100		0.04	0.004	۷	0.02	0	V	0.02	0		0.28	0.0280		0.23	0.0230
Chrysene	0.001	<	0.04	0	<	0.02	0	۷	0.02	0		0.30	0.0003		0.28	0.0003
Benzo(b)fluoranthene	0.100	٨	0.04	0	۷	0.02	0	V	0.02	0		0.41	0.0410		0.59	0.0590
Benzo(k)fluoranthene	0.010	v	0.04	0	Y	0.02	0	۷	0.02	0		0.14	0.0014		0.19	0.0019
Benzo(a)pyrene	1.000	۷	0.04	0	۷	0.01	0	V	0.01	0		0.28	0.2800		0.40	0.4000
Indeno(1,2,3-cd)pyrene	0.100	۷	0.04	0	۷	0.02	0	V	0.02	0		0.15	0.0150		0.28	0.0280
Dibenz(a,h)anthracene	1.000	×	0.04	0	<	0.02	0	V	0.02	0		0.04	0.0400		0.05	0.0500
Total B(a)P-TE (mg/kg) ²				0.004			0			0			0.41			0.56

Sample ID	B(a)P		SS-	T-1		SS-1	Г-2		SS	-T-2		SS-	Т-3	SS-	-3 (DUP)
Sample Depth (Feet)	TE ¹		1.5-	-2.0		0-0.	.5		1.5	-2.0		0-0	.5		0-0.5
	Factor	Re	esult	B(a)P TE	Res	sult	B(a)P TE	F	lesult	B(a)P TE	F	Result	B(a)P TE	Result	B(a)P TE
			(mg	/kg)		(mg/	kg)		(mg	/kg)		(mg/	′kg)	1)	ng/kg)
Benzo(a)anthracene	0.100	۷	0.02	0		0.13	0.0130	V	0.02	0		0.16	0.0160	0.12	0.0120
Chrysene	0.001	¥	0.02	0		0.15	0.0002	Y	0.02	0		0.18	0.0002	0.15	0.0002
Benzo(b)fluoranthene	0.100	۷	0.02	0		0.29	0.0290	v	0.02	0		0.38	0.0380	0.30	0.0300
Benzo(k)fluoranthene	0.010	٨	0.02	0		0.10	0.0010	v	0.02	0		0.13	0.0013	0.10	0.0010
Benzo(a)pyrene	1.000	۷	0.01	0		0.21	0.2100	v	0.01	0		0.25	0.2500	0.20	0.2000
Indeno(1,2,3-cd)pyrene	0.100	۷	0.02	0		0.13	0.0130	V	0.02	0		0.16	0.0160	0.16	0.0160
Dibenz(a,h)anthracene	1.000	۷	0.02	0		0.03	0.0300	V	0.02	0		0.03	0.0300	0.03	0.0300
Total B(a)P-TE (mg/kg) ²				0			0.30			0			0.35		0.29

Note: Where the result did not exceed the reporting limit, a 0 value has been used in the TE calculation because using 1/2 the reporting limit results in an exceedence of the criterion

¹ = Toxicity Equivalent Factor (TEF) for comparison to benzo(a)pyrene = B(a)P TE

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID	B(a)P	SS-T-3		SS-T-4			SS-T-4			SS-T-5			SS-T-5		
Sample Depth (Feet)	TE ¹	1.5-2.0			0-0.5		1.5-2.0			0-0.5			1.5-2.0		2.0
	Factor	R	esult	B(a)P TE	Result	B(a)P TE	F	lesult	B(a)P TE	F	Result	B(a)P TE	R	lesult	B(a)P TE
		(mg/kg)			(mg/kg)		(mg/kg)			(mg/kg)		(mg/kg)			
Benzo(a)anthracene	0.100	۷	0.02	0	0.20	0.0200	v	0.02	0		0.18	0.0180		0.08	0.0080
Chrysene	0.001		0.02	0.0000	0.24	0.0002		0.02	0.00002		0.22	0.0002		0.07	0.0001
Benzo(b)fluoranthene	0.100		0.03	0.0030	0.47	0.0470		0.04	0.004		0.46	0.0460		0.11	0.0110
Benzo(k)fluoranthene	0.010	V	0.02	0	0.14	0.0014	v	0.02	0		0.16	0.0016		0.04	0.0004
Benzo(a)pyrene	1.000		0.02	0.0200	0.32	0.3200		0.02	0.02		0.29	0.2900		0.04	0.0400
Indeno(1,2,3-cd)pyrene	0.100	٨	0.02	0	0.22	0.0220	V	0.02	0		0.18	0.0180		0.05	0.0050
Dibenz(a,h)anthracene	1.000	۷	0.02	0	0.04	0.0400	٧	0.02	0		0.04	0.0400	4	0.02	0.0000
Total B(a)P-TE (mg/kg) ²				0.02		0.45			0.02			0.41			0.06

Sample ID	B(a)P	SS-BB-1		SS-BB-1			SS-PT-3			SS-PT-3 (DUP)			SS-PT-3			
Sample Depth (Feet)	TE ¹	0-0.5		1.5-2.0			0-0.5			0-0.5			1.5-2.0			
	Factor	R	esult	B(a)P TE	R	esult	B(a)P TE	F	lesult	B(a)P TE	F	Result	B(a)P TE	R	lesult	B(a)P TE
		(mg/kg)		(mg/kg)		(mg/kg)			(mg/kg)			(mg/kg)				
Benzo(a)anthracene	0.100		0.05	0.0050		0.10	0.0100	v	0.02	0		0.02	0.0020	۷	0.02	0
Chrysene	0.001		0.06	0.0001		0.12	0.0001		0.02	0.00		0.03	0.0000	v	0.02	0
Benzo(b)fluoranthene	0.100		0.11	0.0110		0.21	0.0210		0.04	0.00		0.05	0.0050	v	0.02	0
Benzo(k)fluoranthene	0.010		0.03	0.0003		0.07	0.0007	V	0.02	0	V	0.02	0	۷	0.02	0
Benzo(a)pyrene	1.000		0.07	0.0700		0.12	0.1200		0.02	0.02		0.03	0.0300	<	0.01	0
Indeno(1,2,3-cd)pyrene	0.100		0.04	0.0040		0.07	0.0070	v	0.02	0	v	0.02	0	v	0.02	0
Dibenz(a,h)anthracene	1.000	٧	0.02	0	۷	0.02	0	v	0.02	0	v	0.02	0	v	0.02	0
Total B(a)P-TE (mg/kg) ²				0.09			0.16			0.02			0.04			0

Sample ID	B(a)P	SS-PT-3 (DUP)							
Sample Depth (Feet)	TE ¹		1.5-	-2.0					
	Factor	R	esult	B(a)P TE					
		(mg/kg)							
Benzo(a)anthracene	0.100	٨	0.02	0					
Chrysene	0.001	۲	0.02	0					
Benzo(b)fluoranthene	0.100	٨	0.02	0					
Benzo(k)fluoranthene	0.010	۷	0.02	0					
Benzo(a)pyrene	1.000	A	0.01	0					
Indeno(1,2,3-cd)pyrene	0.100	٨	0.02	0					
Dibenz(a,h)anthracene	1.000	۲	0.02	0					
Total B(a)P-TE (mg/kg) ²				0					

Mean of SS-NR-01 and SS-NR-02 (0-0.5') =	0.208	mg/kg				
Standard deviation =	0.218	mg/kg				
95% confidence value =	0.3021	mg/kg				
Upper confidence limit for surficial bacl	Upper confidence limit for surficial background =					

Note: Where the result did not exceed the reporting limit, a 0 value has been used in the TE calculation because using 1/2 the reporting limit results in an exceedence of the criterion

¹ = Toxicity Equivalent Factor (TEF) for comparison to benzo(a)pyrene = B(a)P TE

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

	Parameter		S	ilver	Α	senic	B	arium	C	admium	(Cobalt	Ch	romium	0	opper
	Sample Depth															
Location	(feet)	Date														
MW-9	2.5-3	4/16/2009	٧	37	<	13.0	۷	475	۷	49	۷	195	<	101	۷	23
MW-9	7.5-8	4/16/2009	V	68	٧	22.0	V	723	V	89	۷	230	<	169	۷	44
MW-6	1-1.5	4/16/2009	v	64	٧	22.0	۷	763	٧	83	۷	281	۷	187	۷	41
MW-6	7.5-8	4/16/2009	٧	48	٧	15.0	۷	562	٧	63	۷	227	۷	133	۷	31
MW-6	11.5-12	4/16/2009	v	109	۷	36.0	۷	1031	۷	134	٧	314	۷	263	۷	67
MW-6*	15-15.5	4/16/2009	٧	40	۷	12.0		756	٧	53	٧	210	۷	112	<	24
MW-5	3.5-4	4/16/2009	v	220	۷	84.0	۷	2062	۷	246	٧	424	۷	426	۷	182
MW-5*	3.5-4	4/16/2009	۷	36		15.0		553	<	47	<	184	<	99		24
MW-5	7.5-8	4/16/2009	۷	32	<	9.0	<	368	<	42	<	140	<	79	<	20
MW-5	11.5-12	4/16/2009	۷	33	<	10.0	<	389	<	44	<	162	<	92	<	21
MW-5	15.5-16	4/16/2009	۷	33	۷	10.0		514	۷	44	<	154	<	88	۷	21
MW-3	0-0.5	4/16/2009	۷	34	۷	13.0	<	437	V	44	<	167	<	91		78
MW-5	3.5-4	4/16/2009	۷	34	۷	12.0		602	<	45	<	142	<	90		35
MW-3*	1.5-2	4/16/2009	۷	37		76.0	<	547	<	48	<	292		153		123
MW-3	15.5-16	4/16/2009	۷	35		35.0	<	480	<	46	<	257		154		38
MW-3	16-20	4/16/2009	۷	33	<	11.0		539	<	43	<	182	<	93		37
MW-4	0-0.5	4/16/2009	v	41	<	16.0	<	496	<	54	<	194	<	113	<	26
MW-4	2-2.5	4/16/2009	۷	39	<	19.0		841	<	51	<	228		133		38
MW-4	11.5-12	4/16/2009	۷	33	<	11.0		445	¥	44	<	136	<	83	<	21
MW-4*	15.5-16	4/16/2009	۷	36	<	12.0	<	480	<	48	<	215	<	109		45
MW-4	19.5-20	4/16/2009	<	33	<	10.0	<	377	<	44	<	138	<	85	<	20
MW-2	0-0.5	4/16/2009	v	34	<	11.0		453	<	44	<	171	<	93	<	21
MW-2	3-3.5	4/16/2009	<	34	<	10.0	<	416	<	45	<	132	<	88	<	21
MW-2	11.5-12	4/16/2009	۷	34	<	10.0	<	400	<	44	<	143	<	88	<	20
MW-2	15.5-16	4/16/2009	۷	32	<	9.0	<	373	<	42	<	126	<	74	<	19
MW-2	16-18	4/16/2009	<	38	<	11.0	<	474	<	49	<	198	<	110	<	24
MW-1*	0-0.5	4/16/2009	<	38	<	24.0	<	476	<	50	<	167	<	106	<	23
MW-1	3.5-4	4/16/2009	v	32	<	10.0	<	358	<	43	<	125	<	78	0.0000000000000	22
MW-1	7.5-8	4/16/2009	۷	33	<	10.0	<	354	<	44	<	126	<	85	<	21
MW-1	15.5-16	4/16/2009	۷	32	<	10.0	<	331	<	42	<	115		90	<	20
MW-7*	1.5-2	4/16/2009	<	33	<	10.0	<	403	<	43	<	142	<	83	<	21
MW-7	6.5-7	4/16/2009	۷	32	<	9.0	<	363	<	43	<	110	<	78	<	20
MW-7	9.5-10	4/16/2009	۷	36	<	11.0	<	438	<	48	<	146	<	92	<	21
MW-8*	1.5-2	4/16/2009	۷	34	<	12.0	<	447	<	45	<	175	<	96	<	22
MW-8	7-7.5	4/16/2009	۷	34	4	11.0		434	<	45	<	164	<	95	<	21

* = Sample selected for laboratory analysis

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

	Parameter		Iron	М	ercury	M	anganese		Nickel	L	.ead	Se	enium	1	Tin		Zinc
	Sample Depth																
Location	(feet)	Date															
MW-9	2.5-3	4/16/2009	28358	۷	12		531		60		23	<	4	<	77		105
MW-9	7.5-8	4/16/2009	12467	۷	24		203	۷	59	۷	21	۷	9	۷	143	٨	29
MW-6	1-1.5	4/16/2009	19899	۷	20		266	٧	55		28	۷	7	٧	132	۷	30
MW-6	7.5-8	4/16/2009	23476	۷	15		183	۷	43	۷	15	۷	5	۷	100		31
MW-6	11.5-12	4/16/2009	10905	۷	43	۷	215	۷	82	٧	38	V	13	۷	206	۷	52
MW-6*	15-15.5	4/16/2009	28106	<	12		476	۷	39	۷	12	V	5	٧	85		43
MW-5	3.5-4	4/16/2009	6988	۷	60	۷	365	۷	169	۷	93	<	23	۷	356	۷	116
MW-5*	3.5-4	4/16/2009	26968	۷	10		365		50		27	V	4	٧	75		92
MW-5	7.5-8	4/16/2009	19535	۷	10		309		56	۷	9		4	۷	67		47
MW-5	11.5-12	4/16/2009	22763	۷	10		307		42		18	۷	3	<	70		60
MW-5	15.5-16	4/16/2009	20489	۷	10		323	۷	32	<	10	<	4	۷	70		55
MW-3	0-0.5	4/16/2009	24510	۷	10		381	٧	32		45	V	4	۷	70		251
MW-5	3.5-4	4/16/2009	17505	۷	10		299	۷	31		26	۷	4	٧	73		52
MW-3*	1.5-2	4/16/2009	62147	۷	14		758		63		223	V	5		117		186
MW-3	15.5-16	4/16/2009	53380	۷	11		2100		43	۷	11	۷	4	۷	72		79
MW-3	16-20	4/16/2009	29938	<	10		364		56		17	<	4	<	70		60
MW-4	0-0.5	4/16/2009	22954	۷	12		440	٧	38		44	۷	5	۷	86		141
MW-4	2-2.5	4/16/2009	34846	۷	13		395	۷	40		80	V	5	<	82		84
MW-4	11.5-12	4/16/2009	16526	۷	10		216	٧	29		19	۷	4	۷	70		66
MW-4*	15.5-16	4/16/2009	35008	۷	10		364	V	38		17	۷	4	۷	77		85
MW-4	19.5-20	4/16/2009	17294	۷	10		262		35	۷	9	<	4	۷	69		31
MW-2	0-0.5	4/16/2009	25688	<	10		549		36		19	<	4	<	70		77
MW-2	3-3.5	4/16/2009	15112	۷	9		332		33		11	<	4	۷	72		28
MW-2	11.5-12	4/16/2009	18365	<	10		335		43		11	<	4	<	70		17
MW-2	15.5-16	4/16/2009	15759	<	9		225		39	<	9	<	3	<	67		21
MW-2	16-18	4/16/2009	26454	<	11		332	4	34	<	11	<	4	<	78		16
MW-1*	0-0.5	4/16/2009	19547	<	12		386	<	35		167	<	4	<	81		81
MW-1	3.5-4	4/16/2009	14561	<	10		288		29		14	<	4	۷	68		29
MW-1	7.5-8	4/16/2009	14499	<	9		306		46		14	<	3	<	68		20
MW-1	15.5-16	4/16/2009	12256	v	9		231		31		17	V	3	۷	68		17
MW-7*	1.5-2	4/16/2009	18265	<	10		300	٧	31	<	9	<	4	۷	69		29
MW-7	6.5-7	4/16/2009	11607	۷	9		138	٧	27		10	V	3	<	68		29
MW-7	9.5-10	4/16/2009	16199	۷	12		205		39		14	۷	4	۷	77		38
MW-8*	1.5-2	4/16/2009	26485	۷	10		359		66		27	۷	3	۷	72		279
MW-8	7-7.5	4/16/2009	22796	٨	10		381		44		13	<	4	۷	72		40

* = Sample selected for laboratory analysis

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

P	arameter		Si	lver	A	rsenic	В	arium	С	admium		Cobalt	С	hromium		Copper
	Sample Depth		1						1							• •
Location	(feet)	Date														
SS-RR-06	0-0.5	3/24/2009	<	40	۷	7	<	5	<	40		15		12		11
SS-RR-03	0-0.5	3/24/2009	<	39	V	7	<	5	<	40	۷	14		7		8
SS-RR-05	0-0.5	3/24/2009	<	42		10	<	7	V	43		36		8		16
SS-RR-04	0-0.5	3/24/2009	۷	41	۷	9	۷	6	٨	41		35		5		18
SS-RR-07	0-0.5	3/24/2009	<	41		7	۷	6	۷	42		31		9		14
SS-RR-09	0-0.5	3/24/2009	۷	48	۷	10	<	9	٨	50		32		13		12
SS-RR-07	0-0.5	3/24/2009	<	45	۷	9	۲	7	۷	46		24		10		14
SS-RR-08*	0-0.5	3/24/2009	۷	42		24	۷	7	٨	43	٧	23		6		24
SS-RR-10	0-0.5	3/24/2009	۷	37	٧	6	۷	5	۷	37		15		9		13
SS-RR-01	0-0.5	3/24/2009	۷	30	۷	4	۷	3	٨	30	۷	5		6	۷	4
SS-NR-01	0-0.5	3/24/2009	<	43	۷	7	<	8	۷	44		36	<	5		9
SS-BB-01	0-0.5	3/24/2009	<	41	٧	7	۷	6	٨	43	۷	16		8		11
SS-BB-02	0-0.5	3/24/2009	۷	38	۷	7	۷	5	٨	39		19		7		10
SS-BB-03	0-0.5	3/24/2009	۷	44	٧	9	V	7	V	46	۷	20		9		33
SS-FB-ACM-05*	0-0.5	3/24/2009	۷	43	۷	9	<	7	٨	45		33		9		35
SS-FB-ACM-07	0-0.5	3/24/2009	<	36	۷	6	۲	4	۷	36		13		8		13
SS-FB-ACM-04	0-0.5	3/24/2009	۷	43	۷	9	۷	7	٨	45	٧	19		10		20
SS-FB-ACM-08	0-0.5	3/24/2009	۷	42	۷	8	۷	7	۷	43		30		8		9
SS-FB-ACM-02	0-0.5	3/24/2009	۷	42	۷	8	۷	7	٨	43		33		10		13
SS-FB-ACM-05	0-0.5	3/24/2009	۷	42	٧	9	٧	7	٧	43	۷	20		9		56
SS-FB-ACM-01	0-0.5	3/24/2009	<	44		9	۷	7	٨	45	۷	18		12		11
SS-FB-ACM-03	0-0.5	3/24/2009	۷	41	٧	8	۷	6	٧	42		21		8		12
SS-FB-ACM-06	0-0.5	3/24/2009	۷	48	٧	8	V	8	V	49		39		8		23
SS-CB-02	0-0.5	3/24/2009	۷	42	٧	8	V	6	V	43	٧	15		8		11
SS-CB-01*	0-0.5	3/24/2009	v	40	۷	22	۷	5	۷	41		21		9		44
SS-RR-02 1.5-2.0	0-0.5	3/24/2009	۷	55	٧	10	۷	9	٧	57	۷	23		17		9
SS-NR-01 1-0.5	0-0.5	3/24/2009	۷	56	۷	9	V	8	۷	56	۷	20		18		8
SS-NR-02 1.5-2.0	0-0.5	3/24/2009	۷	61	٧	10	V	10	٧	62	۷	26		14	۷	8
SS-AST-PCB-01	0-0.5	3/24/2009	۷	48	V	9	۷	8	۷	49	۷	21		15		12
SS-SS-PCB-01	0-0.5	3/24/2009	<	58	٧	9	۷	9	<	59	<	25		15	<	8
SS-SS-PCB-02	0-0.5	3/24/2009	۷	41	٧	8	۷	5	۷	40	۷	13		6		9
SS-SS-PCB-03*	0-0.5	3/24/2009	۷	49		67	<	9	4	49	۷	27		10		11

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

F	Parameter		Iron	Mercury	Μ	anganese		Nickel	Lead	Se	lenium		Tin	Z	inc
	Sample Depth					-									
Location	(feet)	Date													
SS-RR-06	0-0.5	3/24/2009	1085	7		14	٧	6	25		9		56		20
SS-RR-03	0-0.5	3/24/2009	1284	9		17		8	26		12		54		27
SS-RR-05	0-0.5	3/24/2009	2677	11		17		8	46		15		72		30
SS-RR-04	0-0.5	3/24/2009	2921	7		14	V	7	46		12		45		18
SS-RR-07	0-0.5	3/24/2009	1901	11		19		10	22		17		84		15
SS-RR-09	0-0.5	3/24/2009	3999	8		21		14	36		9		86		45
SS-RR-07	0-0.5	3/24/2009	2052	9		17		8	32		15		73		36
SS-RR-08*	0-0.5	3/24/2009	3134	11		13		12	165		15		78		49
SS-RR-10	0-0.5	3/24/2009	1083	6		12	٧	5	29		13		68		23
SS-RR-01	0-0.5	3/24/2009	206	3	V	3	۷	4	13		8		49		10
SS-NR-01	0-0.5	3/24/2009	2516	8		18		10	21		11		60		31
SS-BB-01	0-0.5	3/24/2009	1452	6		21		7	20		12		65		33
SS-BB-02	0-0.5	3/24/2009	1134	8		15	٧	6	28		11		53		59
SS-BB-03	0-0.5	3/24/2009	2133	10		23		9	38		15	۷	45		62
SS-FB-ACM-05*	0-0.5	3/24/2009	2230	14		19	V	7	43		15		67		734
SS-FB-ACM-07	0-0.5	3/24/2009	857	7		10		6	30		14		77		29
SS-FB-ACM-04	0-0.5	3/24/2009	2046	11		21		12	40		13		65		57
SS-FB-ACM-08	0-0.5	3/24/2009	1833	10		24		13	32		14		67		86
SS-FB-ACM-02	0-0.5	3/24/2009	1919	11		18		7	33		17		65		32
SS-FB-ACM-05	0-0.5	3/24/2009	2287	16		12		10	46		11		56		792
SS-FB-ACM-01	0-0.5	3/24/2009	1726	9		23		11	22		17		65		21
SS-FB-ACM-03	0-0.5	3/24/2009	1749	12		20		11	38		16		51		31
SS-FB-ACM-06	0-0.5	3/24/2009	3565	13		45		9	21		13	٧	49		65
SS-CB-02	0-0.5	3/24/2009	1334	8		18		7	31		13		82		29
SS-CB-01*	0-0.5	3/24/2009	1825	20		24		9	378		21		244		221
SS-RR-02 1.5-2.0	0-0.5	3/24/2009	1991	11		41	V	9	25		14	٧	57		13
SS-NR-01 1-0.5	0-0.5	3/24/2009	1371	9		23	٧	8	15		11		72		27
SS-NR-02 1.5-2.0	0-0.5	3/24/2009	2041	10		19	۷	9	19		11		89		16
SS-AST-PCB-01	0-0.5	3/24/2009	2013	6		13	٧	7	26		11		94		72
SS-SS-PCB-01	0-0.5	3/24/2009	1962	7		18		10	18		10	<	59		15
SS-SS-PCB-02	0-0.5	3/24/2009	970	4		15	٧	6	33		8	۷	38		93
SS-SS-PCB-03*	0-0.5	3/24/2009	3021	13		23		14	292		15	۷	46		91

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID		RSL or	S	S-RR-08	Su	ub Slab 2	S	S-CB-01		SS-WR-01	S	SS-FB-05	S	S-SS-03
Sample Depth (Feet)		VDH		0-0.5		0-0.5		0-0.5		0-0.5		0-0.5		0-0.5
Date		Criterion	3	/23/2009	3	/24/2009	3	3/23/2009		3/24/2009	3	3/23/2009	3	/24/2009
Parameter														
Aluminum	mg/kg	77,000		4,600		4,100		6,500		11,000		6,700		5,300
Antimony	mg/kg	31.0	۷	1	v	1	٧	1	٧	1	٧	1	٧	1
Arsenic*	mg/kg	12		4.5		1.8		4.7		4.3		4.4		4.1
Barium	mg/kg	15,000		42		10		62		68		47		130
Beryllium	mg/kg	160.0	۷	0.5	v	0.5	٧	0.5	٧	0.5	٧	0.5	٧	0.5
Cadmium ¹	mg/kg	34.5	۷	0.5	۷	0.5		1.1	٧	0.5		1.4		0.6
Chromium	mg/kg	280		7.5		9.3		19		16		14		13
Cobalt	mg/kg	23		5.0		17		4.9		7.7		4.7		5.1
Copper	mg/kg	3,100		17		7.4		37		20		93		41
Iron	mg/kg	55,000		13,000		8,400		13,000		18,000		18,000		15,000
Lead	mg/kg	400		110		4		290		28		88		700
Manganese	mg/kg	1,800		210		120		260		360		200		230
Mercury	mg/kg	0.67	۷	0.1	v	0.1	٧	0.1		0.1		3.7		0.1
Nickel	mg/kg	1,600		11		14		13		18		14		42
Selenium	mg/kg	390	۷	0.5	v	0.5	٧	0.5	٧	0.5	٧	0.5	٧	0.5
Silver	mg/kg	39	۷	0.5	v	0.5	٧	0.5	٧	0.5	٧	0.5	٧	0.5
Thallium	mg/kg	5.1	۷	0.5	٧	0.5	۷	0.5	٧	0.5	٧	0.5	٧	0.5
Tin	mg/kg	47,000		1.8		0.3		18		1.4		1.5		4.8
Vanadium	mg/kg	390		9.1		8.8		12		21		16		180
Zinc	mg/kg	23,000		69		24		150		110		2,100		190

* = Typical Vermont background arsenic value of 12 mg/kg used as a screening level

White text/black cell = Result exceeds screening criterion

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID		RSL or		MW-1		MW-2		MW-3		MW-4		MW-5		MW-6
Sample Depth (Feet)		VDH		0-0.5		16-18		1.5-2.0		15.5-16.0		3.5-4.0		15-15.5
Date		Criterion	4	/16/2009	4	/16/2009	4	/16/2009	4	/16/2009	4	/16/2009	4	/16/2009
Parameter														
Aluminum	mg/kg	77,000		5,700		4,600		7,500		18,000		13,000		11,000
Antimony	mg/kg	31.0	٧	1	٧	1	٧	1	۷	1	٧	1	٧	1
Arsenic*	mg/kg	12		4.9		9.0		43		6.5		4.9		2.8
Barium	mg/kg	15,000		31		14		200		93		59		38
Beryllium	mg/kg	160.0	۷	0.5	٧	0.5		1.2		0.6	۷	0.5	٧	0.5
Cadmium ¹	mg/kg	34.5	٧	0.5	۷	0.5	٧	0.5	٨	0.5	٧	0.5	٧	0.5
Chromium	mg/kg	280		12		17		11		29		19		17
Cobalt	mg/kg	23		4.8		6.9		5.7		12.0		8.0		7.0
Copper	mg/kg	3,100		11		15		49		25		21		13
Iron	mg/kg	55,000		13,000		18,000		15,000		26,000		19,000		20,000
Lead	mg/kg	400		160		5		72		12		25		6
Manganese	mg/kg	1,800		240		190		330		330		310		440
Mercury	mg/kg	0.67		0.1		0.1		0.1		0.1		0.2	٧	0.1
Nickel	mg/kg	1,600		13		20		12		28		21		15
Selenium	mg/kg	390	۷	0.5	٧	0.5	۷	0.5	٨	0.5	۷	0.5	٧	0.5
Silver	mg/kg	39	۷	0.5	٧	0.5	۷	0.5	٨	0.5	۷	0.5	٧	0.5
Thallium	mg/kg	5.1	۷	0.5	٧	0.5		1.0	٨	0.5	۷	0.5	٧	0.5
Tin	mg/kg	47,000		1.6	۷	0.2		4.2		0.43		2.6		0.28
Vanadium	mg/kg	390		13		17		20		30		23		10
Zinc	mg/kg	23,000		52		20		75		79		71		19

* = Typical Vermont background arsenic value of 12 mg/kg used as a screening level

White text/black cell = Result exceeds screening criterion

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID		RSL or		MW-7		MW-8		MW-9		SS-T-1		SS-T-1		SS-T-2
Sample Depth (Feet)		VDH		1.5-2.0		1.5-2.0		2.5-3.0		0-0.5		1.5-2.0		0-0.5
Date		Criterion	4	/16/2009	4	/16/2009	4	/16/2009	4	/20/2009	4/	/20/2009	4	/20/2009
Parameter														
Aluminum	mg/kg	77,000		8,800		8,100		6,900		3,800		3,800		3,800
Antimony	mg/kg	31.0	۷	1	۷	1	٧	1	v	0.5	٧	0.5	٧	0.5
Arsenic*	mg/kg	12		3.6		7.0		3.5		2.4		4.8		4.1
Barium	mg/kg	15,000		35		55		31		19		11		17
Beryllium	mg/kg	160.0	۷	0.5		0.6	۷	0.5	٧	0.5	v	0.5	٧	0.5
Cadmium ¹	mg/kg	34.5	V	0.5	۷	0.5	٧	0.5	٧	0.5	٧	0.5	٧	0.5
Chromium	mg/kg	280		15		13		12		7.7		8.7		8.0
Cobalt	mg/kg	23		6.8		6.8		5.4		3.5		5.2		4.8
Copper	mg/kg	3,100		12		15		10		8.7		11		12
Iron	mg/kg	55,000		16,000		13,000		14,000		9200		9,600		9,100
Lead	mg/kg	400		5		28		9		18		4.5		11.0
Manganese	mg/kg	1,800		280		240		290		210		230		210
Mercury	mg/kg	0.67	۷	0.1	٧	0.1	۷	0.1	٧	0.1	v	0.1	٧	0.1
Nickel	mg/kg	1,600		19		16		13		9.2		16		13
Selenium	mg/kg	390	۷	0.5	v	0.5	٧	0.5	٧	0.5	٧	0.5	۷	0.5
Silver	mg/kg	39	۷	0.5	v	0.5	٧	0.5	٧	0.5	٧	0.5	۷	0.5
Thallium	mg/kg	5.1	۷	0.5	۷	0.5	٧	0.5	v	0.5	٧	0.5	٧	0.5
Tin	mg/kg	47,000		0.29		2.0		0.49		0.5	۷	0.2		0.3
Vanadium	mg/kg	390		16		16		14		7.7		8.5		7.9
Zinc	mg/kg	23,000		29		96		81		46.0		23		30

* = Typical Vermont background arsenic value of 12 mg/kg used as a screening level

White text/black cell = Result exceeds screening criterion

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID		RSL or		SS-T-2		SS-T-3	SS-	T-3 (DUP)	Relative		SS-T-3	;	SS-T-4
Sample Depth (Feet)		VDH		1.5-2.0		0-0.5		0-0.5	Percent		1.5-2.0		0-0.5
Date		Criterion	4	/20/2009	4/	20/2009	4/	20/2009	Difference	4	/20/2009	4/	20/2009
Parameter													
Aluminum	mg/kg	77,000		3,100		4,000		3,700	45%		3,300		4,500
Antimony	mg/kg	31.0	۷	0.5	۷	0.5	<	0.5	0%	۷	0.5	٨	0.5
Arsenic*	mg/kg	12		5.0		3.5		4.2	85%		5.0		3.1
Barium	mg/kg	15,000		8		16		14	41%		8		26
Beryllium	mg/kg	160.0	۷	0.5	۷	0.5	<	0.5	0%	۷	0.5	٨	0.5
Cadmium ¹	mg/kg	34.5	٧	0.5	٧	0.5	۷	0.5	0%	۷	0.5	٨	0.5
Chromium	mg/kg	280		8.2		10.0		8.2	55%		7.5		8.4
Cobalt	mg/kg	23		4.9		4.4		4.2	60%		4.7		4.1
Copper	mg/kg	3,100		10		11		12	34%		12		11
Iron	mg/kg	55,000		8,000		9,200		9,200	51%		8,200		10,000
Lead	mg/kg	400		3.2		10.0		8.5	63%		3.1		20.0
Manganese	mg/kg	1,800		220		210		170	156%		240		190
Mercury	mg/kg	0.67	۷	0.1	۷	0.1	<	0.1	0%	<	0.1	٧	0.1
Nickel	mg/kg	1,600		16		13		14	44%		15		17
Selenium	mg/kg	390	۷	0.5	۷	0.5	<	0.5	0%	۷	0.5	٨	0.5
Silver	mg/kg	39	۷	0.5	۷	0.5	<	0.5	0%	۷	0.5	٨	0.5
Thallium	mg/kg	5.1	٧	0.5	۷	0.5	<	0.5	0%	~	0.5	۷	0.5
Tin	mg/kg	47,000	٧	0.2		0.3		0.3		<	0.2		0.4
Vanadium	mg/kg	390		6.8		8.1		7.7	30%		7.1		8.8
Zinc	mg/kg	23,000		18		31		28	31%		18		56

* = Typical Vermont background arsenic value of 12 mg/kg used as a screening level

White text/black cell = Result exceeds screening criterion

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID		RSL or		SS-T-4		SS-T-5		SS-T-5
Sample Depth (Feet)		VDH		1.5-2.0		0-0.5		1.5-2.0
Date		Criterion	4/	/20/2009	4	/20/2009	4	/20/2009
Parameter								
Aluminum	mg/kg	77,000		14,000		7,600		12,000
Antimony	mg/kg	31.0	٧	0.5	٧	0.5	٧	0.5
Arsenic*	mg/kg	12		4.1		3.0		7.4
Barium	mg/kg	15,000		63		39		59
Beryllium	mg/kg	160.0	۷	0.5	٧	0.5	٧	0.5
Cadmium ¹	mg/kg	34.5	٧	0.5	V	0.5	٧	0.5
Chromium	mg/kg	280		19.0		12.0		21.0
Cobalt	mg/kg	23		10.0		5.1		9.5
Copper	mg/kg	3,100		14		12		17
Iron	mg/kg	55,000		24,000		13,000		22,000
Lead	mg/kg	400		8.0		23.0		12.0
Manganese	mg/kg	1,800		480		2,540		310
Mercury	mg/kg	0.67	۷	0.1	٧	0.1	٧	0.1
Nickel	mg/kg	1,600		26		16		25
Selenium	mg/kg	390	۷	0.5	٧	0.5	٧	0.5
Silver	mg/kg	39	۷	0.5	٧	0.5	٧	0.5
Thallium	mg/kg	5.1	۷	0.5	۲	0.5	۷	0.5
Tin	mg/kg	47,000		0.3		0.6		0.5
Vanadium	mg/kg	390		21.0		14.0		19.0
Zinc	mg/kg	23,000		63		43		59

* = Typical Vermont background arsenic value of 12 mg/kg used as a screening level

White text/black cell = Result exceeds screening criterion

Table 11 Metals XRF Soil Screening Compared to Laboratory Results

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID			Ś	SS-RR-08		[S	S-CB-01					MW-1				Μ	W-2	
Sample Depth	n (Feet)			0-0.5					0-0.5					0-0.5				1	6-18	
Date			:	3/23/2009				3/	/23/2009				4/	16/2009				4/1	6/2009	
			LAB	XRF	RPD		LAB		XRF	RPD		LAB		XRF	RPD		LAB		XRF	RPD
Parameter																				
Arsenic	mg/kg		4.5	24.5	138%		4.7	V	22.2	130%		4.9	Ý	24.0	132%		9.0	۷	11.0	20%
Barium	mg/kg		42	7 7	146%		62	Y	5	168%		31	A	476	176%		14		453	188%
Cadmium	mg/kg	V	0.5	43.0	195%		1.1	Y	41	190%	V	0.5	V	50.0	196%	v	0.5	V	49.0	196%
Chromium	mg/kg		7.5	6.0	22%		19		9	71%		12	Y	: 106	159%		17	٧	110	146%
Cobalt	mg/kg		5.0	23.0	129%		4.9		21.0	124%		4.8	V	167.0	189%		6.9	۷	198.0	187%
Copper	mg/kg		17	24	34%		37	Y	44	17%		11	Y	23	71%		15	<	24	46%
Iron	mg/kg		13,000	3,134	122%		13,000		1,825	151%		13,000		19,547	40%		18,000		26,454	38%
Lead	mg/kg		110	165	40%		290		378	26%		160)	167	4%		5	V	11	78%
Manganese	mg/kg		210	13	177%		260		24	166%		240		386	47%		190		332	54%
Mercury	mg/kg	V	0.1	11.0	196%	A	0.1		20.0	198%		0.1	Y	12.0	197%		0.1	۷	11.0	196%
Nickel	mg/kg		11	12	9%		13		9	36%		13	Y	35	92%		20	۷	34	52%
Selenium	mg/kg	V	0.5	15.0	187%	V	0.5		21.0	191%	V	0.5	Y	4.0	156%	V	0.5	۷	4.0	156%
Silver	mg/kg	V	0.5	42.0	195%	V	0.5	V	39.9	195%	۷	0.5	V	38.0	195%	V	0.5	<	38.0	195%
Tin	mg/kg		1.8	78.0	191%		18		244	173%		1.6	V	81.0	192%	v	0.2	V	78.0	199%
Zinc	mg/kg		69	49	34%		150		221	38%		52		81	44%		20		16	22%

Sample ID			SS-FB-05		S	S-SS-03				MW	-3				N	W-4	
Sample Depth	n (Feet)		0-0.5			0-0.5				1.5-	2.0				15.	5-16.0	
Date			3/23/2009		3	/24/2009				4/16/2	2009				4/1	6/2009	
		LAB	XRF	RPD	LAB	XRF	RPD	L/	AB)	XRF	RPD		LAB		XRF	RPD
Parameter																	
Arsenic	mg/kg	4.4	< 9.2	71%	4.1	66.7	177%		43		76	55%		6.5	۷	12.0	59%
Barium	mg/kg	47	< 7	148%	130 <	: 9	175%		200	V	547	93%		93	٧	480	135%
Cadmium	mg/kg	1.4	< 45.0	188%	0.6 <	: 49.0	195%	×	0.5	۷	48.0	196%	۷	0.5	V	48.0	196%
Chromium	mg/kg	14	9	43%	13	10	26%		11		153	173%		29	۷	109	116%
Cobalt	mg/kg	4.7	33.0	150%	5.1 <	: 27.0	136%		5.7		292.0	192%		12.0	Y	215.0	179%
Copper	mg/kg	93	35	91%	41	11	115%		49		123	86%		25		45	57%
Iron	mg/kg	18,000	2,230	156%	15,000	3,021	133%		15,000		62,147	122%		26,000		35,008	30%
Lead	mg/kg	88	43	69%	700	292	82%		72		223	102%		12		17	34%
Manganese	mg/kg	200	19	165%	230	23	164%		330		758	79%		330		364	10%
Mercury	mg/kg	3.7	14.0	116%	0.1	13.0	197%		0.1	۷	14.0	197%		0.1	V	10.0	196%
Nickel	mg/kg	14	< 7	67%	42	14	100%		12		63	136%		28	V	38	30%
Selenium	mg/kg <	. 0.5	15.0	187%	< 0.5	15.0	187%	V	0.5	V	5.0	164%	V	0.5	٧	4.0	156%
Silver	mg/kg <	. 0.5	< 43.3	195%	< 0.5 <	: 49.2	196%	×	0.5	<	37.0	195%	۷	0.5	Y	39.0	195%
Tin	mg/kg	1.5	67.0	191%	4.8 <	46.0	162%		4.2		117.0	186%		0.43	V	77.00	198%
Zinc	mg/kg	2,100	734	96%	190	91	70%		75		186	85%		79		85	7%

Table 11 Metals XRF Soil Screening Compared to Laboratory Results

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID				М	W-5				M	IW-6				Ν	IW-9	
Sample Depth	(Feet)			3.	5-4.0				15	5-15.5				2	.5-3.0	
Date				4/16	6/2009				4/16	6/2009				4/1	6/2009	
			LAB		XRF	RPD		LAB		XRF	RPD		LAB		XRF	RPD
Parameter																
Arsenic	mg/kg		4.9		15.0	102%		2.8	۷	12.0	124%		3.5	V	13.0	115%
Barium	mg/kg		59		553	161%		38		756	181%		31	V	475	175%
Cadmium	mg/kg	۷	0.5	v	47.0	196%	v	0.5	۷	53.0	196%	V	0.5	v	49.0	196%
Chromium	mg/kg		19	v	99	136%		17	V	112	147%		12	v	101	158%
Cobalt	mg/kg		8.0	v	184.0	183%		7.0	×	210.0	187%		5.4	٧	195.0	189%
Copper	mg/kg		21		24	13%		13	۷	24	59%		10	v	23	80%
Iron	mg/kg		19,000		26,968	35%		20,000		28,106	34%		14,000		28,358	68%
Lead	mg/kg		25		27	8%		6	۷	12	73%		9		23	86%
Manganese	mg/kg		310		365	16%		440		476	8%		290		531	59%
Mercury	mg/kg		0.2	٧	10.0	192%	V	0.1	V	12.0	197%	٧	0.1	V	12.0	197%
Nickel	mg/kg		21		50	82%		15	۷	39	89%		13		60	129%
Selenium	mg/kg	۷	0.5	v	4.0	156%	V	0.5	٧	5.0	164%	V	0.5	V	4.0	156%
Silver	mg/kg	۷	0.5	v	36.0	195%	v	0.5	۷	36.0	195%	V	0.5	v	37.0	195%
Tin	mg/kg		2.6	v	75.0	187%		0.28	٧	85.00	199%		0.49	v	77.0	197%
Zinc	mg/kg		71		92	26%		19		43	77%		81		105	26%

Sample ID				М	W-7				N	IW-8	
Sample Depth	n (Feet)			1.	5-2.0				1.	5-2.0	
Date				4/16	6/2009				4/1	6/2009	
			LAB		XRF	RPD		LAB		XRF	RPD
Parameter											
Arsenic	mg/kg		3.6	v	10.0	94%		7.0	Y	12.0	53%
Barium	mg/kg		35	v	403	168%		55	٧	447	156%
Cadmium	mg/kg	۷	0.5	V	43.0	195%	A	0.5	Y	45.0	196%
Chromium	mg/kg		15	۷	83	139%		13	۷	96	152%
Cobalt	mg/kg		6.8	۷	142.0	182%		6.8	Y	175.0	185%
Copper	mg/kg		12	۷	21	55%		15	۷	22	38%
Iron	mg/kg		16,000		18,265	13%		13,000		26,485	68%
Lead	mg/kg		5	V	9	54%		28		27	4%
Manganese	mg/kg		280		300	7%		240		359	40%
Mercury	mg/kg	٧	0.1	۷	10.0	196%	A	0.1	Y	10.0	196%
Nickel	mg/kg		19	۷	31	48%		16		66	122%
Selenium	mg/kg	V	0.5	٧	4.0	156%	V	0.5	Y	3.0	143%
Silver	mg/kg	۷	0.5	v	33.0	194%	V	0.5	¥	34.0	194%
Tin	mg/kg		0.29	v	69.00	198%		2.0	<	72.0	189%
Zinc	mg/kg		29		29	0%		96		279	98%

Table 12 SVOC Soil Results

Richmond Creamery, Richmond, VT JCO Project #1-0346-3

Sample ID		RSL or VDH	SS-I	NR-01	S	B-08	I	MW-2	I	/W-3	M	W-4	ľ	MW-5		MW-6	Ν	IW-7
Sample Depth (Feet)		Criterion		-0.5		.5-2.0		12-13		13-14		3-14		11-12		7.5-8.0		.5-7.0
Date	Units	(mg/kg)	3/24	/2009	4/1	5/2009	4/	14/2009	4/1	4/2009	4/14	1/2009	4/1	14/2009	4/1	5/2009	4/1	5/2009
Parameter																		
Phenol	mg/kg	18,000	<	0.3	~	0.8	*	0.2	<	0.2	<	0.2	<	0.2	¥	0.4	×	0.2
2-Chlorophenol	mg/kg	390	<	0.3	<	0.8	<	0.2	~	0.2	<	0.2	<	0.2	<	0.4	<	0.2
2,4-Dichlorophenol	mg/kg	180	<	0.3	<	0.8	×	0.2	×	0.2	<	0.2	<	0.2	×	0.4	×	0.2
2,4,5-Trichlorophenol	mg/kg	6,100	<	0.3	<	0.8	×	0.2	×	0.2	<	0.2	v	0.2	×	0.4	<	0.2
2,4,6-Trichlorophenol	mg/kg	44	<	0.3	<	0.8	×	0.2	v	0.2	×	0.2	<	0.2	<	0.4	×	0.2
Pentachlorophenol	mg/kg	3	<	1.0	<	4.0	<	1.0	<	1.0	<	1.0	<	1.0	×	2.0	×	1.0
2-Nitrophenol	mg/kg	None	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	<	0.4	<	0.2
4-Nitrophenol	mg/kg	None	<	0.3	<	0.8	×	0.2	×	0.2	<	0.2	<	0.2	×	0.4	×	0.2
2,4-Dinitrophenol	mg/kg	120	<	1.0	<	20.0	<	1.0	<	1.0	<	1.0	ĸ	1.0	×	10.0	<	1.0
2-Methylphenol (o-Cresol)	mg/kg	3,100	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	<	0.4	<	0.2
3/4-Methylphenol (m,p-Cresol)	mg/kg	310	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	×	0.4	<	0.2
2,4-Dimethylphenol	mg/kg	1,200	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	<	0.4	<	0.2
4-Chloro-3-methylphenol	mg/kg	None	<	0.3	<	0.8	×	0.2	×	0.2	<	0.2	<	0.2	<	0.4	۷	0.2
4,6-Dinitro-2-methylphenol	mg/kg	6.1	<	1.0	<	4.0	<	1.0	<	1.0	<	1.0	<	1.0	×	2.0	<	1.0
Benzoic Acid	mg/kg	240,000	<	1.0	<u> </u>	7.0	<	1.0	<	1.0	<	1.0	<	1.0	<	2.0	<	1.0
N-Nitrosodimethylamine	mg/kg	0.0023*	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	*	0.4	<	0.2
n-Nitroso-di-n-propylamine	mg/kg	0.069*	<	0.3	<	0.8	<	0.2	<	0.2		0.2	<	0.2	<	0.4	<	0.2
n-Nitrosodiphenylamine	mg/kg	99	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	<	0.4	×	0.2
bis(2-Chloroethyl)ether	mg/kg	0.19*	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	*	0.4	<	0.2
bis(2-chloroisopropyl)ether	mg/kg	3.5	<	0.3	<	0.8	×	0.2	<	0.2	<	0.2	<	0.2	×	0.4	×	0.2
bis(2-Chloroethoxy)methane	mg/kg	180	<	0.3	×	0.8	×	0.2	<	0.2	<	0.2	<	0.2	×	0.4	×	0.2
1,3-Dichlorobenzene	mg/kg	None	<	0.3	<	0.8	<	0.2	<	0.2		0.2	<	0.2	<	0.4	<	0.2
1,4-Dichlorobenzene	mg/kg	2.6	<	0.3	<	0.8	×	0.2	<	0.2	<	0.2	<	0.2	<	0.4	×	0.2
1,2-Dichlorobenzene	mg/kg	2,000	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	×	0.4	<	0.2
1,2,4-Trichlorobenzene	mg/kg	87	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	<	0.4	<	0.2
2-Chloronaphthalene	mg/kg	6,300	<	0.3	×	0.8	<	0.2	<	0.2	<	0.2	<	0.2	<	0.4	<	0.2
4-Chlorophenyl-phenylether	mg/kg	None	<	0.3	<	0.8	<	0.2	<	0.2		0.2	<	0.2	<	0.4	<	0.2
4-Bromophenyl-phenylether	mg/kg	None	<	0.3	<	0.8	×	0.2	<	0.2		0.2	<u> </u>	0.2	<	0.4	×	0.2
Hexachloroethane	mg/kg	35	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	*	0.4	<	0.2
Hexachlorobutadiene	mg/kg	6.2	<	0.3	<	0.8	<	0.2	۲	0.2	<	0.2	<	0.2	<	0.4	<	0.2
Hexachlorocyclopentadiene	mg/kg	370	<	1.0	<	4.0	<	1.0	*	1.0	<	1.0	<	1.0	*	2.0	×	1.0
Hexachlorobenzene	mg/kg	0.3	<	0.3	< .	0.8	<	0.2	<	0.2		0.2	<	0.2	<	0.4	<	0.2
4-Chloroaniline	mg/kg	9	<	0.3	<	0.8	×	0.2	<	0.2	<	0.2	<u> </u>	0.2	<u> </u>	0.4	×	0.2
2-Nitroaniline	mg/kg	None	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	<	0.4	<	0.2
3-Nitroaniline	mg/kg	18	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	<	0.4	۷	0.2
4-Nitroaniline	mg/kg	23	<	0.3	<	0.8	<	0.2	<	0.2	×	0.2	<	0.2	×	0.4	×	0.2
Benzyl alcohol	mg/kg	31,000	<	0.3	_ <	0.8	<	0.2	<	0.2	<u> </u>	0.2	<	0.2	< .	0.4	<u> </u>	0.2
Nitrobenzene	mg/kg	31	<	0.3	<	0.8	×	0.2	<	0.2	×	0.2	<	0.2	<	0.4	×	0.2
Isophorone	mg/kg	510	<	0.3	<u> </u>	0.8	<	0.2	<	0.2		0.2	<	0.2	<	0.4	<	0.2
2,4-Dinitrotoluene	mg/kg	120	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	<	0.4	۷	0.2
2,6-Dinitrotoluene	mg/kg	61	<	0.3	<u> </u>	0.8	<	0.2	<	0.2	×	0.2	<	0.2	<	0.4	×	0.2
Benzidine	mg/kg	0.0005	<	0.4	_ <	0.8	<	0.4	<	0.4		0.4	<	0.4	<	0.4	<	0.4
3,3'-Dichlorobenzidine	mg/kg	1.1	<	0.3	<	0.8	×	0.2	<	0.2	×	0.2	<	0.2	<	0.4	×	0.2
Pyridine	mg/kg	78	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	×	0.4	<	0.2
Azobenzene	mg/kg	4.9	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	<	0.4	×	0.2
Carbazole	mg/kg	None	<	0.3	<u> </u>	0.8	<	0.2	<	0.2	×	0.2	<	0.2	×	0.4	<	0.2
Dimethylphthalate	mg/kg	None	<	0.3	<	0.8	<	0.2	< .	0.2	<u> </u>	0.2	<	0.2	<	0.4	<	0.2
Diethylphthalate	mg/kg	49,000	<	0.3	<	0.8	×	0.2	<	0.2	×	0.2	<	0.2	<	0.4	×	0.2
Di-n-butylphthalate (Dibutyl pht	0 0	6,100	<	0.5	<	0.8	<	0.5	<	0.5		0.5	<	0.5	<	0.5	<	0.5
Butylbenzylphthalate	mg/kg	260	<	0.3	<	0.8	*	0.2	<	0.2	<	0.2	<	0.2	<	0.4	v	0.2
bis(2-Ethylhexyl)phthalate ¹	mg/kg	19.2	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	<	1.0	×	1.0
Di-n-octylphthalate	mg/kg	None	<	0.3	<	0.8	<	0.2	<	0.2	<	0.2	<	0.2	×	0.4	<	0.2
Dibenzofuran	mg/kg	None	<	0.3	<u> </u>	0.8	_ <	0.2	<	0.2	<	0.2	<	0.2	<	0.4	<	0.2

* = Laboratory reporting limit exceeds screening level

Table 13 Pesticide Soil Results

Richmond Creamery, Richmond, VT

JCO Project #1-0346-3

Parameter			SS	6-PS-01	SS	6-PS-02
Sample Depth (feet)		RSL Criterion		0-0.5		0-0.5
Date	Units	(mg/kg)	3/2	23/2009	3/2	23/2009
Parameter						
Aldrin	mg/kg	0.0029	۷	0.01	<	0.01
alpha-BHC (alpha-						
hexachlorocyclohexane)	mg/kg	0.077	<	0.01	<	0.01
beta-BHC (beta-						
hexachlorocyclohexane)	mg/kg	0.27	~	0.01	<	0.01
Lindane (gamma-BHC)	mg/kg	0.52	٧	0.01	<	0.01
delta-BHC	mg/kg	0.27	۷	0.01	<	0.01
Chlordane	mg/kg	1.6	۷	0.1	<	0.1
4,4'-DDT	mg/kg	1.7	٨	0.01	٨	0.01
4,4'-DDE	mg/kg	1.4	٨	0.01	۷	0.01
4,4'-DDD	mg/kg	2.0	٨	0.01	۷	0.01
Dieldrin*	mg/kg	0.03	٨	0.01	۷	0.01
Endosulfan I	mg/kg	370	٨	0.01	٧	0.01
Endosulfan II	mg/kg	370	٨	0.01	۷	0.01
Endosulfan Sulfate	mg/kg	370	٨	0.01	۷	0.01
Endrin	mg/kg	18	٨	0.01	۷	0.01
Endrin Aldehyde	mg/kg	18	٨	0.01	۷	0.01
Endrin Ketone	mg/kg	18	٧	0.01	۷	0.01
Heptachlor	mg/kg	0.11	٧	0.01	۷	0.01
Heptachlor Epoxide*	mg/kg	0.053	٧	0.01	۷	0.01
Methoxychlor	mg/kg	310	٧	0.01	۷	0.01
Toxaphene*	mg/kg	0.44	٨	0.10	٨	0.10

* = Laboratory reporting limit exceeds screening level

Table 14 Asbestos Soil Results

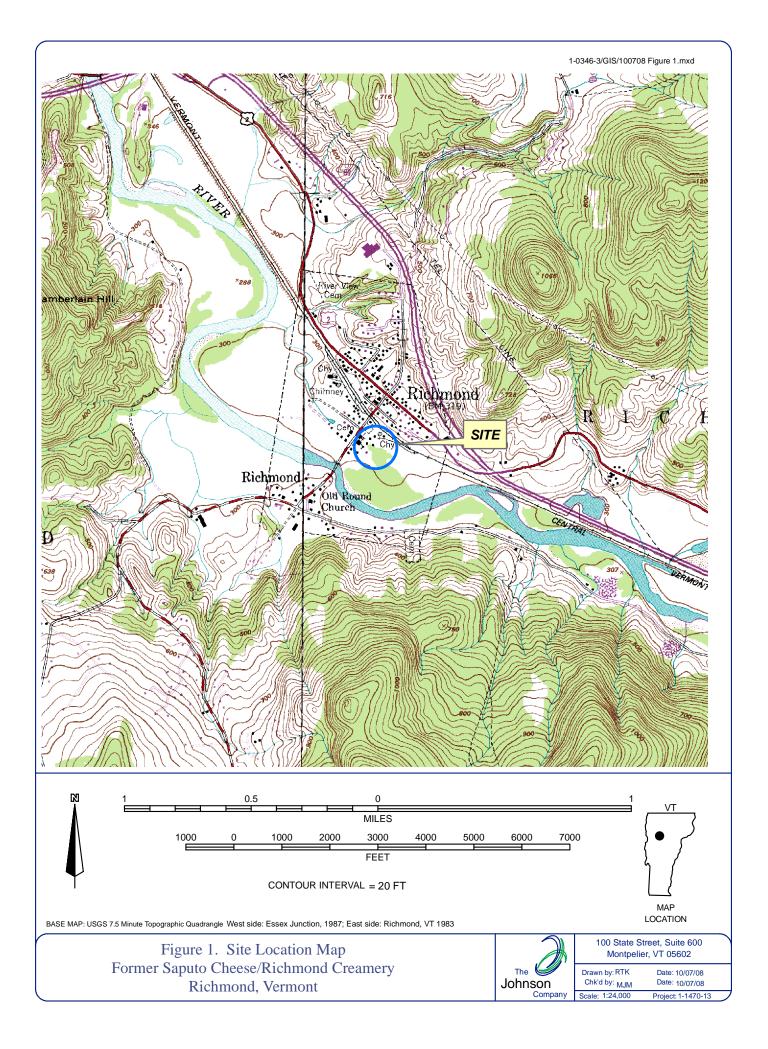
Richmond Creamery, Richmond, VT JCO Project #1-0346-3

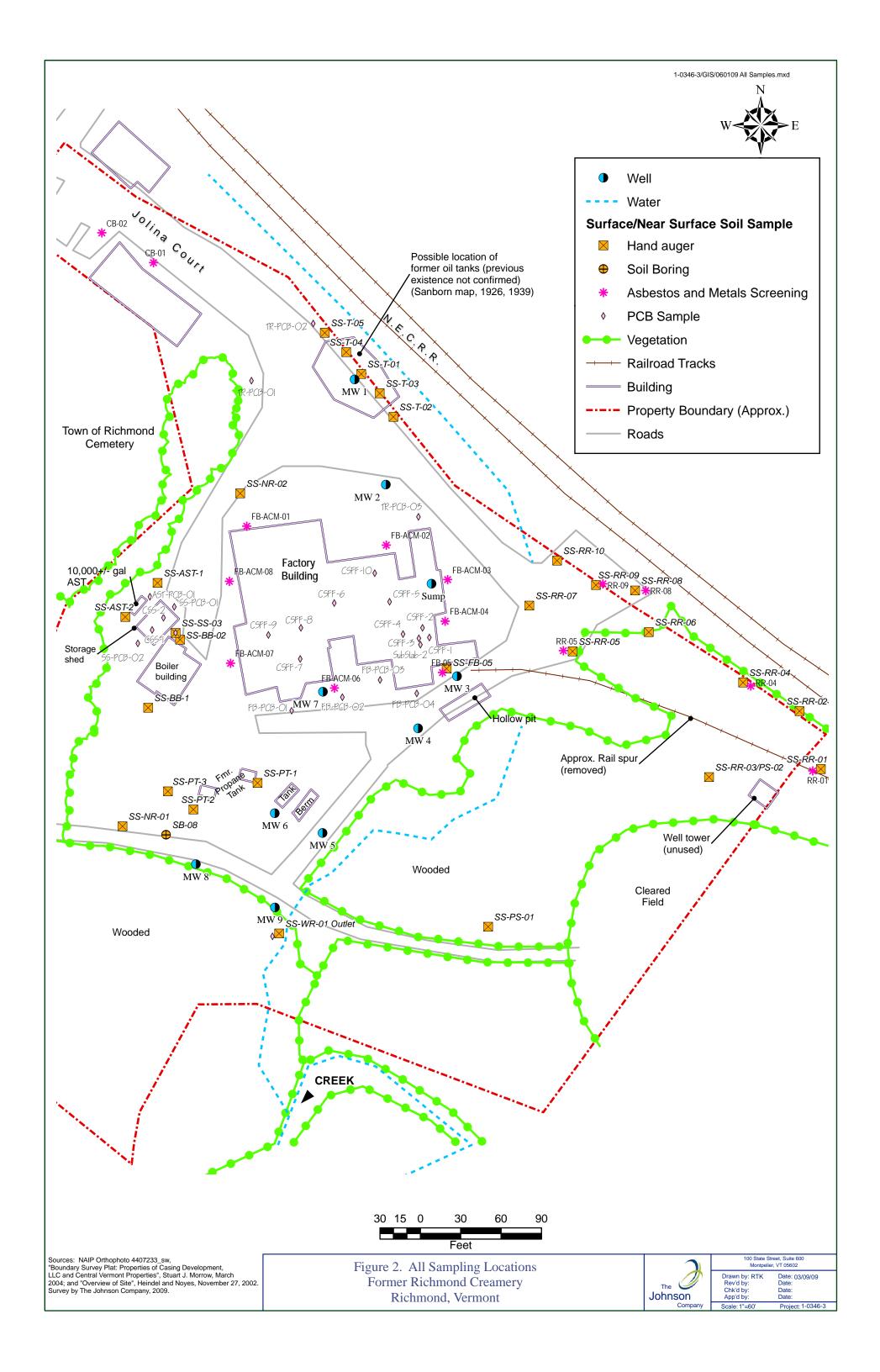
Parameter	SS-RR-01	SS-RR-04	SS-RR-05*	SS-RR-08	SS-RR-09	SS-FB-ACM-01	SS-FB-ACM-02	SS-FB-ACM-03
Sample Depth (feet)	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Date	3/23/2009	3/23/2009	3/23/2009	3/23/2009	3/23/2009	3/23/2009	3/23/2009	3/23/2009
Asbestos	ND	ND	ND	ND	ND	ND	ND	ND

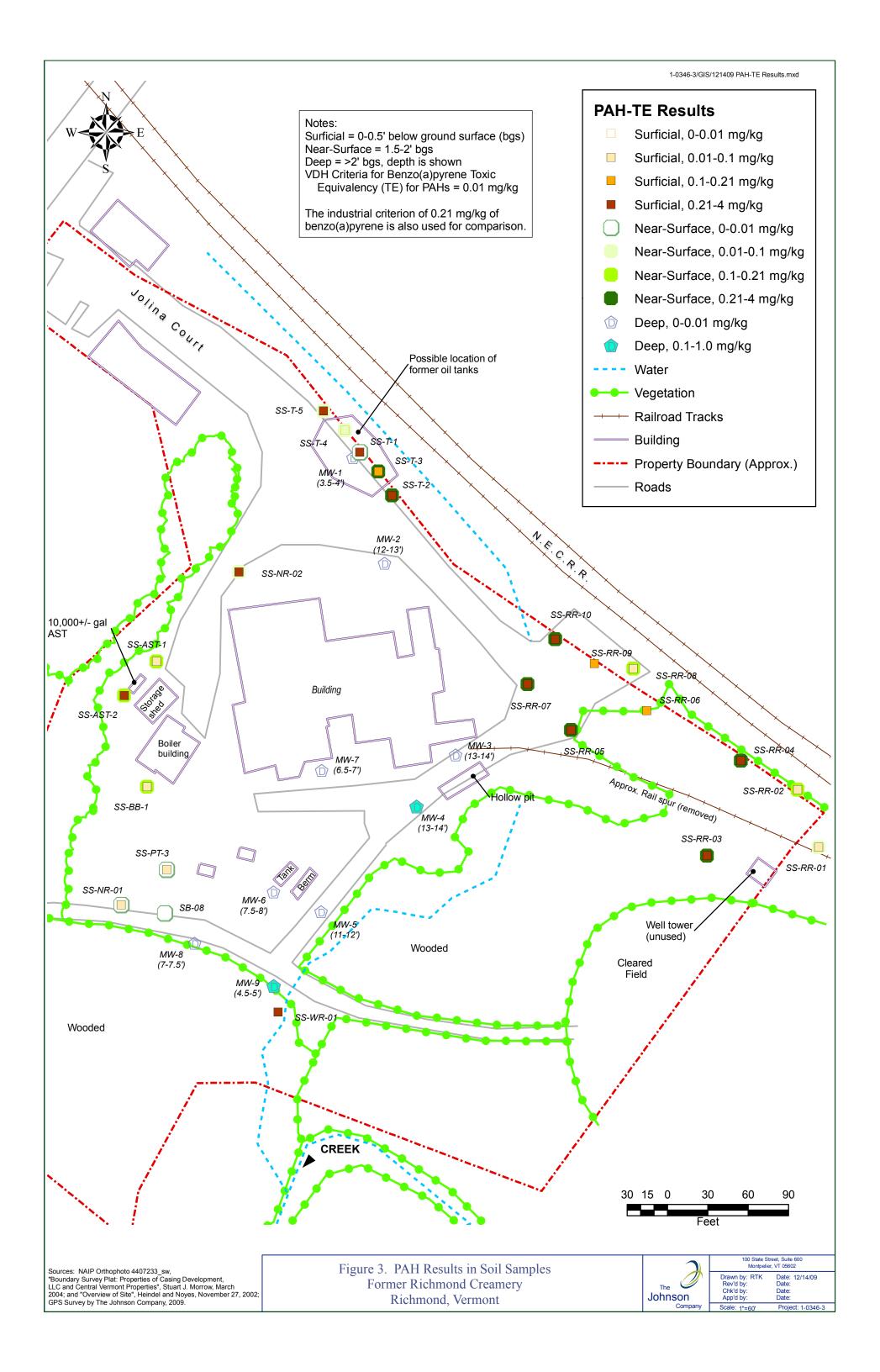
	SS-FB-ACM	-					
Paramater	04	SS-FB-ACM-05*	SS-FB-06	SS-FB-07	SS-FB-08	SS-CB-01	SS-CB-02
Sample Depth (feet)	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Date	3/23/2009	3/23/2009	3/23/2009	3/23/2009	3/23/2009	3/23/2009	3/23/2009
Asbestos	ND	ND	ND	ND	ND	ND	ND

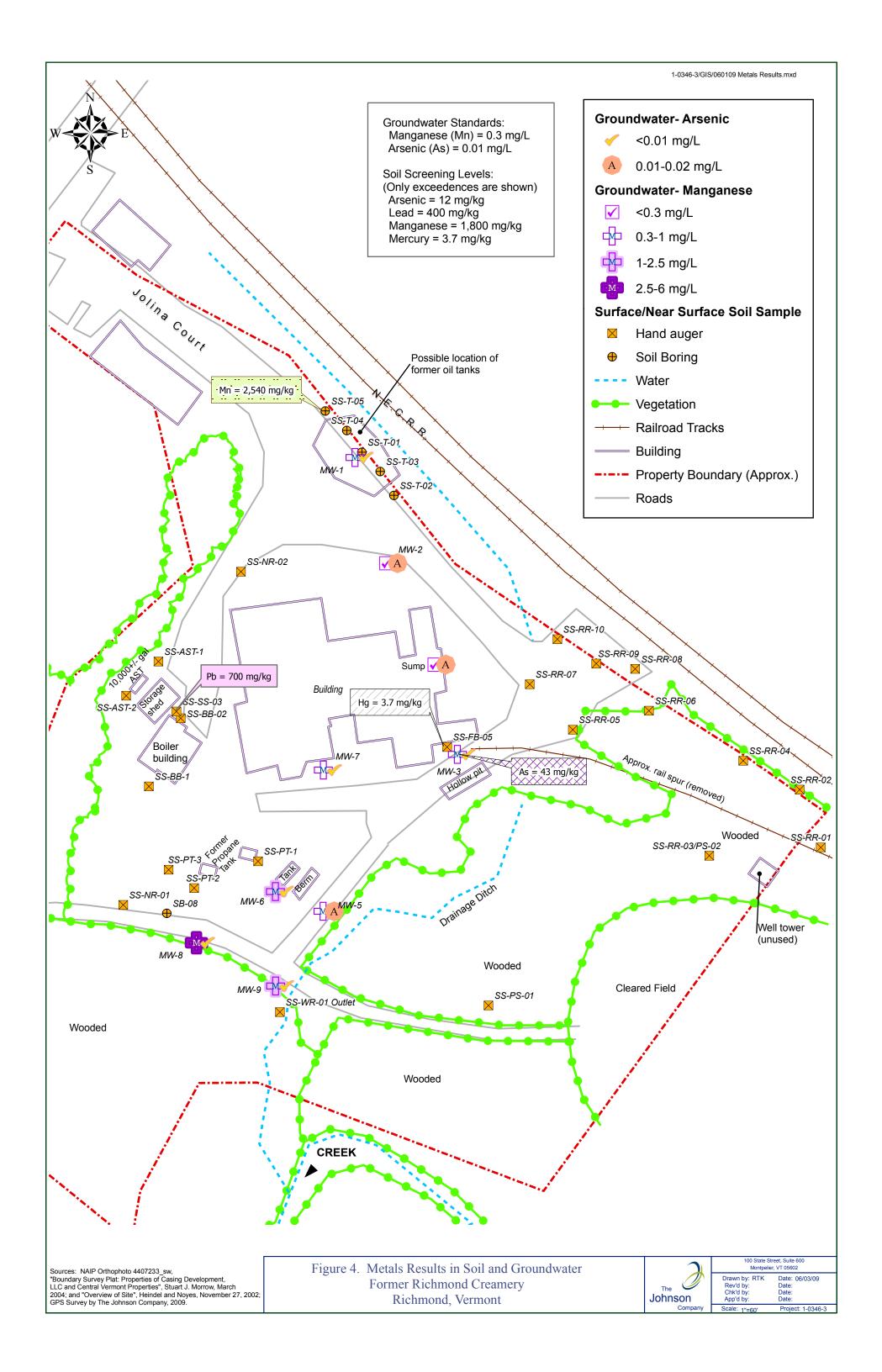
Chrysotile was reported as "Present" in TEM Results for both samples SS-FB-ACM-05 and SS-RR-05

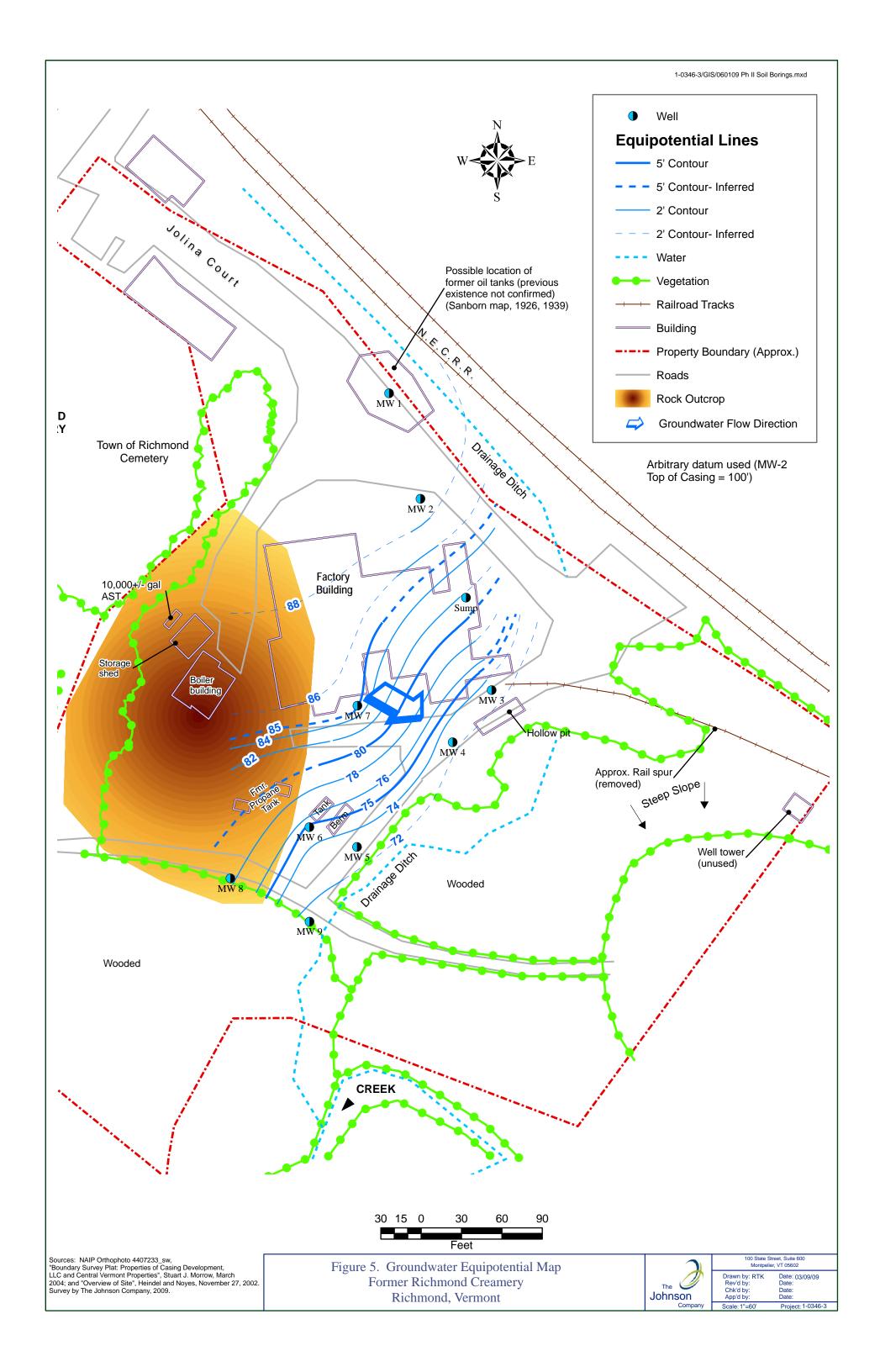
Table 15 Groundwater Elevation Levels


Richmond Creamery, Richmond, VT


JCO Project #1-0346-3


		4/2	20/2009	5/1	5/2009
	Top of				
	Casing				
	Elevation	Depth To	Groundwater	Depth To	Groundwater
Well	(ft)	Water (ft)	Elevation (ft)	Water (ft)	Elevation (ft)
MW-1	101.64	11.88	89.76	11.78	89.86
MW-2	100.00	10.66	89.34	10.62	89.38
MW-3	91.26	18.56	72.70	18.52	72.74
MW-4	89.23	17.14	72.09	16.93	72.30
MW-5	79.53	6.42	73.11	6.3	73.23
MW-6	81.93	6.32	75.61	7.25	74.68
MW-7	91.15	6.48	84.67	5.93	85.22
MW-8	83.54	4.98	78.56	4.92	78.62
MW-9	78.14	5.52	72.62	7.11	71.03


Note: All elevations are measured off an arbitrary top of casing datum of MW-2 TOC = 100'


FIGURES

APPENDIX 1

PHOTOGRAPHIC PLATES

Plate 1: View of former Saputo Cheese/Richmond Creamery factory from Jolina Ct.

Plate 2: Historical Photo of Richmond Creamery

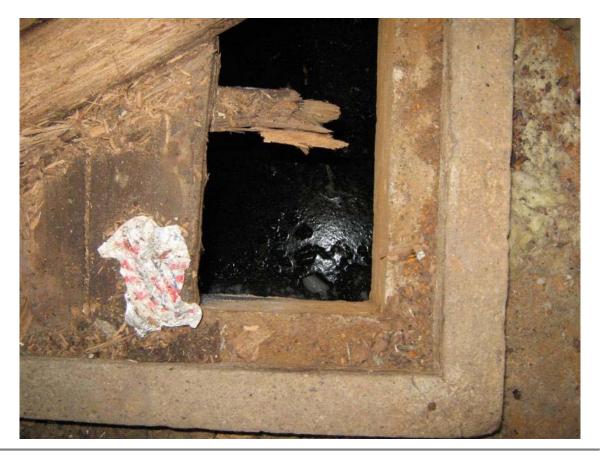


Plate 3: Sump

Plate 5: Concrete Rubble Contents of Pit

Plate 7: Access into well tower

Plate 8: Culvert (Near location of WR-01 Sample)

Plate 9: Ammonia Tank



Plate 10: Above Ground Storage Tank

APPENDIX 2

ASBESTOS INSPECTION REPORT

April 6th, 2009

Mr. Mike Marotto Staff Scientist The Johnson Company, Inc 100 State St, Suite 600 Montpelier VT 05602.

THE JOHNSON COMPANY, INC.

Re: Inspection for Asbestos Containing Materials at the Former Richmond Creamery Facility, 125 Bridge St, Richmond, VT, 05477. AAE Project # 0958.

1

Dear Mr. Marotto,

Enclosed is documentation related to professional asbestos inspection activities performed by the Anglo-American Environmental Company (AAE) on March 23rd and 24th within the Former Richmond Creamery Facility located at 125 Bridge St, Richmond, VT, 05477. Inspection activities were carried out as per your request which involved sampling and evaluation of suspect asbestos-containing materials (acm's) within the facility. The inspection was performed in accordance with the Vermont Regulations for Asbestos Control (VRAC) VSA Title 18, Chapter 26, and 40 CFR Part 763, "Asbestos Containing Materials in Schools: Final Rule and Notice" (EPA/ AHERA Model Accreditation Plan). Inspection duties were performed by a Vermont Certified Asbestos Inspector. AAE's Standard Operating Procedures (SOP's) also follow the OSHA 29 CFR Part 1910, "Asbestos Standards for General Industry)".

On March 23rd and 24th, 2009, AAE collected sixty nine (69) bulk samples of suspect asbestos-containing materials from within the facility. All bulk samples were submitted to a Vermont Certified Analytical Service (EMSL, Woburn, MA) of which 68 were analyzed by Polarized Light Microscopy (PLM Visual Estimation Method) according to the EPA Method 600/R-93/116. One sample was subjected to the Point Counting method approved by the EPA.

Drawings depicting AAE's Area Numbers (Storage Areas) and bulk sampling locations (only sampling locations where suspect materials proved positive for asbestos) are attached to this report along with EMSL's complete Bulk Sampling Report and pertinent Vermont Certifications.

(802) 917-1393 (C) (802) 888-4112 (H)	Web: asbestosaae.com	email: xukcop@aol.com

Thank-you for the opportunity to service your professional environmental management needs. If you have any questions concerning this inspection report, please contact me at 802-888-4112 or by cell at 802-917-1393.

\$incerely - ofti Philip Cornock

Owner..Anglo-American Environmental

(802) 917-1393 (C) (802) 888-4112 (H)

Web: asbestosaae.com

email: xukcop@aol.com

INVENTORY OF POSITIVE ASBESTOS - CONTAINING MATERIALS.

BASEMENT AREA:

- 1. Sample RC-5...1,750 sq.ft of asbestos transite panels on ceiling and upper wall areas of "Milk Receiving".
- Sample RC-8...400 sq.ft of asbestos transite panels on ceiling of "Milk Silo Room".
- 3. Sample RC-12..900 sq.ft of asbestos transite panels on ceiling of "Production Area # 1".
- 4. Sample RC-19..1,080 sq.ft of asbestos transite panels on ceiling of "Production Area # 2"
- 5. Sample RC-57..1,625 sq.ft of asbestos transite panels on ceiling of "Production Area # 3"
- 6. Sample RC-26..120 sq.ft of asbestos transite ceiling/wall panels in Storage Area #5.
- 7. Sample RC-26A..108 sq.ft of asbestos transite ceiling/wall panels in Storage Area # 5A.

1st FLOOR AREA:

- 8. Sample RC-27..30 sq.ft of asbestos transite ceiling panels in "Ammonia Compressor Room."
- 9. Sample RC-31..875 sq.ft of asbestos transite ceiling panels in Storage Area # 6 and into "Culture Room".
- 10. Sample RC-34..100 sq.ft of 9"x9" vinyl asbestos floor tile (not adhesive) on floor of "Laboratory".
- 10A Sample RC-56..110 sq.ft of asbestos transite ceiling/wall panels in closet area under stairwell opposite Laboratory entrance.

2nd FLOOR AREA (TOWER BLOCK):

- 11. Sample RC-40..80 sq.ft of 9"x9" vinyl asbestos floor tile (not adhesive) on floor of "Reception Office".
- 12. Sample RC-42..15 sq.ft of 9"x9" vinyl asbestos floor tile (not adhesive) on closet floor of "Conference Room".
- 13. Sample RC-43..195 sq.ft of 9"x9" vinyl asbestos floor tile (not adhesive) on floor of "Conference Room".
- 13. Sample RC- 45..15 sq.ft of 9"x9" vinyl asbestos floor tile (not adhesive) on bathroom floor.

- 14. Sample RC-46..58 sq.ft of adhesive contaminated 9"x9" vinyl floor tile on hallway floor in front of "Reception Area".
- 15. Sample RC-47..58 sq.ft of gold adhesive compound under Sample # RC-46.
- 16. Sample RC-49..270 sq.ft of 9"x9" vinyl asbestos floor tile and adhesive on floor of "Office".
- 17. Sample RC- 50..126 sq.ft of 9"x9" vinyl asbestos floor tile and adhesive on floor of Storage Room # 12.
- Sample RC-51..20 sq.ft of 9"x9" vinyl asbestos linoleum on Bathroom floor (not adhesive).
- 19. Sample RC-53..2,350 sq.ft of exterior asbestos cement blue siding.

2nd FLOOR AREA (RED BRICK EXTERIOR BUILDING).

- 20. Sample RC-60..sheetrock joint compound found positive after pointcounting.....further sample investigation required if material's disturbed.
- 21. Sample RC-64..56 sq.ft of 12"x12" blue vinyl asbestos floor tile(not adhesive) on floor in front of bathrooms.
- 22. Sample RC-69..50 sq.ft of black tar coating adhering to corklike material on ceiling of a Stock Room in the Attic area.

ADDENDUM.

If positive flooring material is not visible the material will be located under loose carpeting.

The Basement Area floor contained 2-3" of ice on the day of the survey. It is possible that previously fallen/broken areas of asbestos transite and other suspect asbestos-containing materials maybe located underneath the ice.

No adhesive could be located underneath carpeting.

Sample Temperature Degrees C	Ci Yes Ci No Ci Nona	Tuphanic (Relinquished by:	SIGNATURE	the 1 - 13 " PLASTER	1 / · · /2 · · OEWALG	W = " - II + BLACK	WHITE WHITE	3214 4 1 - 4 1 - 4 VICE	\$ / x - 8 1 CELLING	* . " - 7 " COAY		30 4 25 4 6	* - 4 5	* - 3 ×		\$3-13-09 RC-1 BASEMENT -	Date Sample Sampled Number		CE ST	Name FORMER RICHMOND CH	12	ANGLO-AMERICAN ENVIRONMENTAL	
CAGES 2 THEN IS SAME MAD	Plans ensure you sign this Real	molecul Stephanie Anders	PHER CORNOCK	PRNT NAME	Cherry Carry 6.	& PANELS	BACKING O	Conform on FARECLASS TST	CABLE INSULATION - MIL			PANNT - in 14	PANELS - MILL RECEIVING	BLACK FIBERGLASS INSULATION UNDERLAY STORAGE		й	VERMICHLITEIN STORAGE ROOM # 2	Sample Identification	 Report Attention: PHIL CORNOCK		CLEAMERY Purchase Order AAE 10958	E-MALL: xukcop@aol.com		130900990
As Covel Page.	or build	Son 2325-09 10:40 PM	3-24-09 2-30pmusks	DALE	Sannes 12 1		5000	Loom V					- 6-10 DAY TURNICO INN'D	RM # 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· SAWRES PLEASE.	* PLM ONLY ON ALL		Remarks	Rush: O 24 nr	Standard C) Other C) Yes	ients Turnaround Time Compliance Monitoring		CHAIN OF CUSTODY RECORD	

130900990

のためない

ANGLO-AM	AMERICAN EN	ANGLO-AMERICAN ENVIRONMENTAL	Port	(2) (2)	CHAIN OF CUSTODY RECORD	Y RECORE
Morrisville, VT 05661 PHONE: (802) 888-4112	r 05661 2) 888-4112	E-MAIL: xukcop@dol.com	2dol.com	in ng si ng		
client Name	ىلىمىدىغەلىي ۋالايلۇل سەلىپ يېرىكى ^{بىرى} مەرىپىلىكى تەرىپىلىكى بىلىرىكى بىلىرىكى بىلىكى بىلىكى بىلىكى بىلىكى بى مەرىپىلىكى بىلىكى بىل		Purchase Order	LAB, Comments	Tumarourd Ime	Compliance
Address		phone			C) Standard C) Other	C) Yes
CIty	Side	bdeav drz	Report Attention: PHIL CORNOCK	-таконула - мар -	Rush:	U No
Sampled by: F	PHIL CORNOCK	Signature:	X X		Q 48 m	"] Portial
Sampled	Sample		Sample Identification		Remarks	
1.3.23.29		BASEMENT - PLASTER	BE CEILING IN PRODUCTION AREA	#1 (UNDER SAMPLE	27	
	V	Ì.	SULATION A	AREA CEL	72 2	
	-	No.	<1		~	ومغيدت ببراي فعناهم فالمتعاولين والتركي والتركي والمستعمر
	wearch Array	a - Winte	CORPORED ON CEMENT	CEILING NEXT TO PLODUCTION	> 4924	•
		N were by	jå ĝ		# *	
		1 - CEILING	C PANELS - PRODUCTION	ion aret #2	***	A A A A A A A A A A A A A A A A A A A
· · · · · ·	20	n - White	- ampanna	TSI ENDS - RODUCTION #	3 <	
	22	ANN -		CTION #3	We want the second s	and a subject of the second
ا * ر	22	n - COAV	164	X0 X	**	
	52	11 × 1	~	965 886		
8	24	a Jahre	SKIM LOAT ON TOP &	E SAMPLE # 22		and the other states of the state of the state of the state of the states of the states of the states of the state of the states of
	25		€. do la é	2 A	×~~	
8	26	" - CEILING	PANELS (+WALL)	stallage allea # 5		
	SIGNATURE			NAME	DATE	TIME
Relinquished By:	X	hand		PHILP CORNOCK	3-24-09 2	2:30 pm 115/5
Received By Laboratory	noratory.	mu Condes	ts I	Cohania Anderon	3/25/09 1	0:40
Custody Seal Intact	ntact	Further Comments:				Sampling Time:
LI Yes LI No	No CI None			5. E * 1. Portor		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sample Temperuture	nuture			. :		
Degrees C				1.		

Montivilia, VT 05661 E-MAIL: Xukcop@dol.com Client Name Phone Client Name Phone Address Phone Clip State Sampled Number Sampled Number Strip Clip Sampled Number Strip Clip Sampled Strip Strip Strip Strip	ANGLO-AMERICAN ENVIRONMENTAL
च य य	F CUSTO

e e e

130900990

市場議員を行いていたのでの時間は

ANGLO-AMERICA 19 Howard Street Morrisville, VT 05661 PHONE: (802) 888-4112 Client Name	ANGLO-AMERICAN ENVIRONMENTAL 19 Howard Street Morrisville, VT 05661 PHONE: (802) 888-4112 E-MAIL: xukcop@aol.com Client Name Purchase Order N		CHAIN OF CUSTODY RECORD
Client Name	Purchase Order	LAB, Comments	
Address	BUOLO B		_
Civ State	18 ZIP Report Attention: PHIL CORNOCK		80.00
Sampled by: PHIL CORNOCK	NOCK signature:	The Rue Line Line 3 A. a. A. Y.	
Date Sample Sampled Number	Sample Identification		
13-25-09 RC-39	IST FLOOR - INSULATION IN LOFT AREA	V MARANA S MARANA NA MARANANA NA MARANA NA	
2	2nd FLOOR - 9" & 9" VIMIL FLOOR TILE IN	RECEPTION OFFICE	<
1 June 1	" " - COLD ADHESH	OLE # 40	~
-42	" " - 9'49" VINYL FUDDATUE	T FLOOR OF CONF.	Raam V
£-	11 17 - 9×9° 1 1 1 1	OF CONFERENCE	1.4 1.4
1. 1. 1.	4 " " GOUS ASHESIVE UNDER SAMPLE	# 43	li veres
145	1. 1. 9 Kg2	N FLOOR	
	" " Q " Y " " " " HALLWAY	FLOOR - FRONT OF RECEPTION	202
(4)-	" Goud Admessive hudden Samplie	# 46	3
84-	" " CREAM LINOLEUM ON K	Frech	~~~
64- 2	> " " gryg" VINYL THE ON OFFICE FLOOR	FLOGA	5
k / -50	n n a n by a n	STOMAE ROOM FLOOR	×~.
15- 1-2	" " LINGLEYM IN OFFICE BATH	(Casen IGR	
Dalmmulehad Ry-	SIGNATURE	PRINT NAME	
ichiquienes sj.	St and the third	CORNECK	
Received By Laboratory:	phoni- malen Steph	have Anderson	
Custody Seal Infact	Further Comments:	Toned Buck	
ure	A IL SANNE HHIS (LAND FR TIL	C. ASSUMED (+))
Degrees C			TEST 414 SAMPLES

AND A AMEDIAN ENVIDONMENTAL		066006061			
19 Howard Street Morrisville, VT 05661 PHONE: (802) 888-4112	E-MAIL: Xukcop@gol.com		СНА	CHAIN OF CUSIODY RECORD	RECORD
Client Nome	Purchase Order		LAB. Comments	Tumoround Time	Compliance
Address	Phone			C Standard C Other	Li Yes
City State	Zip Report Attention: P	Report Attention: PHIL CORNOCK		Rush:	С 73
sampled by: PHIL CORNOCK	OCK Signature: K			0 40 R	L Parlia
Oate Sample Sampled Number		Sample Identification		Remarks	
	2nd Flood - COLD ADAGA	ABHENVE ANDERSAMPLE #51			
* · · 53		De.			•
	" ASPHALT ROOFING	TAC - ROOF DITSIDE WINDOW	DON OF LONF. RM	***	
		hree	13 2 13		
- 56	15" FLOOR - CEILING/WALL PANELS	ANELS - CLUSET ALEA UND	GR STAIRS	4	
	1 K (1)	PRODUK	K. 4		
13-14-19 - 58	Company -	R.	2nd France)		
- 59				"Boot of the second	
60		VAUCE?	1 STAILS 4		
2	SHEETROCK ON EMPLOYEE	se Room Wand	N N	3	
62	12" Y 12" VIMYL TING ON HE	HALLAN FLOOR	2		
63	E WYDER	K.	1		
140	2" BLUE VINYL TILE	ON FLOOR NEMA BATHROOMS	status and a second		and the second
	SIGNATURE	PRINT NAME		DATE	TIME
Kalinguished By:	A subdiverse for the same of the	Paro Co	D RANACK	3.24.09 2.2	2.30pm USAS
Received By Laboratory:	bronce andersen	Stephonie And	Inderson	3/25/09	1040
Custody Seal Intact	Further Comments:		NE BOULD	S N L N N N	Sampling Time:
CI Ves CI No CI None	lĝ	. a 🔉	or this		
Sample Temporature	NEXT IC	I am the sources			
Degrees C					

ļ	
ļ	es pi
	<u> </u>
	C.S.)
	Calles .
	ç.
	<u>د</u>
	Ó
	C.

ANGLO-AMERICAN ENVIRONMENTAL

ANGLO-AMERICAN ENVIRONMENTAL 19 Howard Street Morrisville, VT 05661 PHONE: (802) 888-4112 E-MAIL: xulkcope Client Name Address Environ Zip Phone Sampled by: PHIL CORNOCK Signature: Date Sample Sampled Number Sampled Number 1 14 64 FLO 62 127 1 65 Writte Skinkt CAT 68 Writte Skinkt CAT
Chrito
State
: PHIL CORNO
Rc- 65
89 *
69
SIGNATURE
Relinquished By:
Received By Laboratory:
Custody Seat Intact
Ly Yes CI No CI None
Sample Temperature

130900990

O saev@aG

新聞影響的於

unions en e	¹ Construction of the second seco			
Anglo 19 Ho	o Cornock o-American Environmental oward Street sville, VT 05661	Customer ID: Customer PO: Received: EMSL Order:	ANGL78 AAE/0958 03/25/09 10:40 AM 130900990	

Fax: Phone: (802) 888-4112
Project: Former Richmond Creamery; 125 Bridge St.; Richmond,
VT

 Customer PO:
 AAE/0958

 Received:
 03/25/09 10

 EMSL Order:
 130900990

 EMSL Proj:
 4/2/2009

 Report Date:
 4/2/2009

Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-Asbestos			Asbestos	
Sample	Location	Appearance	%	Fibrous	% Non-Fibrous	% Type	
RC-1 130900990-0001	Basement; Vermiculite in Storage Rm #2	Tan/Silver Non-Fibrous Homogeneous			100% Non-fibrous (other) m matrix, negative results cannot beguaranteed. Cor commended for proper quantification of asbestos in		
RC-2 130900990-0002	Basement; Vermiculite in Storage Rm #2	Tan/Silver Non-Fibrous Homogeneous			100% Non-fibrous (other) m matrix, negative results cannot beguaranteed. Cor commended for proper quantification of asbestos in		
RC-3 130900990-0003	Basement; Vermiculite in Storage Rm #2	Tan/Silver Non-Fibrous Homogeneous			100% Non-fibrous (other) m matrix, negative results cannot beguaranteed. Con ecommended for proper quantification of asbestos in		
RC-4 130900990-0004	Basement; Black FG Insul Underlay; Storage Rm #2	Black/Silver Non-Fibrous Heterogeneous	2%	Glass	98% Non-fibrous (other)	None Detected	
RC-5 130900990-0005	Basement; Ceiling Panels; Mile Receiving Rm	Gray Fibrous Homogeneous			80% Non-fibrous (other)	20% Chrysotile	
RC-6 130900990-0006	Basement; White Paint; Mile Receiving Rm Wall	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
RC-7 130900990-0007	Basement; Gray Paint; Mile Receiving Rm Wall	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	

Analyst(s)

Kevin Pine (70)

Red & PER-

Renaldo Drakes or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none detected may require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client Samples received in good condition unless otherwise noted. NVLAP Lab Code 101147-0, AIHA IHLAP 180179, MA AA0D0188

Bernard on a set of the set of	(4.14) S. J. Andrew M. S. M. J. Stationary and the stationary station of the stationary station of the stationary stationary stationary stationary stat	n i i i i i i i i i i i i i i i i i i i	
Anglo 19 Ho	o Cornock o-American Environmental oward Street isville, VT 05661	Customer ID: Customer PO: Received: EMSL Order:	ANGL78 AAE/0958 03/25/09 10:40 AM 130900990
Fax:	Phone: (802) 888-4112	EMSL Proj:	

Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Analysis Date:

Report Date:

4/2/2009

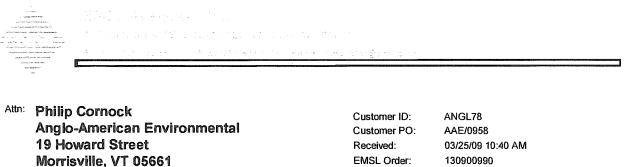
4/2/2009

Former Richmond Creamery; 125 Bridge SL; Richmond,

		9.				
		Non-Asbestos		estos	Asbestos	
ample	Location	Appearance	%	Fibrous	% Non-Fibrous	% Туре
RC-8 130900990-0008	Basement; Ceiling Panels; Milk Silo Rm	Gray Fibrous Homogeneous			80% Non-fibrous (other)	20% Chrysotile
RC-9 130900990-0009	Basement; Wire Cable Insulation; Milk Silo Rm	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
RC-10 130900990-0010	Bsmt; White Compound on FG TSI Ends; Milk Silo Rm	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
RC-11 130900990-0011	Bsmt; Blk Back on Styrofoam Insul; Milk Silo Floor	Gray Fibrous Homogeneous		Cellulose Glass	5% Non-fibrous (other)	None Detected
RC-12 130900990-0012	Basement; Ceiling Panels in Production Area #1	Gray Fibrous Homogeneous			80% Non-fibrous (other)	20% Chrysotile
RC-13 130900990-0013	Basement; Plaster Ceiling in Production Area #1	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
RC-14 130900990-0014	Basement; Plaster Ceiling in Production Area #1	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
RC-15 130900990-0015	Basement; Insul abv Packaging Area Ceiling/Walls	Tan Fibrous Homogeneous	95%	Cellulose	5% Non-fibrous (other)	None Detected

Analyst(s)

Project:


VT

Kevin Pine (70)

Kend de la trans

Renaldo Drakes or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none detected may require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method timitations. Interpretation and use of test results are the responsibility of the client Samples received in good condition unless otherwise noted.

Fax: Phone: (802) 888-4112 Project: Former Richmond Creamery; 125 Bridge St.; Richmond, VT
 Customer PO:
 AAE/0958

 Received:
 03/25/09 10

 EMSL Order:
 130900990

 EMSL Proj:
 4/2/2009

 Report Date:
 4/2/2009

Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-Asbestos		bestos	<u>Asbestos</u>	
ample	Location	Appearance	%	Fibrous	% Non-Fibrous	% Туре	
RC-16 130900990-0016	Basement; Insul abv Packaging Area Ceiling/Walls	Tan Fibrous Homogeneous	95%	Cellulose	5% Non-fibrous (other)	None Detected	
RC -17 130900990-0017	Bsmt; Wht Compound on Cement Ceiling next to Prod	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
RC-18 130900990-0018	Bsmt; Wht Compound on Cement Ceiling next to Prod	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
RC-19 130900990-0019	Basement; Ceiling Panels; Production Area #2	White Fibrous Homogeneous			80% Non-fibrous (other)	20% Chrysotile	
RC-20 130900990-0020	Bsmt; White Compound; FG TSI Ends; Production #3	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
RC-21 130900990-0021	Basement; Mud on Pipe Joint; Production Area #3	Non-Fibrous			100% Non-fibrous (other)	None Detected	
RC-22 130900990-0022	Basement; Gray Plaster on Ceiling; Milko Scan Room	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	

Analyst(s)

Kevin Pine (70)

 $\mathcal{A}(x, i)$

Renaldo Drakes or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none detected may require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client Samples received in good condition unless otherwise noted. NVLAP Lab Code 101147-0, AIHA IHLAP 180179, MA AA000188

	Philip Cornock	Customer ID:	ANGL78
	Anglo-American Environmental	Customer PO:	AAE/0958
	19 Howard Street	Received:	03/25/09 10:40 AM
	Morrisville, VT 05661	EMSL Order:	130900990
Fax: Project:	Phone: (802) 888-4112 Former Richmond Creamery; 125 Bridge St.; Richmond, VT	EMSL Proj: Analysis Date: Report Date:	4/2/2009 4/2/2009

Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

				<u>Non-As</u>	Asbestos	
ample	Location	Appearance	%	Fibrous	% Non-Fibrous	% Туре
RC-23 130900990-0023	Basement; Gray Plaster on Ceiling; Milko Scan Room	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
RC-24 130900990-0024	Basement; White Skim Coat on Top of Sample #22	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
RC-25 130900990-0025	Basement; White Skim Coat on Top of Sample #23	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
RC-26 130900990-0026	Basement; Ceiling Panels/Wall; Storage Area #5	Gray Fibrous Homogeneous			80% Non-fibrous (other)	20% Chrysotile
RC-26A 130900990-0027	Basement; Ceiling Panels/Wall; Storage Area #5	Gray Fibrous Homogeneous			80% Non-fibrous (other)	20% Chrysotile
RC-27 130900990-0028	1st FI; Ceiling Panels in Ammonia Compressal Rm	Gray Fibrous Homogeneous			80% Non-fibrous (other)	20% Chrysotile
RC-28 130900990-0029	1st FI; Black Back to FG Insulation; Amm Comp Rm	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
RC-29 130900990-0030	1st Fl; 12x12 VT; Shipping/Receiving Office	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Analyst(s)

Kevin Pine (70)

Just the black for

Renaldo Drakes or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none detected may require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client Samples received in good condition unless otherwise noted. NVLAP Lab Code 101147-0, AIHA IHLAP 180179, MA AA00D188

1	Philip Cornock	Customer ID:	ANGL78
	Anglo-American Environmental	Customer PO:	AAE/0958
	19 Howard Street	Received:	03/25/09 10:40 AM
	Morrisville, VT 05661	EMSL Order:	130900990
Fax: Project:	Phone: (802) 888-4112 Former Richmond Creamery; 125 Bridge St.; Richmond, VT	EMSL Proj: Analysis Date: Report Date:	4/2/2009 4/2/2009

Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

	Non-Asbestos		53103	<u>Asbestos</u>	
Location	Appearance	%	Fibrous	% Non-Fibrous	% Туре
1st FI; 2x2 Susp CT; Shipping/Receiving Office	Gray Fibrous Homogeneous			20% Non-fibrous (other)	None Detected
1st FI; Ceiling Panels; Storage Rm #6/Culture Rm	Gray Fibrous Homogeneous			80% Non-fibrous (other)	20% Chrysotile
1st Fl; 12x12 Fibrous Ceiling Tiles; Lab	Tan Fibrous Homogeneous	95%	Cellulose	5% Non-fibrous (other)	None Detected
1st Fl; Wire Cable Insulation; Culture Rm	Brown Fibrous Heterogeneous	90%	Cellulose	10% Non-fibrous (other)	None Detected
1st Fl; 9x9 Vinyl Tile; Floor of Lab	Tan Non-Fibrous Homogeneous			95% Non-fibrous (other)	5% Chrysotile
1st Fl; Black Adhesive on back of Sample #34	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
1st Fl; Wire Cable Insulation; Starter Rm	Tan Fibrous Homogeneous			10% Non-fibrous (other)	None Detected
1st Fl; Black Tar Fallen Ceiling; Storage Rm #6	Black Fibrous Homogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
	1st FI; 2x2 Susp CT; Shipping/Receiving Office 1st FI; Ceiling Panels; Storage Rm #6/Culture Rm 1st FI; 12x12 Fibrous Ceiling Tiles; Lab 1st FI; Wire Cable Insulation; Culture Rm 1st FI; 9x9 Vinyl Tile; Floor of Lab 1st FI; Black Adhesive on back of Sample #34 1st FI; Wire Cable Insulation; Starter Rm 1st FI; Black Tar Fallen Ceiling;	1st FI; 2x2 Susp CT; Shipping/Receiving OfficeGray Fibrous Homogeneous1st FI; Ceiling Panels; Storage Rm #6/Culture RmGray Fibrous Fibrous Homogeneous1st FI; 12x12 Fibrous Ceiling Tiles; LabTan Fibrous Homogeneous1st FI; 12x12 Fibrous Ceiling Tiles; LabTan Fibrous Homogeneous1st FI; Wire Cable Insulation; Culture RmBrown Fibrous Heterogeneous1st FI; 9x9 Vinyl Tile; Floor of LabTan Non-Fibrous Homogeneous1st FI; Black Adhesive on back of Sample #34Black Non-Fibrous Homogeneous1st FI; Wire Cable Insulation; Starter RmTan Fibrous Homogeneous1st FI; Black Tar Fallen Ceiling; Stares Dm #feTan Fibrous Homogeneous	1st FI; 2x2 Susp CT; Shipping/Receiving Office Gray Fibrous Homogeneous 50% 30% 1st FI; Ceiling Panels; Storage Rm #6/Culture Rm Gray Fibrous Homogeneous 50% 30% 1st FI; Ceiling Panels; Storage Rm #6/Culture Rm Gray Fibrous Homogeneous 50% 90% 1st FI; 12x12 Fibrous Ceiling Tiles; Lab Tan Homogeneous 95% 90% 1st FI; Wire Cable Insulation; Culture Rm Brown Fibrous Heterogeneous 90% 1st FI; 9x9 Vinyl Tile; Floor of Lab Tan Non-Fibrous Homogeneous 90% 1st FI; Black Adhesive on back of Sample #34 Black Non-Fibrous Homogeneous 70% 1st FI; Wire Cable Insulation; Starter Rm Tan Fibrous Homogeneous 70% 1st FI; Black Tar Fallen Ceiling; Storage Bm #6 Black Storage Bm #6 30%	1st FI; 2x2 Susp CT; Shipping/Receiving OfficeGray Fibrous Homogeneous50% S0% Min. Wool1st FI; Ceiling Panels; Storage Rm #6/Culture RmGray Fibrous Homogeneous30% Min. Wool1st FI; Ceiling Panels; Storage Rm #6/Culture RmGray Fibrous Homogeneous95% Cellulose1st FI; 12x12 Fibrous Ceiling Tiles; LabTan Fibrous Homogeneous95% Cellulose1st FI; Wire Cable Insulation; Culture RmBrown Fibrous Heterogeneous90% Cellulose1st FI; 9x9 Vinyl Tile; Floor of LabTan Non-Fibrous Homogeneous90% Cellulose1st FI; Black Adhesive on back of Sample #34Black Homogeneous70% Cellulose Cellulose1st FI; Wire Cable Insulation; Starter RmTan Non-Fibrous Homogeneous70% Cellulose Cellulose1st FI; Black Tar Fallen Ceiling; Storage Bm #feBlack Fibrous Homogeneous30% Cellulose Cellulose	1st Fl; 2x2 Susp CT; Shipping/Receiving Office Gray Fibrous Homogeneous 50% Cellulose 30% Min. Wool 20% Non-fibrous (other) 1st Fl; 2x2 Susp Office Gray Fibrous Homogeneous 50% Cellulose 30% Min. Wool 20% Non-fibrous (other) 1st Fl; Ceiling Panels; Storage Rm #6/Culture Rm Gray Fibrous Homogeneous 80% Non-fibrous (other) 1st Fl; 12x12 Fibrous Ceiling Tiles; Lab Tan Fibrous Homogeneous 95% Cellulose 5% Non-fibrous (other) 1st Fl; Wire Cable Rm Brown Fibrous Heterogeneous 90% Cellulose 10% Non-fibrous (other) 1st Fl; 9x9 Vinyl Tile; Floor of Lab Tan Non-Fibrous Homogeneous 90% Cellulose 10% Non-fibrous (other) 1st Fl; Black Adhesive on back of Sample #34 Black Non-Fibrous Homogeneous 100% Non-fibrous (other) 10% Non-fibrous (other) 1st Fl; Black Tar Rm Tan Fibrous Homogeneous 70% Cellulose 20% Glass 10% Non-fibrous (other) 1st Fl; Black Tar Fallen Ceiling; Storae Rm dt Black Fibrous 30% Cellulose 70% Non-fibrous (other)

Analyst(s)

Kevin Pine (70)

Paul de Refres

Renaldo Drakes or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none detected may require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted. NVLAP Lab Code 101147-0, AIHA IHLAP 180179, MA AA000188

EFER Angles in the state of the second state o

	Philip Cornock	Customer ID:	ANGL78
	Anglo-American Environmental	Customer PO:	AAE/0958
	19 Howard Street	Received:	03/25/09 10:40 AM
	Morrisville, VT 05661	EMSL Order:	130900990
Fax: Project:	Phone: (802) 888-4112 Former Richmond Creamery; 125 Bridge St.; Richmond, VT	EMSL Proj: Analysis Date: Report Date:	4/2/2009 4/2/2009

Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-Asbestos			<u>Asbestos</u>	
Sample	Location	Appearance	%	Fibrous	% Non-Fibrous	% Type	
RC-38 130900990-0039	1st Fl; Blk Tar Paper Fallen Ceiling; Stg Rm #6	Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected	
RC-39 130900990-0040	1st FI; Insulation in Loft Area	Tan Fibrous Homogeneous	95%	Cellulose	5% Non-fibrous (other)	None Detected	
RC-40 130900990-0041	2nd Fl; 9x9 Vinyl Floor Tile; Reception Area	Tan Non-Fibrous Homogeneous			95% Non-fibrous (other)	5% Chrysotile	
RC-41 130900990-0042	2nd Fl; Gold Adhesive under Sample #40	Yellow Non-Fibrous Homogeneous	10%	Cellulose	90% Non-fibrous (other)	None Detected	
RC-42 130900990-0043	2nd Fl; 9x9 VFT; Closet Floor; Conference Rm	T <i>a</i> n Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile	
RC-43 130900990-0044	2nd Fl; 9x9 VFT; Conference Rm Floor	Gray Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile	
RC-44 130900990-0045	2nd Fl; Gold Adhesive under Sample #43	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
RC-45 130900990-0046	2nd Fl; 9x9 Vinyl Floor Tile; Bathroom Floor	Gray Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile	

Analyst(s)

Kevin Pine (70)

Rod Rha

Renaldo Drakes or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none detected may require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted.

Attn: Philip Cornock	mental	Customer ID:	ANGL78
Anglo-American Environ		Customer PO:	AAE/0958
19 Howard Street		Received:	03/25/09 10:40 AM
Morrisville, VT 05661		EMSL Order:	130900990
Fax: Pho Project: Former Richmond Creamery; 1 VT	ne: (802) 888-4112 25 Bridge St.; Richmond,	EMSL Proj: Analysis Date: Report Date:	4/2/2009 4/2/2009

Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

		Non-Asbestos				Asbestos	
Sample	Location	Appearance	%	Fibrous	% Non-Fibrous	% Туре	
RC-46 130900990-0047	2nd Fl; 9x9 VFT; Hallway Floor; Front Reception	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
RC-47 130900990-0048	2nd Fl; Gold Adhesive under Sample #46	Yellow Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile	
RC-48 130900990-0049	2nd Fl; Cream Linoleum; Kitchen Floor	Gray/White Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected	
RC-49 130900990-0050	2nd FI; 9x9 Vinyl Floor Tile; Office Floor	Gray Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile	
RC-50 130900990-0051	2nd FI; 9x9 Vinyl Floor Tile; Storage Rm Floor	Gray Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile	
RC-51 130900990-0052	2nd Fl; Cream/Green Linoleum; Office Bathroom	Tan Fibrous Heterogeneous			70% Non-fibrous (other)	30% Chrysotile	
RC-52 130900990-0053	2nd FI; Gold Adhesive under Sample #51	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
RC-53 130900990-0054	Ext Blue Siding around Tower Block	Gray Fibrous Homogeneous			80% Non-fibrous (other)	20% Chrysotile	

Analyst(s)

Kevin Pine (70)

سويا منهم المجمول المالي المناسم المناسم المناسم المناسم المناسم المناسم المناسبة المعالم المناسبة المناسبة الم

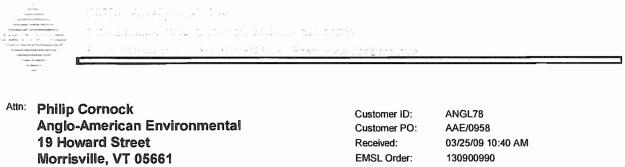
Renaldo Drakes or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none detected may require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client Samples received in good condition unless otherwise noted.

1	^o hilip Cornock	Customer ID:	ANGL78
	Anglo-American Environmental	Customer PO:	AAE/0958
	19 Howard Street	Received:	03/25/09 10:40 AM
	Morrisville, VT 05661	EMSL Order:	130900990
Fax: Project:	Phone: (802) 888-4112 Former Richmond Creamery; 125 Bridge St.; Richmond, VT	EMSL Proj: Analysis Date: Report Date:	4/2/2009 4/2/2009

Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Asbestos			
Sample	Location	Appearance	%	Fibrous	% Non-Fibrous	 % Туре
RC-54 130900990-0055	Ext Asphalt Roofing Tar; Outside Window of Conf Rm	Black Non-Fibrous Homogeneous	20%	Cellulose	80% Non-fibrous (other)	None Detected
RC-55 130900990-0056	Ext Asphalt Roof Tar Paper, O/S Window of Conf Rm	Black Fibrous Homogeneous	20%	Cellulose	80% Non-fibrous (other)	None Detected
RC-56 130900990-0057	1st Fl; Ceiling/Wall Panels; Closet under Stairs	Gray Fibrous Homogeneous			80% Non-fibrous (other)	20% Chrysotile
RC-57 130900990-0058	Basement; Ceiling Panels; Production Area #3	Gray Fibrous Heterogeneous			80% Non-fibrous (other)	20% Chrysotile
RC-58 130900990-0059	2nd Fl; Sheetrock Compound; Storage Rm Wall	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
RC-59 130900990-0060	2nd FI; Sheetrock Compound; Employee Rm Ceiling	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
RC-60 130900990-0061	2nd FI; Sheetrock Compound; Hwy Wall Edge; Stairs	White Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile


Analyst(s)

Kevin Pine (70)

Kad A. R. Har

Renaldo Drakes or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none detected may require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client Samples received in good condition unless otherwise noted. NVLAP Lab Code 101147-0, AIHA IHLAP 180179, MA AA000188

Fax: Phone: (802) 888-4112
Project: Former Richmond Creamery; 125 Bridge St.; Richmond,
VT

 Customer PO:
 AAE/0958

 Received:
 03/25/09 10:4

 EMSL Order:
 130900990

 EMSL Proj:
 4/2/2009

 Report Date:
 4/2/2009

Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

		-					
			Non-Asbestos			Asbestos	
Sample	Location	Appearance	%	Fibrous	% Non-Fibrous	% Туре	
RC-61 130900990-0062	Sheetrock on Employee Rm Wali	White Fibrous Homogeneous	5%	Glass	95% Non-fibrous (other)	None Detected	
RC-62 130900990-0063	12x12 Vinyl Floor Tile; Hallway Floor	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
RC-63 130900990-0064	Gold Adhesive under Sample #62	Yellow Non-Fibrous Homogeneous	5%	Cellulose	95% Non-fibrous (other)	None Detected	
RC-64 130900990-0065	12x12 Blue Vinyl Tile; Floor near Bathrooms	Blue Non-Fibrous Homogeneous			98% Non-fibrous (other)	2% Chrysotile	
RC-65 130900990-0066	2nd FI; 12x12 Vinyl Tile; Floor of Employee Rm	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
RC-66 130900990-0067	2nd Fl; 12x12 Vinyl Tile; Floor of Storage Rm #11	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
RC-67 130900990-0068	2nd Fl; 12x12 Vinyl Tile; Floor of Storage Rm #11	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
RC-68 130900990-0069	White Skim Coat Plaster; Ceiling abv Employee Rm	White Non-Fibrous Heterogeneous			100% Non-fibrous (other)	None Detected	

Analyst(s)

Kevin Pine (70)

- (- 17 / - ----

Renaldo Drakes or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none detected may require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted. NVLAP Lab Code 101147-0, AIHA IHLAP 180179, MA AA000188

лици 1921-1924 година интератористична организация организация 1940 година 1940 година 19	54F	un de la constante de la consta En l'Accepte de la constante de						
 When a maximum 2016 Short all blacks water with a bit and states and states of the states with a bit and states of the states of		an a dan sa						
Ang 19 H	ip Cornock Io-American Environmental Ioward Street risville, VT 05661	Customer ID: Customer PO: Received: EMSL Order:	ANGL78 AAE/0958 03/25/09 10:40 AM 130900990					
Fax: Project: Fo V1	Phone: (802) 888-4112 ormer Richmond Creamery; 125 Bridge St.; Richmond,	EMSL Proj: Analysis Date: Report Date:	4/2/2009 4/2/2009					

Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

		Non-Asbestos			Asbestos	
Sample	Location	Appearance	%	Fibrous	% Non-Fibrous	% Туре
RC-69	Black tar on Cork;	Black			90% Non-fibrous (other)	10% Chrysotile
130900990-0070	Ceiling Stock Rm; Attic	Non-Fibrous Homogeneous				

Analyst(s)

Kevin Pine (70)

AJEAS 1. . 10

Renaldo Drakes or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none detected may require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted.

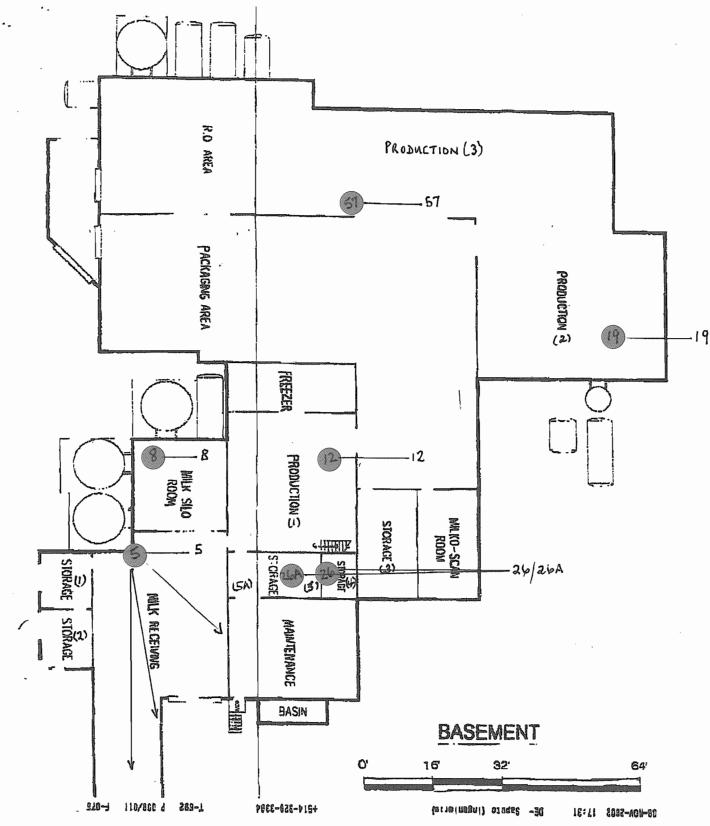
۸ 1	Philip Cornock Anglo-American Environmental 9 Howard Street /Iorrisville, VT 05661	Customer ID: Customer PO: Received: EMSL Order:	ANGL78 AAE/0958 03/25/09 10:40 AM 130900990
Fax: Project:	Phone: (802) 888-4112 Former Richmond Creamery; 125 Bridge St.; Richmond, VT	EMSL Proj: Analysis Date: Report Date:	4/6/2009 4/6/2009

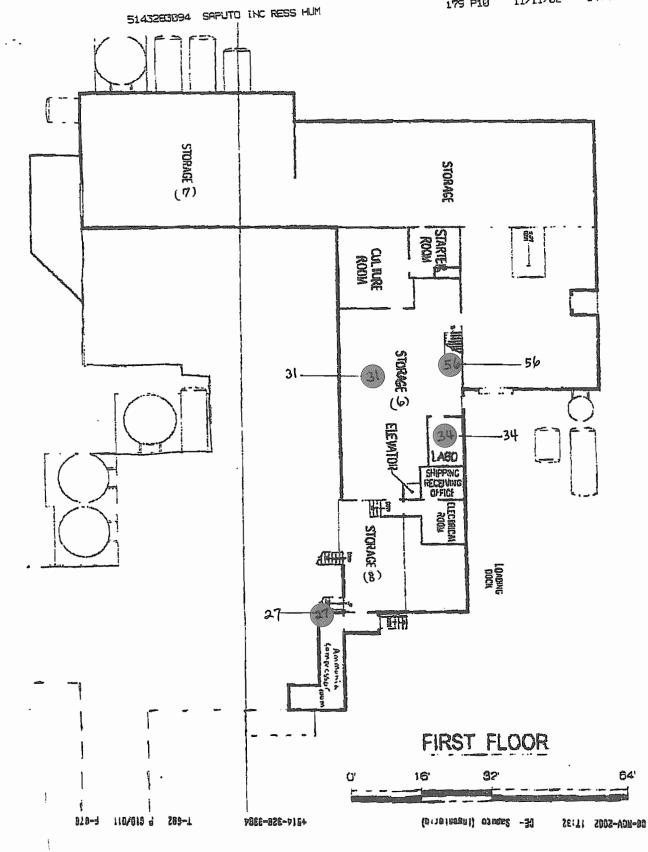
Asbestos Analysis of Bulk Material via EPA 600/R-93/116. Quantitation using 400 Point Count Procedure.

			Non-Asbestos		-Asbestos	<u>Asbestos</u>	
Sample	Location	Appearance	%	Fibrous	% Non-Fibrous	% Туре	
RC-60	2nd FI; Sheetrock	White			98.50% Non-fibrous (other)	1.50% Chrysotile	
130900990-0061	Compound; Hwy Wall Edge: Stairs	Non-Fibrous Homogeneous					

Analyst(s)

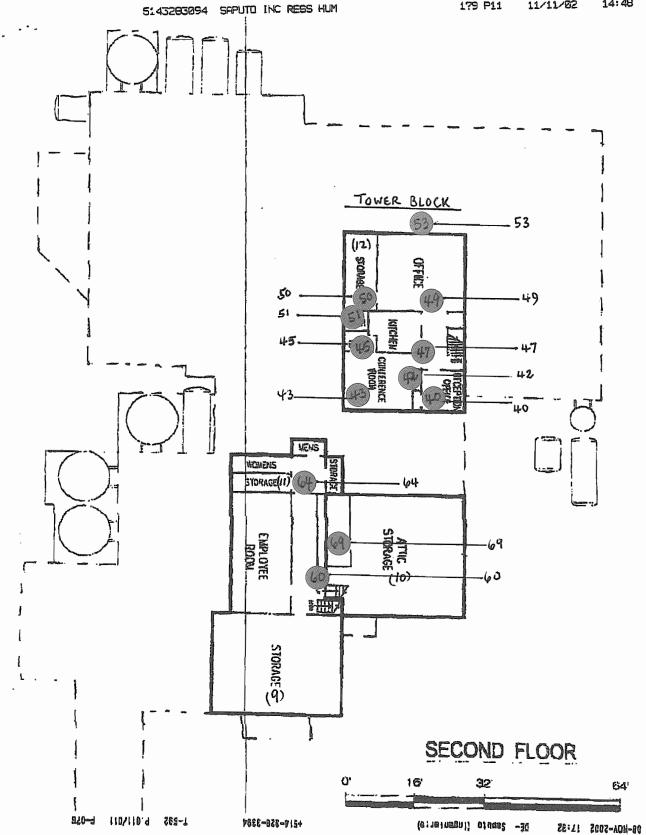
Renaldo Drakes (1)


Renaldo Drakes or other approved signatory


Unless otherwise noted, the results in this report have not been blank corrected.Samples received in good condition unless otherwise noted. NVLAP Lab Code 101147-0, AIHA IHLAP 180179, MA AA000188

PLMPointCount-1

THIS IS THE LAST PAGE OF THE REPORT.



.

5

14:48 11/11/82 179 P11

۱.

6

Vermont Department of Health Drawer 30 P.O. Box 70 Burlington, VT 06402 THIS CERTIFICATE SHALL REMAIN IN FORCE UNTIL THE EXPIRATION DATE UNLESS REVOKED OR VOIDED BEFORE THAT TIME. THIS CERTIFICATE IS NOT TRANSFERABLE AND IS VALID ONLY FOR THE ABOVE PARTY Mou and EXPIRES: Saturday, May 16, 2009 **ASBESTOS ANALYTICAL SERVICES** 病刑 VERMONT ASBESTOS REGULATORY PROGRAM -7 CONSTITUTION WAY SUITE 107 EMSL ANALYTICAL, INC. LICENSE: AL357102 WOBURN MA 01801 CERTIFICATE OF LICENSE 6000000000000

ASBESTOS PLM ANALYST

KEVIN PINE EMSL ANALYTICAL 7 CONSTITUTION WAY, SUITE 107 WORBURN MA 01801

Vermont Department of Health Orawer 30 P.O. Box 70 Surlington, VT 05402

AT ALL TIMES

LICENSE: PB017559

EXPIRES: Saturday, May 23, 2009

CERTIFICATE OF LICENSE VERMONT ASBESTOS REGULATORY PROGRAM

THIS CERTIFICATE SHALL REMAIN IN FORCE UNTIL THE EXPIRATION DATE UNLESS REVOKED OR VOIDED BEFORE THAT TIME. THIS CERTIFICATE IS NOT TRANSFERABLE AND IS VALID ONLY FOR THE ABOVE PARTY.

THIS CERTIFICATE IS FOR OFFICE USE ONLY. PHOTO ID CARD MUST BE ON SITE

APPENDIX 3

LEAD BASED PAINT AND MOLD INSPECTION REPORT

Richmond Vermont Brownfield Site

Former Saputo Cheese Facility

Lead Based Paint & Mold Inspection

Performed under Contract for: The Johnson Company, Inc. 100 State Street, Suite 600 Montpelier, VT 05602

April 24, 2009

Table of Contents

1.0	Introduction	2
1.1	Background Information	.2
2.0	Materials and Methods	2
2.1	Mold Sampling	.2
2.2	Lead Based paint sampling	.2
3.0	Standards	2
3.1	Mold Standards	.2
3.2	Lead Standards	.3
4.0	Results and Discussion	3
4.1	Mold Results	.3
4.2	Mold discussion	.4
4.3	Lead Based Paint Result - XRF	.4
4.4	Lead Based Paint Results – Lead Paint Chip Analysis	.7
4.5	Lead Based Paint Discussion	.7
4.6	Lead Testing Quality Assurance / Quality Control (QA/QC)	.8

TABLES

Table 1:	Mold Identification Results	
Table 2:	Lead Based Paint Results, XRF ¹ 4	,
Table 3:	Lead Paint Chip Results, Laboratory Analysis7	

1.0 INTRODUCTION

This report details a mold and lead based paint inspection performed at a Brownfield Site located in Richmond, Vermont. The inspection was completed on March 24, 2009 by EverGreen Environmental Health and Safety, Inc., (EverGreen) under contract to The Johnson Company, Inc. (JCO) of Montpelier, Vermont.

1.1 BACKGROUND INFORMATION

The Richmond, Vermont Brownfield Site under investigation by JCO is a former a dairy plant that was most recently operated by Saputo Cheese. As a cheese processing plant, several wall, floor, and ceiling surfaces had to meet Federal Food and Drug Administration standards to insure food safety. However, the building as a whole was constructed before 1978, so it is possible that lead based paint may have been used as a coating product in building locations removed from the cheese production activities.

Visible roofing leaks in the building have allowed water and moisture to penetrate into the interior. These conditions are favorable to mold growth if suitable substrates are present. During an initial walkthrough of the building, mold growth was observed.

2.0 MATERIALS AND METHODS

2.1 MOLD SAMPLING

The objective of the mold sampling for this inspection was to identify the type of mold present. Bulk samples of visible mold growth on interior building components were selected, bagged, labeled, and submitted under a chain of custody procedure to an accredited laboratory for identification. Mold identification was performed by a validated in-house microscopy method at Galson Laboratories. Laboratory results are compiled in Appendix A.

2.2 LEAD BASED PAINT SAMPLING

Lead based paint sampling was conducted using two methods:

- a. An X-Ray Fluorescence (XRF) Instrument: A direct reading method that uses x-ray energy to measure the amount of lead present coating the tested material. The type of instrument used for this inspection was an Innovx tube type XRF that does not carry a radioactive source. The performance characteristic sheet and other information about the unit are located in Appendix B.
- b. Paint Chip analysis: Using a dedicated scraping tool, additional samples were taken of coatings that had been previously tested via the XRF method. These samples served as a quality assurance test of XRF operation. The coating scrapings were selected, bagged, labeled, and submitted under a chain of custody procedure to an accredited laboratory. Paint Chips were analyzed using a modified EPA method SW 846 6010C / 6020A Lead analysis by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP/AES). Laboratory results are compiled in Appendix A.

3.0 STANDARDS

3.1 MOLD STANDARDS

Mold and mold spores are generally recognized as biological source of toxins, and are capable of producing an allergic response in humans. The extent of the toxic and allergenic response is determined by the type of mold, and the sensitivity of the person who is experience the exposure to the mold or mold spores. The growth of mold on interior surfaces of inhabited buildings is considered to be a key indicator of moisture problems within the structure. Standards or Threshold

Limit Values (TLVs) for airborne concentrations of mold, or mold spores, have not been set. Currently, there are no EPA regulations or standards for airborne mold contaminants.

3.2 LEAD STANDARDS

Lead is a recognized health hazard. Exposures to lead are regulated by the Occupational Health and Safety Administration (OSHA) in the workplace, and by the Environmental Protection Agency (EPA) in soil, water, air, and solid waste. Residential lead hazard standards have been promulgated and adopted by both the EPA and the US. Department of Housing and Urban Development (HUD), and are targeted towards preventing lead poisoning in children.

In 1992, U.S. Federal legislature enacted into law the Housing and Community Development Act of 1992. Title ten (Title X) of this Act is known as the "Residential Lead-based Paint Hazard Reduction Act of 1992". This law defines Lead -based Paint as paint that contains lead $\geq 1.0 \text{ mg}/\text{cm}^2$ or has a lead content at or greater than 0.5% by weight. Under the HUD / EPA regulations, lead is considered a hazard when equal to or exceeding 40 micrograms of lead in dust per square foot on floors, 250 micrograms of lead in dust per square foot on interior window sills, and 400 parts per million (ppm) of lead in bare soil in children's play areas, or 1200 ppm average for bare soil in the rest of the yard. The use of lead in paint was regulated by the U.S. Consumer Product Safety Commission in 1978; the legal maximum lead content of paint sold after this date is limited to no more than 0.06% by weight.

4.0 RESULTS AND DISCUSSION

4.1 MOLD RESULTS

Bulk samples locations and analysis results are as listed in the Table 1 below:

Sample ID	Sample Location	Substrate Type	Results
Mold-01-1	Bathroom Shower Ceiling, 2 nd floor office area, "Tower Block"	Pressed particle board	 mycelial fragments, light Aspergillus/Penicillium-like, light Cladosporium, light Other/Unidentified, light
Mold-01-2	Bathroom wall, 2 nd floor office area, "Tower Block"	Drywall / wood combination	 Mycelial fragments, light Aspergillus/Penicillium-like, moderate Cladosporium, light Other/Unidentified, light
Mold-01-3	Conference Rm ceiling, 2 nd floor office area, "Tower Block"	Ceiling tile, particleboard	 Mycelial fragments, light Aspergillus/Penicillium-like, light Basidiospores, light Cladosporium, light
Mold-01-4	Basement, Production Room ceiling	Formica /transite -type surface	 Mycelial fragments, light Cladosporium, light Other/Unidentified, light

Table 1: Mold Identification Results

It should be noted that although the sampling results indicate "light" contamination, some sampling locations were visually determined to be heavily covered with mold-like substances.

4.2 MOLD DISCUSSION

All four mold types identified are ubiquitous, common to indoor environments that have moisture problems, and prevalent in outdoor environments in Northern New England. Aspergillus and Penicillium have similar morphology; they are grouped together for reporting purposes. Cladiosporium grows extremely well on cellulose-based materials. The Aspergillus / Penicillium-like molds are capable of producing toxic material that could be inhaled when disturbed; Cladiosporium is relatively non-toxic, but does elicit a significant allergenic response in affected individuals.

It should be noted that for identification purposes only, bulk materials speckled lightly with presumed mold were submitted to the laboratory; heavy growths of mold - like substances in the interior of the site were evident. If a decision is made to remediate or demolish the structure at the site, appropriate respiratory protection is highly recommended. Disturbance of the visible fungal growth will liberate spores, and has the potential to expose workers to fungal toxins.

4.3 LEAD BASED PAINT RESULT - XRF

The XRF analyses of interior and exterior coated surfaces throughout the building are tabulated in Table 2 below. Please note that the sampling numbers correspond to the labeled locations with regard to the site map as depicted in Appendix C.

Sample ID	Location	Coating Identification	mg /cm ²
	Basement / Main Production Areas:		
1	Milk receiving, east wall	Grey / White paint	0
2	Milk receiving, south wall toward east corner	White paint	0
3	Milk receiving, floor, yellow stripe, south end	Yellow stripe paint	0
4	Milk receiving, west wall at south end	Grey paint	0
5	Milk receiving, west wall, middle	White paint	0
6	Milk receiving, west wall, north end	White paint	0
7	Milk receiving, east wall, north end	Green graffiti spray paint	0
8	Milk receiving, east wall, brick	White paint	0
9	Storage room, east side of milk receiving, east wall	White paint	0
10	Storage room 1 east side of milk receiving, window sill	White paint	0
11	Maintenance, east wall, where fire extinguisher hung	Red paint patch	0
12	Maintenance, east wall, by exit door	White paint	0
13	Storage room, south side of maintenance, north wall	White paint	>1.0
14	Storage room, south side of maintenance, door trim	White paint	>1.52
15	Storage room adjacent to Micro-Scan room, west wall	White paint	0
16	Same location as above, different paint color	Grey paint	0
17	Micro-Scan room, east wall	White paint	4.98
18	Micro-Scan room, east wall, north end	Grey paint	0
19	Micro-Scan room, west wall, window trim	White paint	0
20	Production room, north wall	White paint	0
21	Iron stairway in Production room	Green paint	>1.0
22	Production room, north wall	Grey paint	0

Table 2: Lead Based Paint Results, XRF¹

Sample ID	Location	Coating Identification	mg /cm ²
23	Production room, freezer door	Green paint	0
24	Packaging area, south wall, formica-like board	White coating	0
25	Packaging area, east wall formica-like board	White coating	0
26	Reverse Osmosis (RO) room formica-like board	White coating	0
27	RO room, east wall, brick	White	0
28	RO room, east wall brick	Grey	0
29	RO room, east wall, window casing	Green paint	0
30	Production room, brick behind formica-like south wall	White coating	0
31	Production room, north wall, west end of room, brick	White coating	0
32	Production room, west wall, coating on cement behind formica-like wall covering	White coating	>1.0
33	Door in production area near maintenance	Grey paint	0
	First Floor Storage Rms, maintenance, lab		
34	Ammonia Compressor Room, door and casing	White paint	0
35	Ammonia Compressor room north end of east wall, brick	Red	0
36	Exit door off Ammonia Compressor room, exits west	Grey paint	0
37	Same door as above, white casing	White paint	0
38	Storage A, west wall, brick	White paint	0
39	Storage A, west wall, window casing (inside window)	Grey paint	4.13
40	Storage A, west wall between window	Grey paint	0
41	Storage A, west wall, window frame / trim	Grey paint	0
42	Storage A, door through north wall	Grey paint	1.24
43	Storage A, window on north wall, casing	White paint	0
44	Storage A, ceiling, I-beam	Grey paint	0
45	Storage B, door jamb, north entryway of room	Grey paint	>1.0
46	Storage B, door panel, north entryway of room	Grey paint	0
47	Storage B, Electrical room, south wall	White paint	1.00
48	Storage B, wood wall next to elevator	White paint	1.22
49	Storage B, west cinder block wall outside Lab	White paint	0
50	Storage B, ceiling, wood lathe above transite layer	Peeling wood	0
51	Storage B, Lab, cinder block on east wall	Pink paint	0
52	Same as above, different color paint	White paint	0
53	Storage B, Lab, brick, west wall	White paint	0
54	Storage B, stairwell on west end, closet, brick	White paint	0
55	Same as above, door to closet, door panel	Grey paint	1.04
56	Same as above, door to closet, door jamb	Grey paint	0
57	Storage B, east wall, brick	White paint	1.0
58	Storage B, south wall cinder block	White paint	0
59	Culture room, east wall, brick, 2 ft up from floor	White paint	0
60	Same as above, 5 ft up from floor	White paint	1.75

Sample ID	Location	Coating Identification	mg /cm ²
61	Culture room, south wall, brick	White paint	0
62	Storage C, north wall, brick Red paint		0
63	Storage C, window in north wall, fascia above window	White paint	>1.0
64	Storage C, same as above, window casing near floor	White paint	0
65	Storage D, I-beam	Red paint	0
66	Storage C, west wall, door, jamb	Grey paint	0
	Second Floor "Tower Block"		
67	Tower, stairwell, treads	Brown paint	0
68	Tower, wooden mopboard at top of stairwell	Beige paint	0
69	Tower, west wall, wood, near reception area	White paint	0
70	Tower, reception area, west wall window sill	White paint	0
71	Same as above, window casing	White paint	0
72	Same as above, exterior window sill	White paint	0
73	Tower, Conference room, north window, sill	White paint	0
74	Tower building, exterior cement shingles, north side	Blue paint	>1.0
75	Tower, bathroom, east wall window sill	White paint	0
76	Tower, kitchen, north wall, fiberboard	Light blue paint	0
77	Tower building, exterior cement shingle, south side	Blue paint	>1.0
78	Tower, main office, window, south side, casing	White paint	0
79	Tower, main office, window, south side, sill	White paint	0
80	Tower, main office, south wall, lathe behind paneling	White paint	0
	Red brick building 2 nd floor		
81	Storage E, west wall, wood	Cream paint	0
82	Same as above, drywall	Cream paint	0
83	Storage E, south wall, door jamb	White paint	0
84	Employee break room, plywood flooring	Grey paint	0
85	Employee break room, north wall, drywall	White paint	0
86	Employee break room, east wall window, sill	White paint	0
87	Employee break room, east wall window, casing 20" up from sill	White paint	4.30
88	Same as above, casing right at sill level	White paint	0
89	Same as above, window casing on north end of window	White paint	3.34
90	Women's room, south wall, wood	Grey paint	>1.0
91	Women's room, south wall, wood	White paint	0
92	Men's room, south wall, wood	Grey paint	>1.0
93	Men's room, entrance door	White paint	>1.0
94	South end of building section, Storage G, door	Brown paint	0
95	Attic Storage F, door jamb	White paint	0
96	Attic Storage F, stairwell to attic extension, door jamb	Blue / grey paint	2.81
97	Attic Storage F, north wall, former window casing	Dark blue paint	1.41
98	Exterior brick, west exterior wall, Attic Storage F	Red paint	0

Sample ID	Location	Coating Identification	mg /cm ²
99	Attic Storage F, west wall, window, casing	White paint	3.81
100	Attic Storage F, north wall, lath / plaster	White paint	>1.0
101	Attic Storage F, stairwell from employee room, north wall	Dark blue paint	2.12
102	Same as above, lath / plaster above door entry	Cream paint	2.12
103	Stairwell from Storage A to employee room, all walls	White paint	0
	Building exterior		
104	Loading dock to first floor, door, panel	Grey paint	1.72
105	Red brick, exterior of building, 48" up from floor level	Red paint	0
106	Foundation	Red paint	>1.0
107	Addendum to sample # 104 door casing, same location	White paint	0

¹ Positive results are highlighted in light red.

4.4 LEAD BASED PAINT RESULTS - LEAD PAINT CHIP ANALYSIS

For Quality Assurance / Quality Control purposes, samples of paint chips from XRF tested surfaces were analyzed by ICP/AES to ensure repeatability of results. Quality Control XRF testing results are included in the XRF information located in Appendix B. Please note that coatings which tested both negative and positive via XRF method were included in the QA/QC round. The results of laboratory analysis are listed in Table 3.

Sample ID	Location	XRF Results mg /cm ²	% Lead by weight, lab analysis
4	Milk receiving, west wall at south end	0	<0.0025
11	Maintenance, east wall, where fire extinguisher hung	0	0.0082
87	Employee break room, east wall window, casing 20" up from sill	4.3	6.8
89	Same as above, window casing on north end of window	3.34	3.5
96	Attic Storage F, stairwell to attic extension, door jamb	2.81	14
104	Loading dock to first floor, door, panel	1.72	1.5

 Table 3: Lead Paint Chip Results, Laboratory Analysis

4.5 LEAD BASED PAINT DISCUSSION

The use of lead based paint as a coating material in older structures is very common. At this site, the basement area where food production activities were conducted, much of the cement, brick, cinder block, formica-like wall panels, and drywall are relatively free from lead content, with the exception of four positive areas adjacent to food production (two in a maintenance storage area, one in the Micro-Scan room, and a positive lead paint coating on an iron stairway) and one positive reading in the Production room, on painted cement block located behind the formica-like paneling.

The first floor of the building is comprised of Storage Rooms A-D and utility rooms. Lead based coatings were found in 28% of the building components tested on this floor. Of the nine positives, five are associated with door & window components (door panels, jambs, window fascia and casings) and the other four were associated with either wood wall or brick wall coatings.

The second floor "Tower Block" section of the site, which housed the main office, conference room, kitchen and bathroom, was free of any lead based paint on the interior of this section. Testing on exterior light blue shingle material was performed on the north and south facing exterior walls; two positive results (one at each location) were recorded for this exterior shingle material.

The area of the building with the most positive results was the second floor, separate from the "Tower Block", and identified on the site map as the "Red Brick second floor" section. This area held the employee break and locker rooms, and an Attic Storage area that was once used as a maintenance room. Of the twenty - three tests taken in this area, eleven were positive (48%). The majority of the positive were confined to the Attic Storage area, where six of the eleven positives were detected. Much of the walls, doors, and window components in this area tested positive. The other five positives outside of the Attic Storage area were associated with the window components in the employee break room, and the wall and doors of the woman's and men's bathrooms.

The exterior of the building had a few positives, to include a door on the loading dock, first floor, the light blue shingles on the exterior of the Tower Block, and slight positives associated with the coatings on the foundation. Red brick and white paint on the exterior tested negative.

Overall, the pattern of lead based paint testing results matches the perceived age of the building and /or building component, and the use of the space where testing was performed. Areas where testing gave positive but low readings (>1.0 mg /cm²) indicate areas where lead paint may have been used in the past, but was removed and the building component re-coated with a more lead-friendly product. When lead based paint is stripped, commonly a residue is left behind that has enough lead content to test positive.

Demolition of this building will liberate lead dust that could contaminate the surrounding soil. In addition, both respiratory and personal protective equipment (coveralls, etc) and best hygiene practices need to be employed to safeguard workers when renovation or demolition activities take place. Special attention to the Red Brick second floor area is highly recommended to limit the amount of lead contaminated dust that could be released to the environment.

4.6 LEAD TESTING QUALITY ASSURANCE / QUALITY CONTROL (QA/QC)

Good correlation of test results (positive vs. negative) occurred between the XRF testing and the analysis of paint chips performed in the laboratory. Two samples in the milk receiving bay that tested negative for lead using the XRF were validated by the laboratory analysis. In addition, all samples that tested positive with the XRF also tested positive through laboratory analysis. For purposes of this report, the QA/QC field procedure verified the XRF positives. It should be noted that the units of measure between the XRF (mg /cm²) and the laboratory analysis (% by weight) are not the same, however the HUD definition of lead - based paint includes any paint that tests greater than 0.5% by weight of lead. Laboratory analysis shows that the four XRF positive samples meet this criterion.

APPENDIX A: LABORATORY RESULTS

6601 Kirkville Road	Client	: EverGreen Env. Health &	Safety, Inc.
East Syracuse, NY 13057	Site	: Richmond VT Brownfield	
(315) 432-5227	Project No.	: LBP-01-033109	
FAX: (315) 437-0571 www.galsonlabs.com	Date Sampled Date Received Date Analyzed Report ID	: 10-APR-09 : 14-APR-09	Account No.: 21064 Login No. : L191286

Lead

Sample ID	Lab ID	Weight g	Total ug	Conc mg/kg	Percent
LBP-01-4	L191286-1	0.099	<2.5	<25	<0.0025
LBP-01-11	L191286-2	0.10	8.3	82	0.0082
LBP-01-87	L191286-3	0.10	6800	68000	6.8
LBP-01-89	L191286-4	0.10	3600	35000	3.5
LBP-01-96	L191286-5	0.10	15000	140000	14
LBP-01-104	L191286-6	0.10	1500	15000	1.5

	OSHA PEL (TWA)		6010B/C;ICP;PAINT Appro	PR-09 NYS DOH # : 11626
>	-Less Than -Greater Than -Not Applicable	mg -Milligrams ug -Micrograms ND -Not Detected	m3 -Cubic Meters l -Liters ppm -Parts per Million	kg -Kilograms NS -Not Specified

	Client	: EverGreen Env. Health &	Safety, Inc.
6601 Kirkville Road	Site	: Richmond VT Brownfield	
East Syracuse, NY 13057 (315) 432-5227	Project No.	: LBP-01-033109	
FAX: (315) 437-0571	Date Sampled	: 31-MAR-09	Account No.: 21064
www.galsonlabs.com	Date Received	: 10-APR-09	Login No. : L191286
	Date Analyzed	: 14-APR-09	Incubation Temp : NA
	Report ID	: 607925	

Client ID : MOLD-01-1 Analysis : Screen Lab ID : L191286-7

Parameter	Level of contamination
Mycelial Fragments	Light
Acremonium-like	ND
Alternaria	ND
Ascospores	ND
Aspergillus/Penicillium-like	Light
Basidiospores	ND
Bipolaris/Drechslera	ND
Chaetomium	ND
Cladosporium	Light
Curvularia	ND
Epicoccum	ND
Fusarium	ND
Memnoniella	ND
Nigrospora	ND
Paecilomyces-like	ND
Pithomyces	ND
Rusts/Smuts	ND
Scopulariopsis	ND
Stachybotrys	ND
Torula	ND
Trichoderma-like	ND
Ulocladium	ND
Other/Unidentified	Light

Level of Quantitation: 1 Spore Analytical Method : GALSON IB-BULKS Sampler : Bulk			Submitted by: CDT LKS Approved by : RCF Date: 14-APR-09 QC by: Tony D'Amico		Approved by : RCF Date: 14-APR-09	
< -Less Than cm2 -Square Centimeters ND -Not Detected					NA -Not Applicable NS -Not Specified	

		LABURAIURI ANALISIS REPUR	.1
GALSON	Client	: EverGreen Env. Health &	Safety, Inc.
LABORATORIES	Site	: Richmond VT Brownfield	
East Syracuse, NY 13057 (315) 432-5227	Project No.	: LBP-01-033109	
FAX: (315) 437-0571	Date Sampled	: 31-MAR-09	Account No.: 21064
www.galsonlabs.com	Date Received	: 10-APR-09	Login No. : L191286
	Date Analyzed	: 14-APR-09	Incubation Temp : NA
	Report ID	: 607925	

Client ID : MOLD-01-2 Analysis : Screen Lab ID : L191286-8

<u>Parameter</u>	Level of contamination
Mycelial Fragments	Light
Acremonium-like	ND
Alternaria	ND
Ascospores	ND
Aspergillus/Penicillium-like	Moderate
Basidiospores	Light
Bipolaris/Drechslera	ND
Chaetomium	ND
Cladosporium	Light
Curvularia	ND
Epicoccum	ND
Fusarium	ND
Memnoniella	ND
Nigrospora	ND
Paecilomyces-like	ND
Pithomyces	ND
Rusts/Smuts	ND
Scopulariopsis	ND
Stachybotrys	ND
Torula	ND
<i>Trichoderma-</i> like	ND
Ulocladium	ND
Other/Unidentified	Light

	. of Quantitation: 1 Spore vtical Method : GALSON IB-BULKS .er : Bulk		Submitted by: CDT Approved by : RCF Date: 14-APR-09 QC by: Tony D'Amico	
< -Less Than cm2 -Square Centimeters ND -Not Detected	> CFU		-Cubic Meters -Grams	NA -Not Applicable NS -Not Specified

		LABUKAIUKI ANALISIS KEPUKI	
GALSON	Client	: EverGreen Env. Health & S	Safety, Inc.
LABORATORIES	Site	: Richmond VT Brownfield	
East Syracuse, NY 13057 (315) 432-5227	Project No.	: LBP-01-033109	
FAX: (315) 437-0571	Date Sampled	: 31-MAR-09 A	Account No.: 21064
www.galsonlabs.com	Date Received	: 10-APR-09	ogin No. : L191286
	Date Analyzed	: 14-APR-09	Incubation Temp : NA
	Report ID	: 607925	

```
Lab ID : L191286-9
```

Client	ID	: MOLD-01-3	
Analys.	i s	: Screen	

Parameter	Level of contamination
Mycelial Fragments	Light
Acremonium-like	ND
Alternaria	ND
Ascospores	ND
Aspergillus/Penicillium-like	Light
Basidiospores	Light
Bipolaris/Drechslera	ND
Chaetomium	ND
Cladosporium	Light
Curvularia	ND
Epicoccum	ND
Fusarium	ND
Memnoniella	ND
Nigrospora	ND
<i>Paecilomyces-</i> like	ND
Pithomyces	ND
Rusts/Smuts	ND
Scopulariopsis	ND
Stachybotrys	ND
Torula	ND
<i>Trichoderma</i> -like	ND
Ulocladium	ND
Other/Unidentified	ND

Level of Quantitation: 1 Spore Analytical Method : GALSON IB-BULKS Sampler : Bulk		Submitted by: CDT Approved by : RCF Date: 14-APR-09 QC by: Tony D'Amico	
 -Less Than cm2 -Square Centimeters ND -Not Detected 	> -Greater Than m CFU -Colony forming units of	m3 -Cubic Meters NA -Not Applicable g -Grams NS -Not Specified	

		LABORATORI ANALISIS KEPORI	
GALSON	Client	: EverGreen Env. Health & S	Safety, Inc.
LABORATORIES	Site	: Richmond VT Brownfield	
East Syracuse, NY 13057 (315) 432-5227	Project No.	: LBP-01-033109	
FAX: (315) 437-0571	Date Sampled	: 31-MAR-09 2	Account No.: 21064
www.galsonlabs.com	Date Received	: 10-APR-09	Login No. : L191286
	Date Analyzed	: 14-APR-09	Incubation Temp : NA
	Report ID	: 607925	

Client ID : MOLD-01-4 Analysis : Screen Lab ID : L191286-10

<u>Parameter</u>	Level of contamination
Mycelial Fragments	Light
Acremonium-like	ND
Alternaria	ND
Ascospores	ND
Aspergillus/Penicillium-like	ND
Basidiospores	ND
<i>Bipolaris/Drechslera</i>	ND
Chaetomium	ND
Cladosporium	Light
Curvularia	ND
Epicoccum	ND
Fusarium	ND
Memnoniella	ND
Nigrospora	ND
<i>Paecilomyces</i> -like	ND
Pithomyces	ND
Rusts/Smuts	ND
Scopulariopsis	ND
Stachybotrys	ND
Torula	ND
<i>Trichoderma-</i> like	ND
Ulocladium	ND
Other/Unidentified	Light

Level of Quantit Analytical Metho Sampler	n: 1 Spore : GALSON IB-BULKS : Bulk		Submitted by: CDT Approved by : RCF Date: 14-APR-09 QC by: Tony D'Amico	
< -Less Than cm2 -Square Centimeters ND -Not Detected	-Greater Than -Colony forming units			NA -Not Applicable NS -Not Specified

6601 Kirkville Read East Syracuse, NY 13057 (315) 432 5227 FAX: (315) 437-0571 www.calsonlabs.com Client Name : EverGreen Env. Health & Safety, Tro. Site : Richmond VT Brownfield Project No. : LBP 01-053109 Date Samples : 31-MAR 09 Account No.:

Date Received: 10 APR-09 Date Analyzed: 14-APR 09 Account No.: 21064 Login No. : 5191286

Unless otherwise noted below, all quality control results associated with the samples were within established control limits.

Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceeding the final result column may have near rounded in order to fit the report format and therefore, if carried through the calculations, may not yield an identical final result to the one reported.

The stated LOQs for each analyte represent the demonstrated 500 concentrations prior to correction for desorption efficiency (if applicable).

L191286 (Report TD: 607925) : SOPs: ib bulks(6)

< -Less Than > -Creater Than NA Not Applicable mg -Milligrams ug -Micrograms ND -Not Detecteo m3 Cubic Meters 1 Liters ppr -Parts per Million kg -Kilograms NS -Not Specified

GALSON GALSON	Check if change of address New Cliant ?	Report To : I.G.	Report To: Jerese Churchill 345 Mout Farm (24 Barton, Ut 05	24 5822	Indice to	EverGreen Safety Inc. 345 May	Farm	Health &
6601 Kirkvile Rd East Syracuse, NY 13057 Tei: (315) 432-5227 888-432-LABS (5227)		Phone No. : <u>802-673-3369</u> Fax No. :	-673-3369		Phone No. :	<u> </u>	· Ut 05822	2
Fax: (315) 437-0571 www.gaisonlabs.com		Site Name : Ric	Richmond VT Brownfield	Project :	Project : LBP-01-033109	Sample	Sampled By : TMC	
Need Results By: (surcharge)		ted using th	e FreePumpLoan ^m Program		Samples submitted using the FreeSamplingBadges tm Program.	ing the Free	SamplingBadges ⁿ	⁴ Program.
4 Business Days	Purchase Order No. :	No. :						
3 Business Days 50%		4147 3400	1403 1294	Car	Card Holder Name : Terese Churchill	Churchill	Ēxp.	Exp. : 06/11
Susiness Days 75% Next Day by 6pm 100%								
Next Day by Noon 150%		Email / rax results 10 : rerese Crutichili Email Address : tchurchili@evergreen-er	Email / rex results to : retese Criterine Email Address : tchurchill@evergreen-environment.com	Fax	Fax No. :			
Same Day 200%								
Sample Identification	Date Sampled	Collection Medium Pour OT	*Air Volume Passiv (Liters)	Passive Monitors (Min)	Analysis Requested		Method Reference	Specific DL. Needed
LBP-01-4	03/31/09	Bulk chips		Le Le	Lead (Paint) Mod SW 846	 	6060C / 6020A	
LBP-01-11	+							
L.BP-01-87								
LBP-01-89								
LBP-01-96								
LBP-01-104	7	>						-
Mold-01-1	03/31/09	Bułk substrate		SF	Spores / Mycelial Fragments		Microscopy	
Mold-01-2								
Mold-01-3								
Mold-01-4	\	7						
Yes No We normally add a laboratory blank for each analyte. We will charge you for this at our normal rate. If you that description of industry or process / interference's present in sampling area : Include a lab blank for the lead analysis only, please. Comments :	nally add a laboratory process / interference's	blank for each anah present in sampling ar	We normally add a laboratory blank for each analyte. We will charge you for this at our normal rate. If you agree please check "Yes" otherwise check "No", dustry or process / interference's present in sampling area : Include a lab blank for the lead analysis only, please.	or this at our n or the lead an	ormal rate. If you agre alysis only, please.	e please che	ck "Yes" otherwis	e check "No".
Chain of Custody	Print Name			Signature			Date/Time	8
Relinquished by :	leyese . Churchill	રા	ext my	227			04-03-2009	60
Heceived by LAB: H	ostelo		ACCERT A	1		- 7	10/01	1/0,1
	Samples received afte	r 3pm will be consi	$m{\psi}$ Samples received after 3pm will be considered as next day's business		* sample collection time X LPM = Air Vol.	LPM = Air Vo		Page 1 of 1

Page 8 of 10 Report Reference:1 Generated:15-APR-09 15:42

6601 Kirkville Road East Syracuse, NY 13057-0369 Phone: (888) 432-5227 Fax: (315) 437-0571 www.galsonlabs.com

Analytical Notes for Microbiology

Air-O-Cell[™] Cassettes

Air-O-Cell[™] cassettes and other spore traps may trap particles that can interfere with spore counts. Galson Laboratories provides an estimation of the density of these particles, referred to as a Crowding Factor. The Crowding Factor ranges from 0 to 4 and is explained below.

Crowding Factor	Explanation
0	No particles detected.
1	Particles are far apart and in low numbers; spore counts not affected.
2	Particles are close together and/or overlapping, occasionally obscuring spores; spore counts may be biased low.
3	Particles are crowded, frequently obscuring spores; spore counts are likely biased low.
4	Particles are overcrowded making analysis impossible; no spore counts provided. If certain spores are readily detectable, they are reported as "Detected".

Counts for any genus that exceed 300 spores are estimated to two significant figures.

Direct Microscopic Examination (Screens)

- Due to the inherent nature of screen samples, a spore count is not performed.
- Upon special request counts may be performed on swab, liquid, or bulk screens.
- Counts are never performed on tape lifts due to the nature of the samples to not have uniform distribution of spores.
- The amount of a particular spore detected is reported as a "Level of contamination": Light, Moderate, or Heavy.
- The level of contamination is a subjective measurement and corresponds to the general quantity of spores present in a sample. It also describes the amount of spores relative to one another.

Viable Fungi Analysis

- Standard growing conditions for viable fungi are $25^{\circ}C \pm 1^{\circ}C$ for 7 days.
- Standard growing conditions for viable thermophilic fungi are $37^{\circ}C \pm 1^{\circ}C$ for 7 days.
- Results are reported in colony forming units (CFUs). A CFU can originate from one or many spores.
- Galson Laboratories uses and provides Potato Dextrose agar for all cultureable fungal methods. We have found Potato Dextrose agar to be suitable for the culture of the widest range of organisms. Other agars submitted or requested by clients are grown under the above standard conditions unless otherwise requested by the client.
- Some fungi may not produce identifiable structures in culture or under standard growing conditions. These fungi will be considered sterile hyphae and reported as such.
- Lack of growth under standard conditions does not preclude the presence of fungi or its viability in a sample.
- Samples taken with impactor samplers are not corrected for a positive hole correction factor.
- Identification of fungal organisms is based on visual microscopic examination at up to seven days of growth under standard conditions. Due to the large numbers of different species that may comprise them, certain genera may appear similar due to variations in stages of their life cycles, growth requirements, and/or environmental stress. A very limited amount of identification overlap may occur due to morphological similarities.
- Final interpretation of results is up to the person(s) responsible for conducting the sampling.

Quality Assurance

Galson Laboratories maintains quality assurance through the following steps. There is a daily QC program for all analysts. Samples are QC reviewed on a daily basis. A second analyst reexamines samples that have no observable spores. All reports are reviewed prior to release by the section supervisor as well as by the QA department. In addition, Galson Laboratories is AIHA accredited for fungal analysis (air culturable, bulk culturable, surface culturable, air direct exam, bulk direct exam, and surface direct exam).

APPENDIX B: XRF PERFORMANCE CHARACTERIZATION SHEET

· Pine ·

V(h-001 (06/01/04)

6	Rurseu of Radiological H	riment of Environmental Protestion Iseth, PO Box 413, Trenton, NJ 08625- 986-5453 - Fex: (609) 984-5811	0415	
Check One:	,		119114	
Replater 1" s-ray r-ach	ine in fability		Factly Number	
ftegister 2"" x-ray Lunch Change informatic 1 on	Gre, 3 ^{re} stray machine, etc.		104948	
			Replace Mumber	
		NG MACHINE REGISTRAT		
NOTE: Replacement of a		n updatu. A replacement x-ray mach		τη.
		ADDRESS (Print or type		
Full Business Name	THE Envirnme	Mal Services		
Owner's Name Y O G	or M. Init.	Pinheiro	Pre Sident Tide (MD, DDS, DVM, etc)	
Cipt at	M. Init.	Industrial Parl	Title (MD, DDS, DVM, etc)	
		Industrial tark	((ar. N.). Main St	reet
<u> </u>	City State	2ip Code + 4 digit	Mercer	_
Telephone 609	371 - 9663	Zip Code + 4 digit Fax <u>609</u> + <u>371</u> Area Code	1663	
Bill To Address-if (iffer	ant from above: $\mathcal{P}(\mathcal{O},\mathcal{A})$	Area Code BDX 943 Hightsto	WALL (TART	70
				ن اس ف تحمد
(A separate registrs tion	is required for any transition	COMPLETED IN FUL		
ENTER Machine C Lega	ory (see machine source f	es schedule for description	a) 20 1) A	
Manufacturer	oux sustem	Model Name At A		<u>THIN</u> A FERMANEN ON RECORDS
Console Model No	A Console Serial No	. <u>8065</u>	ai No. 8 365 -	
Date Acquired	Max kVp:	35 Max mA 0.05 N		
Location (Room ID, Eurlden	ig, Colar, etc) if applicable:		(r' needed)	
MUST CIRCLE ONE	E: Type of X-ray Process		·····	INTA
A = Automi tic-fil				R
		CR = Computed Radiog	aphy .	il H
DR = Digits Radi	· ·	N = No film (Industrial	X-ray unite)	TION
REGULATORY RECUIREN	MENTS			6
2 NJAC 7:28 require : such See NJAC 7 28 for s sectific	Irative Code 7:28-3.12 requires on Nowners have a radiation safety so IS. Owners are responsible for ano	where of all x-ray equipment to regist unvays performed on the equipment of uning compliance with all regulations	er within 30 clays of acquisition, within 60 day: of acquisition	
<u> </u>	DO NOT SEND CHECK		TOTINUAC 724 St SEQ	
Kann		ce once the registration is comple	ite.	
	MINHEIRO	- th	niolant.	
- Ktr	Representative)	lent Cli	27/202	
Signature (C woord)	Representative	Date	<u> </u>	I
	· ···		· · · · · · · · · · · · · · · · · · ·	
Date Received			JUL - 3 2007	
JUN 2	7 For Bu	Data Returned	JUL - 3 2007	
real for the	, .			
			TAPES	

TIPES

] National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material[®] 2573

Lead Paint Film For Portable X-Ray Fluorescence Analyzers – Nominal 1.0 mg/cm² (Color Code: Red)

This Standard Reference Material (SRM) is intended for checking the calibration of portable, hand-held, x-ray fluorescence analyzers when testing for lead in paint coatings on interior and exterior building surfaces. A unit of SRM 2573 consists of a white polyester sheet, approximately 7.6 cm wide, 10.2 cm long, and 0.2 mm thick, coated with a single, red-colored paint layer, approximately 0.04 mm thick. A blank, SRM 2570, is also provided. The blank is coated with a lead-free, lacquer layer on a white polyester sheet of the same thickness as the lead paint samples. All sheets are over-coated with a clear, thin, plastic laminate to protect the surface from abrasion. SRM 2573 and SRM 2570 are two of a set of six paint films (SRM 2570 to SRM 2575) available as SRM 2579a.

The certified values for lead for this SRM and others in the series are reported in Table 1 in units of mg/cm². These values are based on measurements by isotope dilution inductively-coupled plasma mass spectrometry.

Table 1. Certified Lead Values

Level	Color Code	Lead Concentration, in mg/cm ²
SRM 2570	White (Blank)	<0.001
SRM 2571	Yellow	3.58 ± 0.39
SRM 2572	Orange	1.527 ± 0.091
SRM 2573	Red	1.040 ± 0.064
SRM 2574	Gold	0.714 ± 0.083
SRM 2575	Green	0.307 ± 0.021

The uncertainty of each certified value is expressed as an expanded uncertainty, U, at the 95 % level of confidence and is calculated according to the method described in the ISO Guide to the Expression of Uncertainty in Measurement [1,2]. Because of variability in the paint film between different sheets of each SRM, the uncertainties are 95 % prediction intervals. The expanded uncertainty is calculated as $U = ku_c$, where u_c is intended to represent, at the level of one standard deviation, the combined uncertainty due to material variability and measurement uncertainty. The coverage factor, k, is determined from the Student's *t*-distribution corresponding to the calculated effective degrees of freedom and 95 % level of confidence.

Expiration of Certification: The certification of this SRM is valid until 01 July 2009, within the uncertainty specified provided the SRM is handled and stored in accordance with the instructions given in this certificate (see Use and Handling). However, the certification will be nullified if the SRM is damaged, contaminated, or otherwise modified.

The support aspects involved in the preparation, certification, and issuance of this SRM were coordinated through the NIST Standard Reference Materials Program by B.S. MacDonald.

Willie E. May, Chief Analytical Chemistry Division

Thomas E. Gills, Director Office of Measurement Services

Gaithersburg, MD 20899 Certificate Issue Date: 29 November 1999

SRM 2573

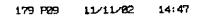
Page 1 of 2

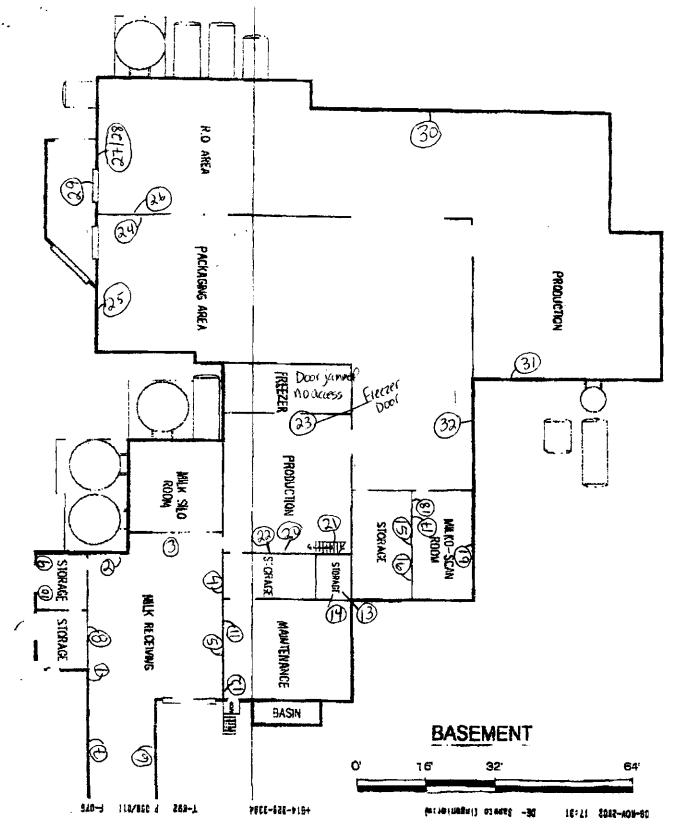
Innovx XRF Calibration Checksheet

Innovx Model # A-4000 Serial # 8065

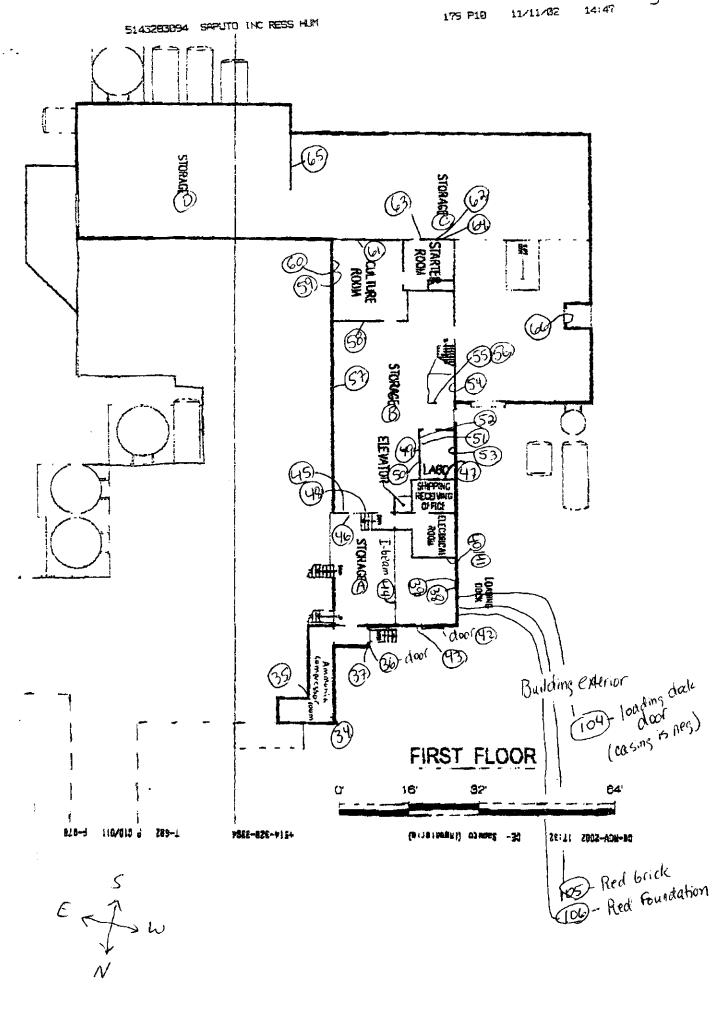
Date of Use: March 31, 2009 Analyst: Terese Churchill

Derese Churchiel

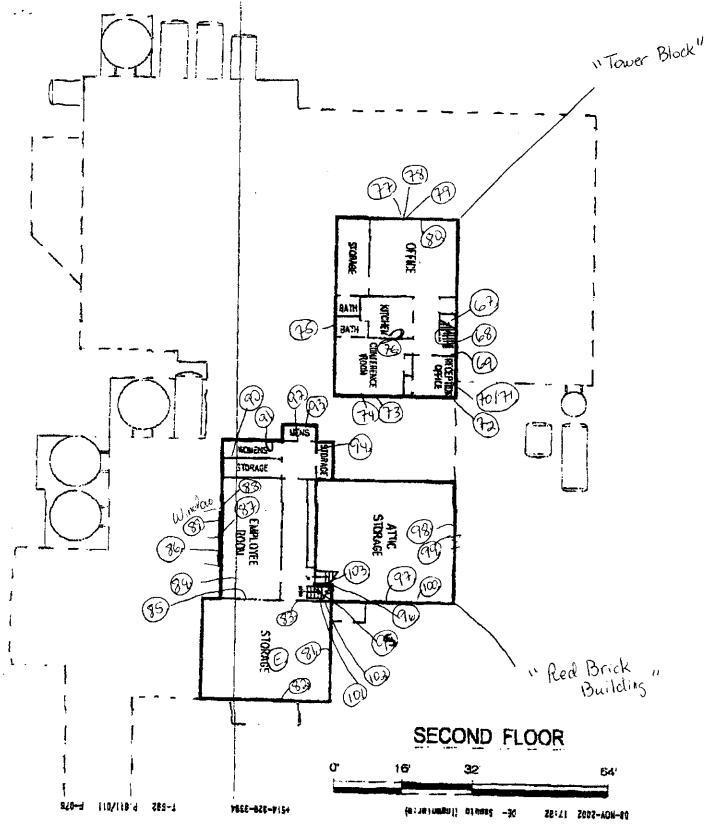

Signature:

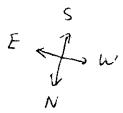

Calibration check method:

Supplied NIST Standard Reference Material 2573 Lead Paint Film - Nominal 1.0 mg $/cm^2$ Reference range: 0.97 - 1.12 mg $/cm^2$


Pre Calibrations	1.12 mg / cm ²
Control check 1	1.13 mg / cm ²
Control check 2 (Battery change)	1.10 mg / cm ²
Final Calibration	1.04 mg / cm ²

APPENDIX C: SITE MAP





E Jow N

×.

APPENDIX D: LABORATORY ACCREDITATION / INSPECTOR QUALIFICATIONS

The American Industrial Hygiene Association

acknowledges that

Galson Laboratories

6601 Kirkville Road, East Syracuse, NY 13057

Laboratory ID: 100324

has fulfilled the requirements of the AIHA Laboratory Quality Assurance Programs (LQAP), thereby, conforming to the ISO/IEC 17025:2005 international standard, General Requirements for the Competence of Testing and Calibration Laboratories. The above named laboratory, along with all premises from which key activities are performed, as listed above, have been accredited by AIHA in the following:

ACCREDITATION PROGRAMS

- INDUSTRIAL HYGIENE
- ✓ ENVIRONMENTAL LEAD

Accreditation Expires: 10/1/2010 Accreditation Expires: 10/1/2010 **ENVIRONMENTAL MICROBIOLOGY** Accreditation Expires: 10/1/2010 Accreditation Expires:

Specific Field(s) of Testing (FoT)/Method(s) within each Accreditation Program for which the above named laboratory maintains accreditation is outlined on the attached Scope of Accreditation. Continued accreditation is contingent upon successful on-going compliance with LOAP requirements. This certificate is not valid without the attached Scope of Accreditation. Please review the AIHA website for the most current status of the scope of accreditation.

Lawa R. Mc Mahon

FOOD

Laura R. McMahon Chairperson, Analytical Accreditation Board

Linksoy E. Boohn

Lindsay E. Booher, CIH, CSP President, AIHA

Date Issued: 09/30/2008

LEAD INSPECTOR TECHNICIAN I	Vermont Department of Health Drawer 30
TERESE CHURCHILL	P.O. Box 70 Burlington, VT 05402
345 MAY FARM ROAD Barton VT 05822	
LICENSE: IT115722 EXPIRES: Friday, Ma	arch 05, 2010
CERTIFICATE OF LICENSE VERMONT LEAD REGULATORY PROGRAM	
THIS CERTIFICATE SHALL REMAIN IN FORCE UNTIL THE EXPIRATION OR VOIDED BEFORE THAT TIME. THIS CERTIFICATE IS NOT TRANSFE	DATE UNLESS REVOKED RABLE AND IS VALID
ONLY FOR THE ABOVE PARTY.	amber Wells
THIS CERTIFICATE IS FOR OFFICE USE ONLY. PHOTO ID CARD MUST	DE ON SITE AT ALL TIMES

APPENDIX 4

D.O.T. UNKNOWN FINGERPRINT ANALYSIS AND CONTAINERIZED MATERIALS INVENTORY

Industrial Maintenance, Inc

D.O.T Unknown Fingerprint Analysis

Phone	Site Address Richmond, VT	Generator Richmond Cheese Co.

Job Number OY - IOII

		1	00	œ	4	6	n	r		2	-
	White granules	clear (oil viscesity)	Cicar Colly sistersity		L	terit		dear lister	white number	~	Clear Clear
Ю s	5	C S	E s		M	F) (C	0	ha
≺ Z{:	YN	×	×	× Z	<	×	×		×	Y (N)	ir Re
×	× N	Y N	×	Y (N)		Y (N)	× Ne			Y (N)	oxidiz
< z	\prec	×.	× z	Y N	YN	YN	Y (N)	Y	~	Y W	perc
	CIN	A	4 A	6-7	3-4	1	7	0	6-7	6.7	
< N	Y Q	Y N	Y N	N (S)		YN	X N	X	Y	Y N	flash
: (Y (N)	× Z	≺ z	× Ø	×	Y	× N	X	X	×	H2OR
: (3) z	Y N	≺ Z	×	© z	Y N	X (Z)	(c) z	Y (N)	× Ø	soluble
		× Ø	Y N	×	X N	× D	V V	X N	× Ø	X N	Cyanide
	$\sim t$	< Z)	× z	× Z	Y N	Y	Y N	× R	×	Y N)	sulfide
POLZH CA	S	11	used	Went in	heat w		Incation	Theat u		-	Bards
204	heat	heat	01/	1025H10	142504		Incated Hason	the the sout			Initials

1710 Erie Blvd, Schenectady, NY 12308 • (518) 346-5800 • (Fax) 346-6077 P.O. Box 508, Waterbury, VT 05676 • (802) 244-5979 fax (802) 244-8979 Providing Quality Industrial and Environmental Services Toll Free 888-888-PIMI (7464) • www.precisionindustrial.biz

Z

Z

		R	ichmond Cream	ery		
		3/31/09 Con	tainerized Mater	ials Inventory		
Origin/Where Container was Found*	Label	Container Size/type	How full	Condition	Notes	Corresponding ID # on D.O.T Unknown Fingerprint Analysis
Receiving Dock Area	Diesel Fuel Conditioner	1 Quart Plastic	Seems Full	OK		
Receiving Dock Area	Diesel Pep	32 Oz Metal Container	Seems Full	Rusted But Container Intact		
Receiving Dock Area	C-21 Acrylic Latex	1 Gallon Plastic	Full	ок		
Receiving Dock Area	Permatec 3000 Light Grey	2 5 Gallon Plastic Pails	1 Full? 1 Mostly Full	Container Intact	Staining on outside of container indicates paint	
Receiving Dock Area	[Unreadable] deodorizing cleaner	1 Gallon Plastic	1/2 full	Container Intact/label		
Receiving Dock Area	LPS 1 Greasless Lubricant	1 Gallon Plastic	Mostly Full	Container Intact		
Receiving Dock Area	Peak De-Icer and Claeaner	1 Gallon Plastic	1/3 Full	ОК	Windshield Washer Fluid	
Receiving Dock Area	None	Plastic ?55 Gallon Plastic Drum	Mostly Full	Poor condition, drum cracked	Oily Rags	
Receiving Dock Area	Primer, Paint	7 Pint and Quart Sized metal Containers	Some Empty, Some full mostly solidified	Rusty		
Receiving Dock Area	Omala Oil 220 Industrial Gear Oil	5 gallon plastic pail	Container Sealed, but appears to be empty	Container Intact		
Receiving Dock Area	Super Neutral Heavy Duty Concentrate	5 gallon plastic pail	Seems Full	Container Intact	Cleaning Solution	

		R	ichmond Cream	ery		
		3/31/09 Con	tainerized Mater	ials Inventory	1	1
Origin/Where Container was Found*	Label	Container Size/type	How full	Condition	Notes	Corresponding ID # on D.O.T Unknown Fingerprint Analysis
Receiving Dock Area	Lubrication Engineers Compressor Oil	2 ?10 gallon metal drums	1 is empty, other is sealed but seems to be mostly empty	Drums are rusty but intact		
Receiving Dock Area	Methyl Ethyl Ketone	One Gallon Metal Container ? 2.5 Gallon Plastic Bladder In Cardboard	Empty	Rusted		
Receiving Dock Area	Hand labelled "pH 4"	Casing	Appears Empty	Marginal		
Receiving Dock Area	None	5 gallon plastic pail	About 1/4 full of oily liquid	Open top, container intact		9
Storage Area Next to Receiving Dock	35% Hydrogen Peroxide	Two ?55 Gallon Plastic Drums	Empty	Containers Intact		
Storage Area Next to Receiving Dock	Super Shock Swimming Pool Concentrate	One ?55 Gallon Plastic Drum	Empty	Container Intact		
Storage Area Next to Receiving Dock	Detergent for cleaning membrane systems in	One ?55 Gallon Plastic Drum	Empty	Container Intact		
Storage Area Next to Receiving Dock	Foundation/Roof Coating Asbestos Free/Unfibered		Somewhat full; heavy/conents appear to be solidified	Dented but containers intact	Tar staining on containers	
Storage Area Next to Receiving Dock	Diamond Cledar non- yellowing blush resistant couring and yellowing compound	5 Gallon Metal Pail	Some liquid present	Rusted but intact	label indicates "Contains Xylene"	
Storage Area Next to Receiving Dock	Cold Process Adhesive	5 Gallon Metal Pail	Heavy - possibly full	Dented + rusted, but container intact	asphault, petroleum distillate, encapsulated	
Storage Area Next to Receiving Dock	Liquiform release agent hydrocarbon solvent	5 Gallon Metal Pail	1 mostly full, 1 partially full	Dented but containers intact		

		R	Richmond Cream	ery		
		3/31/09 Con	tainerized Mater	ials Inventory		
Origin/Where Container was Found*	Label	Container Size/type	How full	Condition	Notes	Corresponding ID # on D.O.T Unknown Fingerprint Analysis
Storage Area Next to Receiving Dock	Conifilm evaporation reducer	Two 1 Gallon plastic containers	1 1/3 full, 1 1/8 full	Dented but containers intact	Label indicates VOC content as applied 11 gm/l (1 gallon of concentrate to 9 gallons of water)	
Storage Area Next to Receiving Dock	Design-Crete color release and color hardeners: silver, bone color, philly gray, light gray	Four 5 Gallon plastic pails	Heavy - possibly full; contents appear to be solidified			
Storage Area Next to Receiving Dock	Gasoline	Plastic ? 2.5 Gallon Gas cans	Small amount of liquid	ok		
Storage Area Next to Receiving Dock	Fresh step scoopable kitty litter	One 5 Gallon Plastic Bucket	Ice/liquid	open top	Could be water	1 or 4
Storage Area Next to Receiving Dock	Pro Form Joint Compound	One 5 Gallon Plastic Bucket	heavy; contents may be solid	Intact		
Basement Compressor Room	One unlabelled; one labelled "Lubrication Engineers"	Two 55 Gallon Metal Drums	One is Empty; other appears empty, but may have some oil	Poor Condition		
Basement/Production Area	Ammonia Solutions Cas 1336-21-6	55 Gallon Plastic Drum	Mostly Empty, but could be some residual liquid present	Intact		
Basement/Production Area	Principal Mechanical Cleaner for Dairy Food Processing	One 55 Gallon Drum	About 3/4 Full	Container Intact; One bung open	Contents could be water	
Basement/Production Area	Ultra Gro Direct Starter Culture Blend TD-25	Several ?Quart? sized containers	Appear empty	Intact; Encapsulated in ice on basement floor		

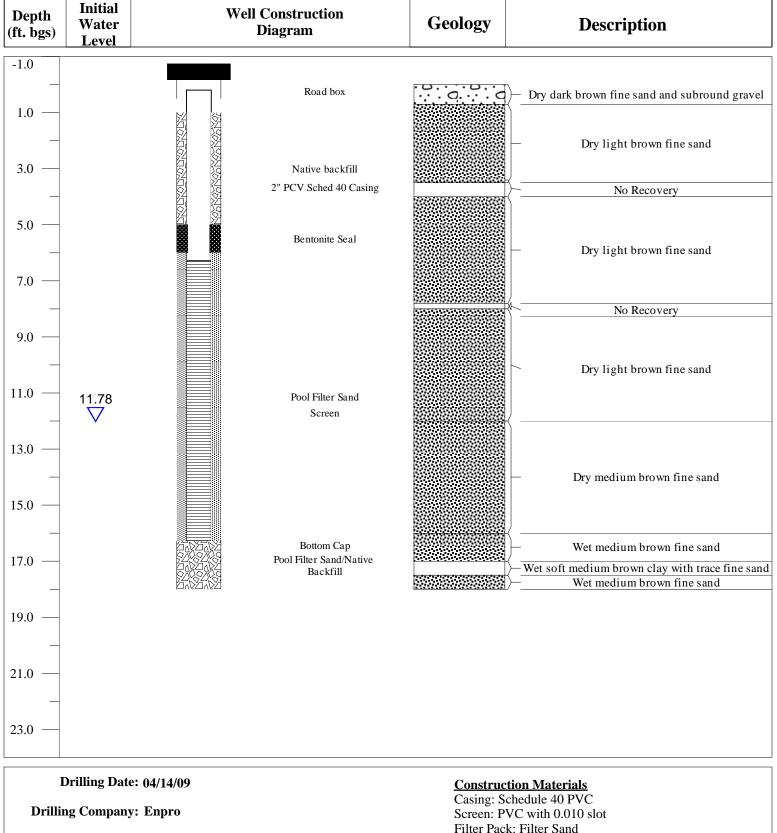
		R	lichmond Cream	ery		
		3/31/09 Con	tainerized Mater	ials Inventory		
Origin/Where Container was Found*	Label	Container Size/type	How full	Condition	Notes	Corresponding ID # on D.O.T Unknown Fingerprint Analysis
Basement/Freezer Room		Many ?Quart? sized containers	Most appear empty, some appear to have granular contents in containers	Intact		
Basement/Production "RO" Area (next to loading dock)		~ 5 gallon plastic container with cut open top and scoop	~1/8 full of white powder	Intact/Open top	Possibly a cleaning concentrate	3
Basement/Production "RO" Area (next to loading dock)	Foundation Coating Black	5 gallon Metal container	heavy - contents solid	Container rusty but intact	Tar staining on outside of container	
Basement/Production "RO" Area (next to loading dock)	None	5 gallon plastic pail	1/8 full of oily red liquid	Open top; pail intact	Looks like transmission fluid	5
Basement/Production "RO" Area (next to loading dock)	Mandate - It acid sanitizer	5 gallon plastic pail	Empty	Open top		
Basement/Production "RO" Area (next to loading dock)		5 Gallon Plastic Pail with opening in top	About 1/2 full	Pail intact, open top	Smells like Barbeque sauce	
Maintenance Area	Harris Super X VOC Advance generation VOC comliant release agent	5 gallon metal bucket	Empty	Container intact; open top with some oily red residual - could be same as unlabelled container in Production RO (one that looks like tranny fluid)		

Richmond Creamery 3/31/09 Containerized Materials Inventory								
Maintenance Area	Gulf Grease No. O	5 gallon metal bucket	1/3 full	Container intact with lid				
Maintenance Area	Fungicidal Smoke Producer	~Pint metal can	Appears Full	Container intact but very rusty				
Maintenance Area	Chain Hoist Grease	~6 oz metal container	Unknown	Intact/rusty				
Maintenance Area		Various sized (pint, quart) metal containers	Some empty, some liquid, some solid	Containers in poor condition				
Maintenance Area	Sil Pro C-21 Acrylic Latex		1/2 Full	Container Intact				
Maintenance Area	Diesel Fuel Conditioner	Six One Quart Plastic Containers	Mostly Full	Containers Intact				
Maintenance Area	Air Brake Conditioner	One Quart Metal Container	Mostly Full	Rusty but Intact				
Room Adjacent Maintenance Area	Acid Detergent Milkstone Remover Lime Solvent	1 Gallon Plastic	Mostly Full	Dented but Inact				
Room Adjacent Maintenance Area		35 Gallon Fiber Drum and 1 gallon metal container adhered to top	Seems about 1/3 full of solid material	Very Poor condition				
2nd floor Attic Storage	Unreadable "dairy/food processingfor cleaning membrane systems"	35 gallon Fiber Drum	Fiber drum mixed with possible contents in pile	Completely Destroyed				
2nd floor Attic Storage	No labels: "used oil" written on adjacent wall	One ?55 Gallon Metal Drum with funnel on top, 5 gallon plastic container	Unknown if drum is full; plastic container full of dark oily liquid	Drum in poor condition; plastic container intact				

Richmond Creamery 3/31/09 Containerized Materials Inventory								
		Three 1 gallon plastic	1 full; 1 partially full; 1					
2nd floor Attic Storage	C-21 Acrylic Latex Idophor Germicidal	containers One ?30 gallon plastic	empty	Containers Intact				
2nd floor Attic Storage	Detergent	drum	mostly full; open on top	Container Inact	Contents could be water	1 or 4		
2nd floor Attic Storage	Air compressor Oil Lubriplate	5 gallon metal container	full	Rusty but Intact				
2nd floor Attic Storage	Sodium Bicarbonate Food Grade	100 pound bag	full	Bag Torn on top; Not easily movable				
2nd floor Attic Storage	Primer and Quick Grout	2 boxes of pint and quart sized containers	Some full, some empty mostly solid material	Containers in Poor Condition				
2nd floor Attic Storage	Orange Industries Lubricant	One 5 Gallon Metal Pail	Full, seems solid	Rusted but intact				
2nd floor Attic Storage	Premium Multi Purpose floor adhesive	One 4 Gallon Plastic Pail	Full, seems solid	Container Intact				
Upper Attic Area	"Ruboroluem" for soaking milking machine inflation and tubing	Six 4 pound metal containers	Full w/granular material	Containers in Poor condition		10		
Upper Attic Area	Milk Testing Acid	One ?5 gallon plastic container	Some liquid; moslty empty	OK condition; sealed container				
Ammonia Compressor Room	None	Three 5 gallon plastic containers	most about 1/2 full of what appears to be used oil	Intact		2		
Ammonia Compressor Room	Ammonia	?250 gallon Tank	Unknown	Piping in place with lockout tags				
Ammonia Compressor Room	Lubrication Engineers Compressor Oil	Metal 55 Gallon Drum	Could be full, did not move to find out	Marginal Condition				

Richmond Creamery 3/31/09 Containerized Materials Inventory							
Origin/Where Container was Found*	Label	Container Size/type	How full	Condition	Notes	Corresponding ID # on D.O.T Unknown Fingerprint Analysis	

Notes: *Some containers had already been moved to loading dock and storage areas prior to inventory; did not move or disturb containers that were observed to be in poor condition, including: drums in basement/production area; 55 gallon drum of compressor oil in ammonia compressor room; 100 pound bag of sodium bicarbonate in attic storage; used oil drum in attic storage; destroyed fiber drum in attic storage; open top drum with liquid labelled "Idophor germicidal detergent" in attic storage; 3/4 full drum with open bung labelled "Prinicpal Metchanical Cleaner for Dairy Food Processing" in basement production area

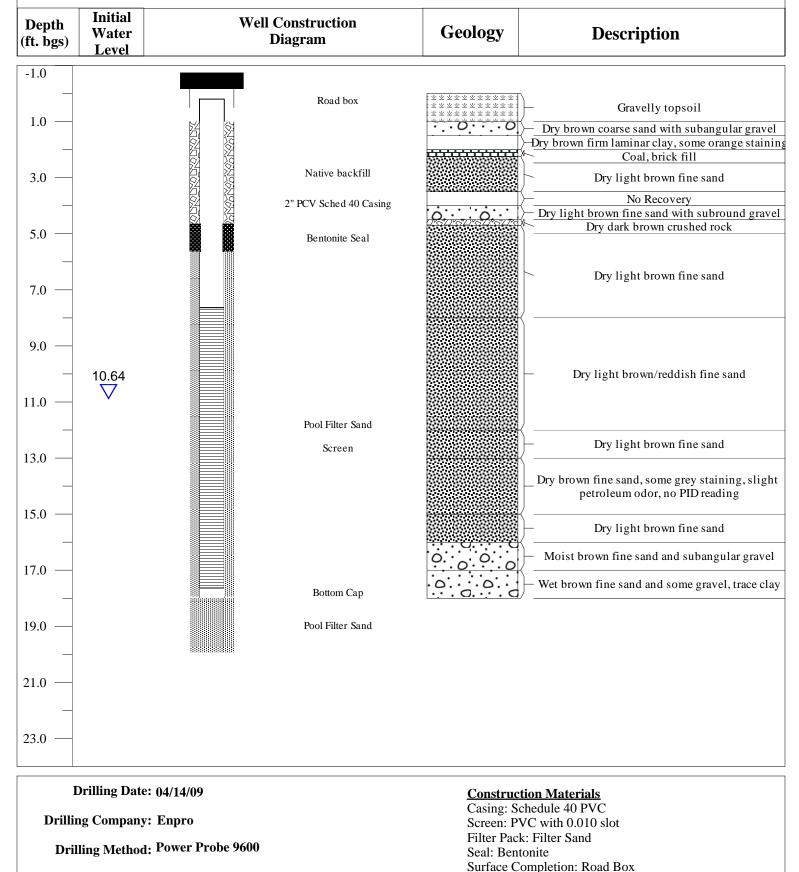

APPENDIX 5

WELL CONSTRUCTION LOGS

MW-1

Project: Richmond Creamery Location: Richmond, VT Job #: 1-0346-3 Geologist: RTK/MJM TOC Elevation: 101.64

Drilling Method: Power Probe 9600


Screen: PVC with 0.010 slot Filter Pack: Filter Sand Seal: Bentonite Surface Completion: Road Box Riser Pipe and Screen Inner Diameter: 2"

MW-2

Project: Richmond Creamery Location: Richmond, VT Job #: 1-0346-3 Geologist: RTK TOC Elevation: 100

Riser Pipe and Screen Inner Diameter: 2"

MW-3

Project: Richmond Creamery Location: Richmond, VT Job #: 1-0346-3 Geologist: RTK/MJM TOC Elevation: 91.26

Depth (ft. bgs)	Initial Water Level	Well Construction Diagram		Geology	Description
-1.0					
			Road box	$\dot{\circ} \dot{\cdot} \dot{\circ} \dot{\circ} \dot{\circ} \dot{\cdot} \dot{\circ} \dot{\cdot} \dot{\circ}$	 Topsoil and gravel Dark brown sandy/gravelly fill, broken brick Dry brown fine sand
3.0 —		ALANA A			Cinders, gravel, broken glass No Recovery
			Native backfill		
5.0 —		NONNON Rockord	2" PCV Sched 40 Casing	00.0o	— Dark brown fill, sandy with subround gravel
7.0 —		STORICKICKICKICKICKICKICKICKICKICKICKICKICKI	Bentonite Seal		– No Recovery
9.0 —					Moist dark brown fill, sandy with large subround gravel
11.0 —					– No Recovery (Void?)
 13.0			Pool Filter Sand	· 0`. · . · 0`. · · 0 · · · · 0. · · · 0	Wet dark brown fill, sandy with large subround gravel Whitish gravel with coarse sand Moist greenish-brown medium-fine sand with
_			Screen		<u>trace gravel</u> Moist brown sandy clay with some orange mottlin
15.0 —			Screen		No Recovery
17.0 —	40.40				Moist brown sandy clay with some orange mottlin
 19.0	18.18				-Wet brown sandy clay with some orange mottling
21.0 —			Bottom Cap		
23.0 —			Pool Filter Sand/Native Backfill		– No Recovery
	Orilling Date: (04/14/09		<u>Construc</u>	tion Materials chedule 40 PVC

Drilling Company: Enpro

Drilling Method: Power Probe 9600

Casing: Schedule 40 PVC Screen: PVC with 0.010 slot Filter Pack: Filter Sand Seal: Bentonite Surface Completion: Road Box Riser Pipe and Screen Inner Diameter: 2"

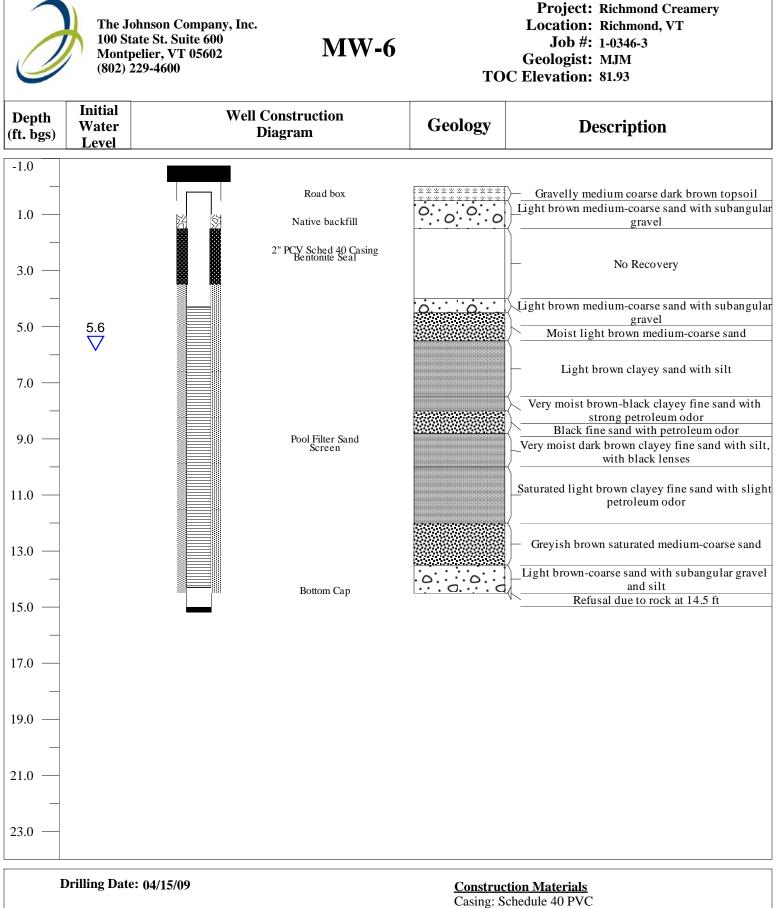
MW-4

Project: Richmond Creamery Location: Richmond, VT Job #: 1-0346-3 Geologist: RTK/MJM TOC Elevation: 89.23

Depth (ft. bgs)	Initial Water Level	W	Vell Construction Diagram	Geology	Description
-1.0 1.0 3.0 5.0		KODKOKKOKK	Road box Native backfill 2" PCV Sched 40 Casing Bentonite Seal		Topsoil with mixed sand/gravel Light grey crushed rock Slightly moist brown mixed sand and gravel fill Light grey crushed rock Mixed sand and gravel fill with some cinders No Recovery Grey crushed stone in shoe
- 7.0 — 9.0 — -					No Recovery - Void at 4 to 4.5 ft Dry light grey gravel, some fine sand Wet brown fine sand with some clay and come subround gravel Black coal lens (crushed) Wet dark brown/grey soft clayey fine sand
11.0 — - 13.0 — - 15.0 —			Pool Filter Sand Screen		No Recovery Wet dark brown soft clayey fine-medium sand with organic smell (similar to pit) Black Staining Wet dark brown soft silt with medium-coarse san
17.0 — 19.0 —	16.92 V		Bottom Cap Pool Filter Sand/Native Backfill		Wet dark brown soft silt with fine-medium sand Brown soft fine sand with silt, growing coarser with depth
21.0 — 23.0 —					
	Drilling Date			Casing: S Screen: P	tion Materials chedule 40 PVC VC with 0.010 slot

Drilling Method: Power Probe 9600

Casing: Schedule 40 PVC Screen: PVC with 0.010 slot Filter Pack: Filter Sand Seal: Bentonite Surface Completion: Road Box Riser Pipe and Screen Inner Diameter: 2"

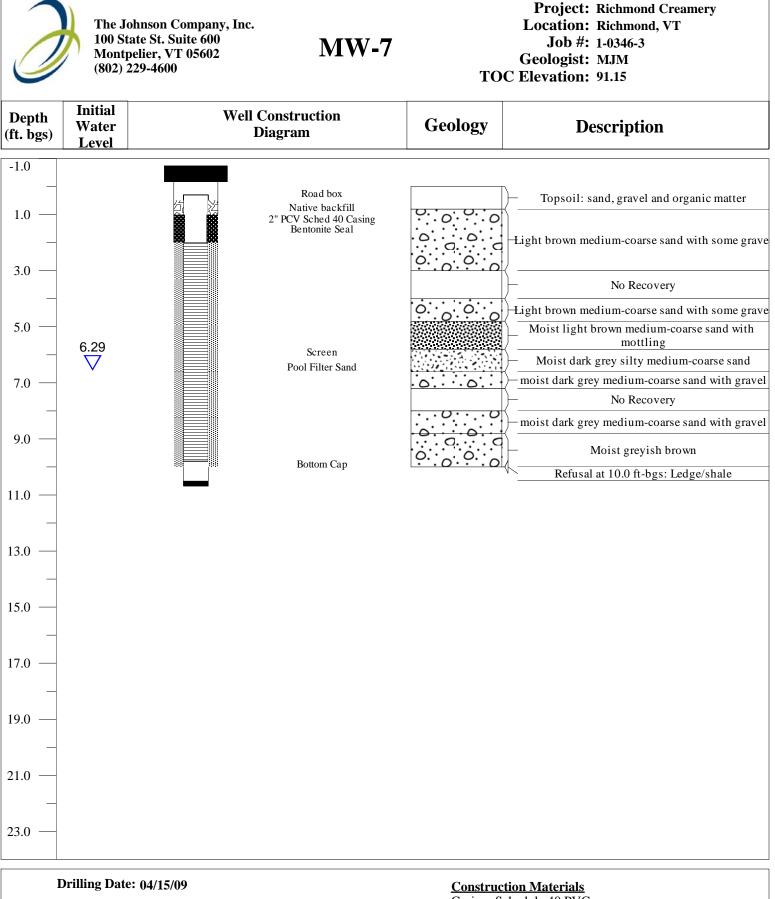


MW-5

Project: Richmond Creamery Location: Richmond, VT Job #: 1-0346-3 Geologist: RTK/MJM TOC Elevation: 79.53

Surface Completion: Road Box Riser Pipe and Screen Inner Diameter: 2"

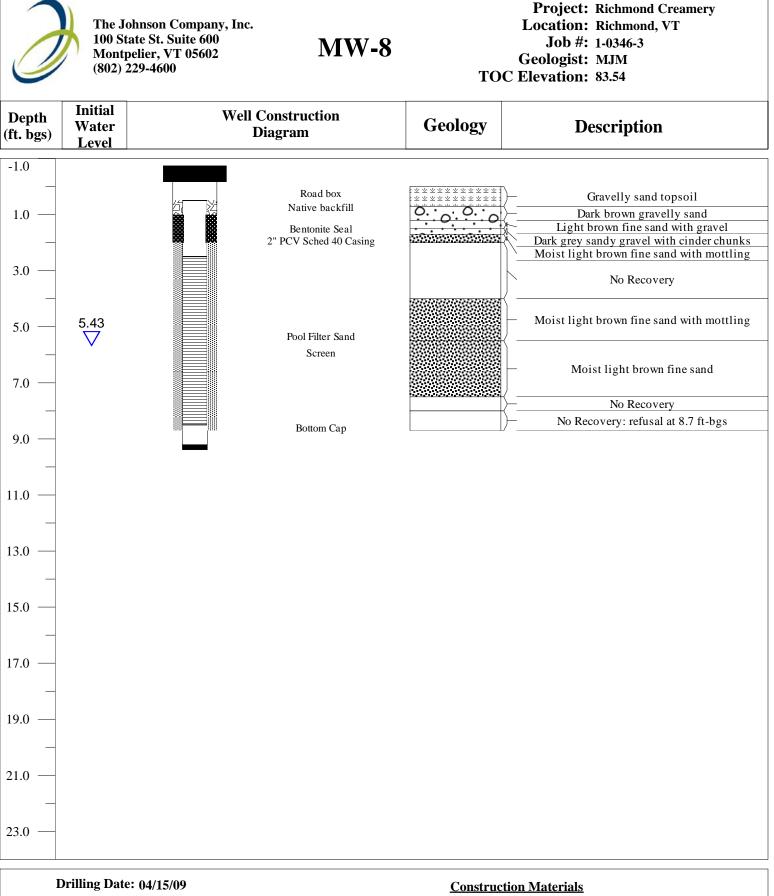
Depth (ft. bgs)	Initial Water Level	Well Construction Diagram	on Geology	Description			
-1.0							
 1.0		Road	box	— Topsoil: Organic matter with sand and gravel Quartz rock Dark brown gravelly coarse sand			
_		Native b 2" PCV Scheo Bentonit	\bigcirc \cdot \bigcirc \circ	Light brown medium-coarse sand with some grav			
3.0 —		2" PCV Scheo		No Recovery			
5.0 —		Bentonit	e Seal	Moist light brown clay with silt and sand			
7.0 —	6.33			Saturated mottled grey fine sand			
9.0 —		Pool Filte Scre		— Very moist grey silty clay			
11.0				Saturated light grey silty clay			
				Saturated light grey silty clay			
13.0 — - 15.0 —				— Moist dark grey moist silty fine sand			
		Bottom	Сар	Brown silty fine sand			
17.0 —		Pool Filter Sa Back					
_							
21.0 —							
23.0 —							
Γ	Orilling Date: ()	4/14/09		tion Materials			
Drillin	ng Company: I	Enpro	Casing: S Screen: P	chedule 40 PVC VC with 0.010 slot			
Drilling Method: Power Probe 9600			Filter Pac Seal: Ben	Filter Pack: Filter Sand Seal: Bentonite			



Drilling Company: Enpro

Drilling Method: Power Probe 9600

Screen: PVC with 0.010 slot Filter Pack: Filter Sand


Filter Pack: Filter Sand Seal: Bentonite Surface Completion: Road Box Riser Pipe and Screen Inner Diameter: 2"

Drilling Company: Enpro

Drilling Method: Power Probe 9600

Casing: Schedule 40 PVC Screen: PVC with 0.010 slot Filter Pack: Filter Sand Seal: Bentonite Surface Completion: Road Box Riser Pipe and Screen Inner Diameter: 2"

Drilling Company: Enpro

Drilling Method: Power Probe 9600

Casing: Schedule 40 PVC Screen: PVC with 0.010 slot Filter Pack: Filter Sand Seal: Bentonite Surface Completion: Road Box Riser Pipe and Screen Inner Diameter: 2"

MW-9

Project: Richmond Creamery Location: Richmond, VT Job #: 1-0346-3 Geologist: MJM TOC Elevation: 78.14

Surface Completion: Road Box Riser Pipe and Screen Inner Diameter: 2"

Depth (ft. bgs)	Initial Water Level	Well Construction Diagram	Geology	Description
-1.0			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Λ
1.0 —		Road box	<u></u>	Gravelly sand topsoil
_		Native backfill 2" PCV Sched 40 Casing Bentonite Seal		— Light brown medium-coarse sand with gravel
3.0 —		□ 2" PCV Sched 40 Casing	<u></u>	/ No Recovery
		Bentonite Seal	<u>:::::::::::::::::::::::::::::::::::::</u>	Light brown medium-coarse sand with gravel
5.0	6.06 V			— Saturated light brown medium-fine sand
9.0 — 11.0 —		Pool Filter Sand Screen		— Wet: unable to recover sample
 13.0 15.0				Wet: unable to recover sample
_		Bottom Cap)
17.0 — — 19.0 — —				
21.0 — 23.0 —				
I	Drilling Date	e: 04/15/09	Construc	tion Materials chedule 40 PVC
	ng Company ling Method	y: Enpro]: Power Probe 9600	Screen: P Filter Pacl Seal: Bent	VC with 0.010 slot k: Filter Sand

Environmental sciences and engineering Montpeller, vermont 05602

)

Form joo-hydro SOIL BORING J SHEET OF

BORING LOG STRATIGRAPHIC DESCRIPTION MW-8 and Powergraduat wertagen "SB-015" PROJECT

sample interval fm—to(bgs)	blow counts	recovery out of (ft.)	sample description	pid (ppm)	notes
0-4		2.0	0.0.8 sondy gravel topsoil 0.8.1.2 It bourn Med course gravel 1.2-2.0 Ft brown Med. Garsa bone Refugal @ 2.0"	0.0*	Attempter Shobs new Weath retry Whan 1535
0-2			0:5-1.5 tupso: 1 [Sad gun]. 0:5-1.5 string peterium oder 1 torma & Shach. Medium to Ford South 1.5-2.0 Brack FS String clarch. oder	477.7	loration Upgredient Gimensed (durghednes durghednes durghednes durghednes durghednes durghednes durghednes durghednes (clillecter VOC, PAH, Metalls Smrter
	•	-	• • •		

APPENDIX 6

LABORATORY ANALYTICAL DATA

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/23/09	10:54
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		, i i i i i i i i i i i i i i i i i i i		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48399

Client ID: RICHMOND CREAMERY CSFF-1

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	100	1	%	03/27/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	170	ug/Kg	03/30/09		MH	SW 8082
OA/QC Surrogates							
% DCBP	104		%	03/30/09		MH	SW 8082
% TCMX	90		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

PLEASE NOTE: THIS PROGRESS REPORT IS CONSIDERED PRELIMINARY DATA. THE RESULTS ENTERED HAVE NOT BEEN EXAMINED BY OUR QA/QC DEPARTMENT.

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/23/09	10:59
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		-		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48400

Client ID: RICHMOND CREAMERY CSFF-2

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	100	1	%	03/27/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	160	ug/Kg	03/30/09		MH	SW 8082
<u>OA/QC Surrogates</u>							
% DCBP	113		%	03/30/09		MH	SW 8082
% TCMX	94		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/23/09	11:05
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		,		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48401

Client ID: RICHMOND CREAMERY CSFF-3

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	100	1	%	03/27/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	160	ug/Kg	03/30/09		MH	SW 8082
<u>OA/QC Surrogates</u>							
% DCBP	108		%	03/30/09		MH	SW 8082
% TCMX	97		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Information		Custody Inforr	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/23/09	12:25
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		2		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48402

Client ID: RICHMOND CREAMERY CSFF-4

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	100	1	%	03/27/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	160	ug/Kg	03/30/09		MH	SW 8082
<u>OA/QC Surrogates</u>							
% DCBP	106		%	03/30/09		MH	SW 8082
% TCMX	92		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/23/09	12:29
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		, i i i i i i i i i i i i i i i i i i i		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48403

Client ID: RICHMOND CREAMERY CSFF-5

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	100	1	%	03/27/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	170	ug/Kg	03/30/09		MH	SW 8082
<u>OA/QC Surrogates</u>							
% DCBP	103		%	03/30/09		MH	SW 8082
% TCMX	93		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2	009
-----------	-----

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/23/09	12:33
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		-		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48404

Client ID: RICHMOND CREAMERY CSFF-6

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	100	1	%	03/27/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	160	ug/Kg	03/30/09		MH	SW 8082
<u>OA/QC Surrogates</u>							
% DCBP	107		%	03/30/09		MH	SW 8082
% TCMX	90		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2	009
-----------	-----

Sample Information		Custody Inforn	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/23/09	13:13
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		, i i i i i i i i i i i i i i i i i i i		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48405

Client ID: RICHMOND CREAMERY CSFF-7

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	100	1	%	03/27/09		M-JL	E160.3
Extraction for PCB	Completed			03/27/09		BB/D	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	160	ug/Kg	03/31/09		MH	SW 8082
PCB-1221	ND	160	ug/Kg	03/31/09		MH	SW 8082
PCB-1232	ND	160	ug/Kg	03/31/09		MH	SW 8082
PCB-1242	ND	160	ug/Kg	03/31/09		MH	SW 8082
PCB-1248	ND	160	ug/Kg	03/31/09		MH	SW 8082
PCB-1254	ND	160	ug/Kg	03/31/09		MH	SW 8082
PCB-1260	ND	160	ug/Kg	03/31/09		MH	SW 8082
PCB-1262	ND	160	ug/Kg	03/31/09		MH	SW 8082
PCB-1268	ND	160	ug/Kg	03/31/09		MH	SW 8082
<u>OA/QC Surrogates</u>							
% DCBP	119		%	03/31/09		MH	SW 8082
% TCMX	100		%	03/31/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/23/09	13:07
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		, i i i i i i i i i i i i i i i i i i i		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48406

Client ID: RICHMOND CREAMERY CSFF-8

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	100	1	%	03/27/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	170	ug/Kg	03/30/09		MH	SW 8082
<u>OA/OC Surrogates</u>							
% DCBP	110		%	03/30/09		MH	SW 8082
% TCMX	99		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

Draft Progress Report

FOR: Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07,	2009
---------	------

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/23/09	13:02
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		-		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48407

Client ID: RICHMOND CREAMERY CSFF-9

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	100	1	%	03/27/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	170	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	170	ug/Kg	03/30/09		MH	SW 8082
<u>OA/QC Surrogates</u>							
% DCBP	106		%	03/30/09		MH	SW 8082
% TCMX	92		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/23/09	12:42
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		, i i i i i i i i i i i i i i i i i i i		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48408

Client ID: RICHMOND CREAMERY CSFF-10

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	100	1	%	03/27/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	160	ug/Kg	03/30/09		MH	SW 8082
<u>OA/QC Surrogates</u>							
% DCBP	107		%	03/30/09		MH	SW 8082
% TCMX	102		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Information		Custody Inforr	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/23/09	15:38
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		2		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48409

Client ID: RICHMOND CREAMERY CSS-1

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	100	1	%	03/27/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	160	ug/Kg	03/30/09		MH	SW 8082
<u>OA/QC Surrogates</u>							
% DCBP	121		%	03/30/09		MH	SW 8082
% TCMX	83		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Information		Custody Inforr	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/23/09	15:35
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		,		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48410

Client ID: RICHMOND CREAMERY CSS-2

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	100	1	%	03/27/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	160	ug/Kg	03/30/09		MH	SW 8082
<u>OA/OC Surrogates</u>							
% DCBP	122		%	03/30/09		MH	SW 8082
% TCMX	88		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Informa	ation	Custody Inforn	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/23/09	12:00
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		, i i i i i i i i i i i i i i i i i i i		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48411

Client ID: RICHMOND CREAMERY PCB-DUP

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	100	1	%	03/27/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	160	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	160	ug/Kg	03/30/09		MH	SW 8082
<u>OA/QC Surrogates</u>							
% DCBP	110		%	03/30/09		MH	SW 8082
% TCMX	97		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Informa	ation	Custody Inforn	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/24/09	10:25
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		2		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48412

Client ID: RICHMOND CREAMERY SUB-SLAB-2

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	75		%	03/26/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	220	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	220	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	220	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	220	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	220	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	220	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	220	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	220	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	220	ug/Kg	03/30/09		MH	SW 8082
OA/QC Surrogates							
% DCBP	103		%	03/30/09		MH	SW 8082
% TCMX	92		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

Draft Progress Report

FOR: Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009	
--------------	--

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/24/09	9:00
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		2		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48413

Client ID: RICHMOND CREAMERY SS-SS-PCB-01

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	93		%	03/26/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	180	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	180	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	180	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	180	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	180	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	180	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	180	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	180	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	180	ug/Kg	03/30/09		MH	SW 8082
<u>OA/OC Surrogates</u>							
% DCBP	108		%	03/30/09		MH	SW 8082
% TCMX	94		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

Draft Progress Report

FOR: Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009)
--------------	---

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/24/09	9:05
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		2		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48414

Client ID: RICHMOND CREAMERY SS-SS-PCB-02

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	48		%	03/26/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	340	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	340	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	340	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	340	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	340	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	340	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	340	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	340	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	340	ug/Kg	03/30/09		MH	SW 8082
<u>OA/OC Surrogates</u>							
% DCBP	99		%	03/30/09		MH	SW 8082
% TCMX	96		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

Draft Progress Report

FOR: Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07,	2009
---------	------

Sample Informa	Custody Information		Date	<u>Time</u>	
Matrix:	SOLID	Collected by:	MM	03/24/09	9:10
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		2		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48415

Client ID: RICHMOND CREAMERY SS-SS-PCB-03

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	86		%	03/26/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	190	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	190	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	190	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	190	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	190	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	190	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	190	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	190	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	190	ug/Kg	03/30/09		MH	SW 8082
<u>OA/OC Surrogates</u>							
% DCBP	>130		%	03/30/09		MH	SW 8082
% TCMX	98		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

N	lay	07,	2009

Sample Informa	ample Information Custody Information		nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/24/09	9:20
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		2		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48416

Client ID: RICHMOND CREAMERY SS-AST-PCB-01

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	85		%	03/26/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	200	ug/Kg	03/30/09		MH	SW 8082
OA/OC Surrogates							
% DCBP	122		%	03/30/09		MH	SW 8082
% TCMX	96		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

Draft Progress Report

FOR: Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07,	2009
---------	------

Sample Informa	nformation Custody Information		Date	<u>Time</u>	
Matrix:	SOLID	Collected by:	MM	03/24/09	8:30
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		2		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48417

Client ID: RICHMOND CREAMERY SS-FB-PCB-01

Percent Solid	0/				Ву	Reference
	86		%	03/26/09	M-JL	E160.3
Extraction for PCB	Completed			03/26/09	BB/K	SW3540C
Polychlorinated Biphenyls						
PCB-1016	ND	190	ug/Kg	03/30/09	МН	SW 8082
PCB-1221	ND	190	ug/Kg	03/30/09	MH	SW 8082
PCB-1232	ND	190	ug/Kg	03/30/09	MH	SW 8082
PCB-1242	ND	190	ug/Kg	03/30/09	MH	SW 8082
PCB-1248	ND	190	ug/Kg	03/30/09	MH	SW 8082
PCB-1254	ND	190	ug/Kg	03/30/09	MH	SW 8082
PCB-1260	ND	190	ug/Kg	03/30/09	MH	SW 8082
PCB-1262	ND	190	ug/Kg	03/30/09	MH	SW 8082
PCB-1268	ND	190	ug/Kg	03/30/09	MH	SW 8082
<u>OA/OC Surrogates</u>						
% DCBP	110		%	03/30/09	MH	SW 8082
% TCMX	93		%	03/30/09	MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Information Custody I		Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/24/09	8:40
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		2		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48418

Client ID: RICHMOND CREAMERY SS-FB-PCB-02

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	79		%	03/26/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	210	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	210	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	210	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	210	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	210	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	210	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	210	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	210	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	210	ug/Kg	03/30/09		MH	SW 8082
<u>OA/OC Surrogates</u>							
% DCBP	107		%	03/30/09		MH	SW 8082
% TCMX	93		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

Draft Progress Report

FOR: Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009	
--------------	--

Sample Informa	ample Information Custody Information		nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/24/09	8:45
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3				

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48419

Client ID: RICHMOND CREAMERY SS-FB-PCB-03

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	83		%	03/26/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	200	ug/Kg	03/30/09		MH	SW 8082
<u>OA/OC Surrogates</u>							
% DCBP	106		%	03/30/09		MH	SW 8082
% TCMX	95		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Informa	ation	Custody Inforr	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/24/09	8:50
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		2		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48420

Client ID: RICHMOND CREAMERY SS-FB-PCB-04

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	83		%	03/26/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	200	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	200	ug/Kg	03/30/09		MH	SW 8082
<u>OA/OC Surrogates</u>							
% DCBP	100		%	03/30/09		MH	SW 8082
% TCMX	94		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Informa	ation	Custody Inforr	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/24/09	7:55
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3				

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48421

Client ID: RICHMOND CREAMERY SS-TR-PCB-01

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	72		%	03/26/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	230	ug/Kg	03/30/09		MH	SW 8082
<u>OA/QC Surrogates</u>							
% DCBP	94		%	03/30/09		MH	SW 8082
% TCMX	94		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

Draft Progress Report

FOR: Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009	
--------------	--

Sample Informa	<u>ation</u>	Custody Inforr	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/24/09	8:00
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		-		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48422

Client ID: RICHMOND CREAMERY SS-TR-PCB-02

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	71		%	03/26/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	230	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	230	ug/Kg	03/30/09		MH	SW 8082
<u>OA/OC Surrogates</u>							
% DCBP	100		%	03/30/09		MH	SW 8082
% TCMX	90		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

May 07, 2009

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/24/09	8:10
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		2		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48423

Client ID: RICHMOND CREAMERY SS-TR-PCB-03

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	68		%	03/26/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	240	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	240	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	240	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	240	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	240	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	240	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	240	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	240	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	240	ug/Kg	03/30/09		MH	SW 8082
<u>OA/OC Surrogates</u>							
% DCBP	103		%	03/30/09		MH	SW 8082
% TCMX	102		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

FOR:

Draft Progress Report

Attn: Mr. Mike Marotto The Johnson Company 100 State Street #600 Montpelier, VT 05602

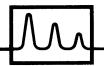
May 07, 2009

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOLID	Collected by:	MM	03/24/09	11:45
Location Code:	JOHNSON	Received by:	LDF	03/26/09	10:40
Rush Request:		Analyzed by:	see "By" below		
P.O.#:	1-0346-3		, i i i i i i i i i i i i i i i i i i i		

Laboratory Data

SDG I.D.: GAR48399 Phoenix I.D.: AR48424

Client ID: RICHMOND CREAMERY SS-WR-01


Parameter	Result	RL	Units	Date	Time	Ву	Reference
Percent Solid	64		%	03/26/09		M-JL	E160.3
Extraction for PCB	Completed			03/26/09		BB/K	SW3540C
Polychlorinated Biphenyls							
PCB-1016	ND	260	ug/Kg	03/30/09		MH	SW 8082
PCB-1221	ND	260	ug/Kg	03/30/09		MH	SW 8082
PCB-1232	ND	260	ug/Kg	03/30/09		MH	SW 8082
PCB-1242	ND	260	ug/Kg	03/30/09		MH	SW 8082
PCB-1248	ND	260	ug/Kg	03/30/09		MH	SW 8082
PCB-1254	ND	260	ug/Kg	03/30/09		MH	SW 8082
PCB-1260	ND	260	ug/Kg	03/30/09		MH	SW 8082
PCB-1262	ND	260	ug/Kg	03/30/09		MH	SW 8082
PCB-1268	ND	260	ug/Kg	03/30/09		MH	SW 8082
<u>OA/QC Surrogates</u>							
% DCBP	96		%	03/30/09		MH	SW 8082
% TCMX	92		%	03/30/09		MH	SW 8082

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis/Shiller, Laboratory Director May 07, 2009

Michael Marotto The Johnson Company 100 State Street Montpelier, VT 05602 eastern analytical

professional laboratory services

Subject: Laboratory Report

Eastern Analytical, Inc. ID: Client Identification: Date Received: 77486 Richmond Creamery | 1-0346-3 3/25/2009

Dear Mr. Marotto :

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. (EAI) certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.eailabs.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply throughout all EAI reports:

- Solid samples are reported on a dry weight basis, unless otherwise noted
- <: "less than" followed by the detection limit
- TNR: Testing Not Requested
- ND: None Detected, no established detection limit
- RL: Reporting Limits
- %R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269) and Vermont (VT1012).

This report package contains the following information: Sample Conditions summary, Analytical Results/Data and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

Analytical Deviation & QA/QC Documentation:

Quality Control Samples associated with this project are included in this report. At a minimum, a Method Blank and Laboratory Control Sample (LCS) are reported. Matrix Spikes and Duplicates are reported where applicable. Deviations are narrated on the QC pages.

If you have any questions regarding the results contained within, please feel free to directly contact me, or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

oucine Classian

Lorraine Olashaw, Lab DirectorDateEastern Analytical, Inc.25 Chenell Drive, Concord, NH 03301

Date

of pages (excluding cover letter) TEL 603 228-0525 1-800-287-0525 FAX 603 228-4591

www.eailabs.com

Eastern Analytical, Inc. ID#: 77486

Client: The Johnson Company

Temperature upon receipt (°C): 6

Client Designation: Richmond Creamery | 1-0346-3

Received on ice or cold packs (Yes/No): Y

Date Date Sample % Dry Matrix Weight Exceptions/Comments (other than thermal preservation) Lab ID Sample ID **Received Sampled** SS-NR-01 0-0.5' 3/23/09 77486.01 3/25/09 soil 73.1 Adheres to Sample Acceptance Policy 77486.02 SS-NR-01 1.5-2.0' 3/25/09 3/23/09 soil 75.6 Adheres to Sample Acceptance Policy 77486.03 SS-NR-02 0-0.5' 3/25/09 3/23/09 soil 80.6 Adheres to Sample Acceptance Policy 77486.04 SS-NR-02 1.5-2.0' 3/25/09 3/23/09 93.0 Adheres to Sample Acceptance Policy soil 77486.05 SS-RR-01 0-0.5' 3/25/09 3/23/09 31.5 Adheres to Sample Acceptance Policy soil 77486.06 SS-RR-01 1.5-2.0' 3/25/09 3/23/09 68.4 Adheres to Sample Acceptance Policy soil 77486.07 SS-RR-02 0-0.5' 3/25/09 3/23/09 soil 78.2 Adheres to Sample Acceptance Policy SS-RR-02 1.5-2.0' 77486.08 3/25/09 3/23/09 91.2 Adheres to Sample Acceptance Policy soil 71.8 Adheres to Sample Acceptance Policy 77486.09 SS-RR-03 0-0.5' 3/25/09 3/23/09 soil 77486.1 SS-RR-03 1.5-2.0' 3/25/09 3/23/09 soil 75.3 Adheres to Sample Acceptance Policy 77486.11 SS-RR-04 0-0.5' 3/25/09 3/23/09 85.0 Adheres to Sample Acceptance Policy soil 77486.12 SS-RR-04 1.5-2.0' 3/25/09 3/23/09 86.1 Adheres to Sample Acceptance Policy soil 77486.13 SS-RR-05 0-0.5' 3/25/09 3/23/09 soil 83.2 Adheres to Sample Acceptance Policy 77486.14 SS-RR-05 1.5-2.0' 3/25/09 3/23/09 soil 85.2 Adheres to Sample Acceptance Policy 77486.15 SS-RR-06 0-0.5' 3/25/09 3/23/09 79.5 Adheres to Sample Acceptance Policy soil 77486.16 SS-RR-07 0-0.5' 3/25/09 3/23/09 94.0 Adheres to Sample Acceptance Policy soil 77486.17 SS-RR-07 0.5-1.0' 3/25/09 3/23/09 92.5 Adheres to Sample Acceptance Policy soil 77486.18 SS-RR-08 0-0.5' 3/25/09 3/23/09 90.3 Adheres to Sample Acceptance Policy soil 77486.19 SS-RR-08 1.5-2.0' 3/25/09 3/23/09 63.7 Adheres to Sample Acceptance Policy soil 77486.2 SS-RR-09 0-0.5' 3/25/09 3/23/09 soil 88.9 Adheres to Sample Acceptance Policy 77486.21 SS-RR-10 0-0.5' 3/25/09 3/23/09 91.7 Adheres to Sample Acceptance Policy soil 77486.22 SS-RR-10 1.5-2.0' 3/25/09 3/23/09 89.0 Adheres to Sample Acceptance Policy soil 77486.23 SS-RR-DUP 0-0.5' 3/25/09 3/23/09 soil 80.8 Adheres to Sample Acceptance Policy 77486.24 SS-RR-DUP 1.5-2.0' 3/25/09 3/23/09 soil 87.0 Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitibility, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

Standard Methods for Examination of Water and Wastewater : Inorganics, 19th Edition, 1995; Microbiology, 20th Edition, 1998
 Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 2nd edition, 1992

eastern analytical, inc.

Eastern Analytical, Inc. ID#: 77486

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Temperature upon receipt (°C): 6 Received on ice or cold packs (Yes/No): Y						
Lab ID	Sample ID	Date Received	Date Sampled	Sample Matrix		tExceptions/Comments (other than thermal preservation)
77486.25	SS-PS-01	3/25/09	3/23/09	soil	93.3	Adheres to Sample Acceptance Policy
77486.26	SS-PS-02	3/25/09	3/23/09	soil	63.8	Adheres to Sample Acceptance Policy
77486.27	Sub Slab 2	3/25/09	3/24/09	soil	90.8	Adheres to Sample Acceptance Policy
77486.28	SS-CB-01	3/25/09	3/23/09	soil	66.6	Adheres to Sample Acceptance Policy
77486.29	SS-WR-01	3/25/09	3/24/09	soil	64.7	Adheres to Sample Acceptance Policy
77486.3	SS-FB-05	3/25/09	3/23/09	soil	82.4	Adheres to Sample Acceptance Policy
77486.31	SS-SS-03	3/25/09	3/24/09	soil	81.2	Adheres to Sample Acceptance Policy
77486.32	SS-FB-ACM-01	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy
77486.33	SS-FB-ACM-02	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy
77486.34	SS-FB-ACM-03	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy
77486.35	SS-FB-ACM-04	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy
77486.36	SS-FB-ACM-05	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy
77486.37	SS-FB-ACM-06	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy
77486.38	SS-FB-ACM-07	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy
77486.39	SS-FB-ACM-08	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy
77486.4	SS-CB-01	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy
77486.41	SS-CB-02	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy
77486.42	SS-RR-05 0-0.5'	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy
77486.43	SS-RR-01 0-0.5'	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy
77486.44	SS-RR-09 0-0.5'	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy
77486.45	SS-RR-08 0-0.5'	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy
77486.46	SS-RR-04 0-0.5'	3/25/09	3/23/09	soil		Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitibility, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater : Inorganics, 19th Edition, 1995; Microbiology, 20th Edition, 1998

3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 2nd edition, 1992

eastern analytical, inc.

www.eailabs.com

LABORATORY REPORT

Eastern Analytical, Inc. ID#: 77486

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	Sub Slab 2	SS-WR-01
Lab Sample ID:	77486.27	77486.29
Lab Sample ID:		
Matrix:	soil	soil
Date Sampled:	3/24/09	3/24/09
Date Received:	3/25/09	3/25/09
Units:	mg/kg	mg/kg
Date of Analysis:	3/27/09	3/27/09
Analyst:	BAM	BAM
Method:	8260B	8260B
Dilution Factor:	1	2
Dichlorodifluoromethane	< 0.1	< 0.2
Chloromethane	< 0.1	< 0.2
Vinyl chloride	< 0.1	< 0.2
Bromomethane	< 0.1	< 0.2
Chloroethane	< 0.1	< 0.2
Trichlorofluoromethane	< 0.1	< 0.2
Diethyl Ether	< 0.05	< 0.1
Acetone 1.1-Dichloroethene	< 2 < 0.05	< 4 < 0.1
Methylene chloride	< 0.05 < 0.1	< 0.1
Carbon disulfide	< 0.1	< 0.2
Methyl-t-butyl ether(MTBE)	< 0.1	< 0.2
trans-1,2-Dichloroethene	< 0.05	< 0.1
1,1-Dichloroethane	< 0.05	< 0.1
2,2-Dichloropropane	< 0.05	< 0.1
cis-1,2-Dichloroethene	< 0.05	< 0.1
2-Butanone(MEK)	< 0.5	< 1
Bromochloromethane	< 0.05	< 0.1
Tetrahydrofuran(THF)	< 0.5	< 1
Chloroform	< 0.05	< 0.1
1,1,1-Trichloroethane Carbon tetrachloride	< 0.05 < 0.05	< 0.1 < 0.1
1,1-Dichloropropene	< 0.05 < 0.05	< 0.1 < 0.1
Benzene	< 0.05	< 0.1
1,2-Dichloroethane	< 0.05	< 0.1
Trichloroethene	< 0.05	< 0.1
1,2-Dichloropropane	< 0.05	< 0.1
Dibromomethane	< 0.05	< 0.1
Bromodichloromethane	< 0.05	< 0.1
4-Methyl-2-pentanone(MIBK)	< 0.5	< 1
cis-1,3-Dichloropropene	< 0.05	< 0.1
Toluene	< 0.05	0.1
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	< 0.05 < 0.05	< 0.1 < 0.1
2-Hexanone	< 0.05 < 0.1	< 0.1
Tetrachloroethene	< 0.05	< 0.2 < 0.1
1,3-Dichloropropane	< 0.05	< 0.1
Dibromochloromethane	< 0.05	< 0.1
1,2-Dibromoethane(EDB)	< 0.05	< 0.1
Chlorobenzene	< 0.05	< 0.1
1,1,1,2-Tetrachioroethane	< 0.05	< 0.1
Ethylbenzene	< 0.05	< 0.1
mp-Xylene	< 0.05	< 0.1
o-Xylene	< 0.05	< 0.1
Styrene	< 0.05	< 0.1
Bromoform	< 0.05	< 0.1

eastern analytical, inc.

Eastern Analytical, Inc. ID#: 77486

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	Sub Slab 2	SS-WR-01
Lab Sample ID:	77486.27	77486.29
Matrix:	soil	soil
Date Sampled:	3/24/09	3/24/09
Date Received:	3/25/09	3/25/09
Units:	mg/kg	mg/kg
Date of Analysis:	3/27/09	3/27/09
Analyst:	BAM	BAM
Method:	8260B	8260B
	1	2
Dilution Factor:		
IsoPropylbenzene	< 0.05	< 0.1
Bromobenzene	< 0.05	< 0.1
1,1,2,2-Tetrachloroethane	< 0.05	< 0.1
1,2,3-Trichloropropane	< 0.05	< 0.1
n-Propylbenzene	< 0.05	< 0.1
2-Chlorotoluene	< 0.05	< 0.1
4-Chlorotoluene	< 0.05	< 0.1
1,3,5-Trimethylbenzene	< 0.05	< 0.1
tert-Butylbenzene	< 0.05	< 0.1
1,2,4-Trimethylbenzene	< 0.05	< 0.1
sec-Butylbenzene	< 0.05	< 0.1
1,3-Dichlorobenzene	< 0.05	< 0.1
p-Isopropyltoluene	< 0.05	< 0.1
1,4-Dichlorobenzene	< 0.05	< 0.1
1,2-Dichlorobenzene	< 0.05	< 0.1
n-Butylbenzene	< 0.05	< 0.1
1,2-Dibromo-3-chloropropane	< 0.05	< 0.1
1,2,4-Trichlorobenzene	< 0.05	< 0.1
Hexachlorobutadiene	< 0.05	< 0.1
Naphthalene	< 0.1 < 0.05	< 0.2 < 0.1
1,2,3-Trichlorobenzene		
4-Bromofluorobenzene (surr)	98 %R	98 %R
1,2-Dichlorobenzene-d4 (surr)	101 %R	101 %R
Toluene-d8 (surr)	93 %R	96 %R

SS-WR-01: Reporting limits are elevated due to the % solids content of the sample or the sample mass used for analysis.

Eastern Analytical, Inc. ID#: 77486

Batch ID:

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

		QC Report			Date of Analysis		
Parameter Name	Blank	LCS	LCS Dup	Units		Method	
Dichlorodifluoromethane	< 0.1			mg/kg	3/27/09	8260E	
Chloromethane	< 0.1			mg/kg	3/27/09	8260E	
Vinyl chloride	< 0.1			mg/kg	3/27/09	8260E	
Bromomethane	< 0.1			mg/kg	3/27/09	8260E	
Chloroethane	< 0.1			mg/kg	3/27/09	8260E	
Trichlorofluoromethane	< 0.1			mg/kg	3/27/09	8260E	
Diethyl Ether	< 0.05			mg/kg	3/27/09	8260E	
Acetone	< 2			mg/kg	3/27/09	8260E	
1,1-Dichloroethene	< 0.05	1.1 (113 %R)	1.1 (106 %R) (6 RPD)	mg/kg	3/27/09	8260E	
tert-Butyl Alcohol (TBA)	< 2	(mg/kg	3/27/09	8260E	
Methylene chloride	< 0.1			mg/kg	3/27/09	8260E	
Carbon disulfide	< 0.1			mg/kg	3/27/09	8260E	
Methyl-t-butyl ether(MTBE)	< 0.1			mg/kg	3/27/09	8260E	
Ethyl-t-butyl ether(ETBE)	< 0.1			mg/kg	3/27/09	8260E	
Isopropyl ether(DIPE)	< 0.1			mg/kg	3/27/09	8260E	
tert-amyl methyl ether(TAME)	< 0.1			mg/kg	3/27/09	8260E	
trans-1,2-Dichloroethene	< 0.05			mg/kg	3/27/09	8260E	
1,1-Dichloroethane	< 0.05			mg/kg	3/27/09	8260E	
2,2-Dichloropropane	< 0.05			mg/kg	3/27/09	8260E	
cis-1,2-Dichloroethene	< 0.05			mg/kg	3/27/09	8260E	
2-Butanone(MEK)	< 0.5			mg/kg	3/27/09	8260E	
Bromochloromethane	< 0.05			mg/kg	3/27/09	8260E	
Tetrahydrofuran(THF)	< 0.5			mg/kg	3/27/09	8260E	
Chloroform	< 0.05			mg/kg	3/27/09	8260E	
1,1,1-Trichloroethane	< 0.05			mg/kg	3/27/09	8260E	
Carbon tetrachloride	< 0.05			mg/kg	3/27/09	8260E	
1,1-Dichloropropene	< 0.05			mg/kg	3/27/09	8260E	
Benzene	< 0.05	1.1 (112 %R)	1.0 (103 %R) (8 RPD)	mg/kg	3/27/09	8260E	
1,2-Dichloroethane	< 0.05	(, , , , , , , , , , , , , , , , , , ,		mg/kg	3/27/09	8260E	
Trichloroethene	< 0.05	1.1 (114 %R)	1.1 (106 %R) (7 RPD)	mg/kg	3/27/09	8260E	
1,2-Dichloropropane	< 0.05	(mg/kg	3/27/09	8260E	
Dibromomethane	< 0.05			mg/kg	3/27/09	8260E	
Bromodichloromethane	< 0.05			mg/kg	3/27/09	8260E	
4-Methyl-2-pentanone(MIBK)	< 0.5			mg/kg	3/27/09	8260E	
cis-1,3-Dichloropropene	< 0.05			mg/kg	3/27/09	8260E	
Toluene	< 0.05	1.2 (116 %R)	1.0 (105 %R) (10 RPD)	mg/kg	3/27/09	8260E	
trans-1,3-Dichloropropene	< 0.05			mg/kg	3/27/09	8260E	
1,1,2-Trichloroethane	< 0.05			mg/kg	3/27/09	8260E	
2-Hexanone	< 0.1			mg/kg	3/27/09	8260E	
Tetrachloroethene	< 0.05			mg/kg	3/27/09	8260E	
1,3-Dichloropropane	< 0.05			mg/kg	3/27/09	8260E	
Dibromochloromethane	< 0.05			mg/kg	3/27/09	8260E	
1,2-Dibromoethane(EDB)	< 0.05			mg/kg	3/27/09	8260E	
Chlorobenzene	< 0.05	1.2 (121 %R)	1.1 (110 %R) (10 RPD)	mg/kg	3/27/09	8260E	

eastern analytical, inc.

5

Eastern Analytical, Inc. ID#: 77486

Batch ID:

Client: The Johnson Company

.

Client Designation: Richmond Creamery | 1-0346-3

	QC Report			Date of Analysis		
Parameter Name	Blank	LCS	LCS Dup	Units	•	Method
1,1,1,2-Tetrachloroethane	< 0.05			mg/kg	3/27/09	8260B
Ethylbenzene	< 0.05			mg/kg	3/27/09	8260B
mp-Xylene	< 0.05			mg/kg	3/27/09	8260B
o-Xylene	< 0.05			mg/kg	3/27/09	8260B
Styrene	< 0.05			mg/kg	3/27/09	8260B
Bromoform	< 0.05			mg/kg	3/27/09	8260B
IsoPropylbenzene	< 0.05			mg/kg	3/27/09	8260B
Bromobenzene	< 0.05			mg/kg	3/27/09	8260B
1,1,2,2-Tetrachloroethane	< 0.05			mg/kg	3/27/09	8260B
1,2,3-Trichloropropane	< 0.05			mg/kg	3/27/09	8260B
n-Propylbenzene	< 0.05			mg/kg	3/27/09	8260B
2-Chlorotoluene	< 0.05			mg/kg	3/27/09	8260B
4-Chlorotoluene	< 0.05			mg/kg	3/27/09	8260B
1,3,5-Trimethylbenzene	< 0.05			mg/kg	3/27/09	8260B
tert-Butylbenzene	< 0.05			mg/kg	3/27/09	8260B
1,2,4-Trimethylbenzene	< 0.05			mg/kg	3/27/09	8260B
sec-Butylbenzene	< 0.05			mg/kg	3/27/09	8260B
1,3-Dichlorobenzene	< 0.05			mg/kg	3/27/09	8260B
p-Isopropyltoluene	< 0.05			mg/kg	3/27/09	8260B
1,4-Dichlorobenzene	< 0.05			mg/kg	3/27/09	8260B
1,2-Dichlorobenzene	< 0.05			mg/kg	3/27/09	8260B
n-Butylbenzene	< 0.05			mg/kg	3/27/09	8260B
1,2-Dibromo-3-chloropropane	< 0.05			mg/kg	3/27/09	8260B
1,3,5-Trichlorobenzene	< 0.05			mg/kg	3/27/09	8260B
1,2,4-Trichlorobenzene	< 0.05			mg/kg	3/27/09	8260B
Hexachlorobutadiene	< 0.05			mg/kg	3/27/09	8260B
Naphthalene	< 0.1			mg/kg	3/27/09	8260B
1,2,3-Trichlorobenzene	< 0.05			mg/kg	3/27/09	8260B
4-Bromofluorobenzene (surr)	98 %R	97 %R	98 %R	% Rec	3/27/09	8260B
1,2-Dichlorobenzene-d4 (surr)	99 %R	102 %R	100 %R	% Rec	3/27/09	8260B
Toluene-d8 (surr)	96 %R	97 %R	96 %R	% Rec	3/27/09	8260B

Eastern Analytical, Inc. ID#: 77486

Batch ID:

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Volatile Organic Compounds QC limits and Narrative Summary

Matrix: Units: EPA Method	Solid % 8260B	RPD %	Aqueous % 8260B	RPD %
Surrogate Recovery 4-Bromofluorobenzene 1,2-Dichlorobenzene-D4 Toluene-d8	74-121 80-120 70-130		86-115 80-120 70-130	
Matrix Spike Recovery 1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	59-172 62-137 66-142 59-139 60-133	30 30 30 30 30	61-145 71-120 76-127 76-125 75-130	20 20 20 20 20

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

Eastern Analytical, Inc. ID#: 77486

Client: The Johnson Company Client Designation: Richmond Creamery | 1-0346-3

0l- ID	SS-WR-01
Sample ID:	
Lab Sample ID:	77486.29
Matrix:	soil
Date Sampled:	3/24/09
Date Received:	3/25/09
Units:	mg/kg
Date of Extraction/Prep:	3/27/09
Date of Analysis:	4/1/09
Analyst:	BML
Method:	8270D
Dilution Factor:	3
Naphthalene	< 0.02
2-Methylnaphthalene	< 0.02
Acenaphthylene Acenaphthene	0.03 < 0.02
Fluorene	0.02
Phenanthrene	0.24
Anthracene Fluoranthene	0.06
Pyrene	0.54 0.47
Benzo[a]anthracene	0.27
Chrysene	0.28
Benzo[b]fluoranthene Benzo[k]fluoranthene	0.40 0.14
Benzo[a]pyrene	0.14
Indeno[1,2,3-cd]pyrene	0.13
Dibenz[a,h]anthracene	0.04
Benzo[g,h,i]perylene p-Terphenyl-D14 (surr)	0.14 66 %R
	00 /010

Client: The Johnson Co	Eastern Analyt	77486 Richmond Creamery 1-0346-3
Sample ID:	SS-WR-01	
Lab Sample ID:	77486.29	
Matrix:	soil	
Date Sampled:	3/24/09	
Date Received:	3/25/09	
Jnits:	mg/kg	
Date of Extraction/Preparation	3/30/09	
Date of Analysis:	4/2/09	
Analyst:	BML	
Method:	8270D	
	8270D 2	
Dilution Factor:	2	
Phenol	< 0.3	
2-Chlorophenol	< 0.3	
2,4-Dichlorophenol 2,4,5-Trichlorophenol	< 0.3 < 0.3	
2,4,6-Trichlorophenol	< 0.3	
Pentachlorophenol	< 1	
2-Nitrophenol	< 0.3	
4-Nitrophenol 2,4-Dinitrophenol	< 0.3 < 1	
2-Methylphenol	< 0.3	
3/4-Methylphenol	< 0.3	
2,4-Dimethylphenol	< 0.3	
I-Chloro-3-methylphenol	< 0.3	
1,6-Dinitro-2-methylphenol Benzoic Acid	< 1 < 1	
N-Nitrosodimethylamine	< 0.3	
n-Nitroso-di-n-propylamine	< 0.3	
n-Nitrosodiphenylamine	< 0.3	
bis(2-Chloroethyl)ether bis(2-chloroisopropyl)ether	< 0.3 < 0.3	
bis(2-Chloroethoxy)methane	< 0.3	
1,3-Dichlorobenzene	< 0.3	
1,4-Dichlorobenzene	< 0.3	
1,2-Dichlorobenzene	< 0.3 < 0.3	
1,2,4-Trichlorobenzene 2-Chloronaphthalene	< 0.3	
4-Chlorophenyl-phenylether	< 0.3	
I-Bromophenyl-phenylether	< 0.3	
Hexachloroethane	< 0.3	
Hexachlorobutadiene Hexachlorocyclopentadiene	< 0.3 < 1	
Hexachlorobenzene	< 0.3	
I-Chloroaniline	< 0.3	
2-Nitroaniline	< 0.3	
B-Nitroaniline	< 0.3 < 0.3	
4-Nitroaniline Benzyl alcohol	< 0.3	
Nitrobenzene	< 0.3	
sophorone	< 0.3	
2,4-Dinitrotoluene	< 0.3	
2,6-Dinitrotoluene Benzidine	< 0.3 < 0.4	
3,3'-Dichlorobenzidine	< 0.4	
yridine	< 0.3	
Azobenzene	< 0.3	

eastern analytical, inc.

Client: The Johnson Co	Eastern Analyt mpany	77486 Richmond Creamery 1-0346-3
Sample ID:	SS-WR-01	
Lab Sample ID:	77486.29	
Matrix:	soil	
Date Sampled:	3/24/09	
Date Received:	3/25/09	
Units:	mg/kg	
Date of Extraction/Preparation	3/30/09	
-	4/2/09	
Date of Analysis:		
Analyst:	BML	
Method:	8270D	
Dilution Factor:	2	
Carbazole	< 0.3	
Dimethylphthalate	< 0.3	
Diethylphthalate	< 0.3 < 0.5	
Di-n-butylphthalate Butylbenzylphthalate	< 0.3	
bis(2-Ethylhexyl)phthalate	< 1	
Di-n-octylphthalate	< 0.3	
Dibenzofuran	< 0.3	
Naphthalene	< 0.3	
2-Methylnaphthalene	< 0.3	
Acenaphthylene	< 0.3	
Acenaphthene	< 0.3	
Fluorene	< 0.3	
Phenanthrene	0.4	
Anthracene	< 0.3	
Fluoranthene Pyrene	0.8 0.6	
Benzo[a]anthracene	0.4	
Chrysene	0.4	
Benzo[b]fluoranthene	0.5	
Benzo[k]fluoranthene	< 0.3	
Benzo[a]pyrene	0.4	
Indeno[1,2,3-cd]pyrene	< 0.3	
Dibenz[a,h]anthracene	< 0.3	
Benzo[g,h,i]perylene	< 0.3	
2-Fluorophenol (surr)	72 %R 66 %R	
Phenol-D5 (surr) 2,4,6-Tribromophenol (surr)	74 %R	
Nitrobenzene-D5 (surr)	74 %R	
2-Fluorobiphenyl (surr)	67 %R	
p-Terphenyl-D14 (surr)	73 %R	

- -----

Eastern Analytical, Inc. ID#: 77486

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

QC Narrative:

SS-WR-01 8270D ABN: The dilution factor and reporting limits are elevated due to the low solids content of the sample.

The extraction blank, BlnkS032709PAH1, demonstrated Pyrene contamination above the QA/QC limit. The associated 8270D PAH samples demonstrated significantly higher concentrations of this analyte. The impact to the data is suspected to be minimal.

4-Chloroaniline

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Benzyl alcohol

2,4-Dinitrotoluene

2,6-Dinitrotoluene

3,3'-Dichlorobenzidine

Nitrobenzene

Isophorone

Benzidine

Pyridine

Azobenzene

Eastern Analytical, Inc. ID#: 77486

Batch ID: 733496-60003/S033009ABN1

Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

8270D 8270D

Client. The Johnson	Company	QC Report	-	mona C	reamery	1-03	146-3
Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Phenol	< 0.2	7.3 (87 %R)	7.0 (83 %R) (5 RPD)	mg/kg	26 - 90	35	8270
2-Chlorophenol	< 0.2	7.6 (91 %R)	7.2 (87 %R) (4 RPD)	mg/kg	25 - 102	50	8270
2,4-Dichlorophenol	< 0.2			mg/kg			8270
2,4,5-Trichlorophenol	< 0.2			mg/kg			8270
2,4,6-Trichlorophenol	< 0.2			mg/kg			8270
Pentachlorophenol	< 1	7 (82 %R)	7 (83 %R) (1 RPD)	mg/kg	17 - 109	47	8270
2-Nitrophenol	< 0.2			mg/kg			8270
4-Nitrophenol	< 0.2	5.2 (63 %R)	6.0 (72 %R) (13 RPD)	mg/kg	11 - 114	50	8270
2,4-Dinitrophenol	< 1			mg/kg			8270
2-Methylphenol	< 0.2			mg/kg			8270
3/4-Methylphenol	< 0.2			mg/kg			8270
2,4-Dimethylphenol	< 0.2			mg/kg			8270
4-Chloro-3-methylphenol	< 0.2	7.6 (92 %R)	7.4 (89 %R) (3 RPD)	mg/kg	26 - 103	33	8270
4,6-Dinitro-2-methylphenol	< 1	. ,		mg/kg			8270
Benzoic Acid	< 1			mg/kg			8270
N-Nitrosodimethylamine	< 0.2			mg/kg			8270
n-Nitroso-di-n-propylamine	< 0.2	3.5 (84 %R)	3.5 (83 %R) (1 RPD)	mg/kg	41 - 126	38	8270
n-Nitrosodiphenylamine	< 0.2	. ,		mg/kg			8270
bis(2-Chloroethyl)ether	< 0.2			mg/kg			8270
bis(2-chloroisopropyl)ether	< 0.2			mg/kg			8270
bis(2-Chloroethoxy)methane	< 0.2			mg/kg			8270
1,3-Dichlorobenzene	< 0.2			mg/kg			8270
1,4-Dichlorobenzene	< 0.2	3.5 (85 %R)	3.4 (81 %R) (5 RPD)	mg/kg	28 - 97	27	82701
1,2-Dichlorobenzene	< 0.2	ζ, ,		mg/kg			82701
1,2,4-Trichlorobenzene	< 0.2	3.4 (82 %R)	3.2 (78 %R) (5 RPD)		38 - 107	23	8270
2-Chloronaphthalene	< 0.2	, , , , , , , , , , , , , , , , , , ,		mg/kg			82701
4-Chlorophenyl-phenylether	< 0.2			mg/kg			82701
4-Bromophenyl-phenylether	< 0.2			mg/kg			82701
Hexachloroethane	< 0.2			mg/kg			82701
Hexachlorobutadiene	< 0.2			mg/kg			82701
Hexachlorocyclopentadiene	< 1			mg/kg			82701
Hexachlorobenzene	< 0.2			mg/kg			82701
				39			

< 0.2

< 0.2

< 0.2

< 0.2

< 0.2

< 0.2

< 0.2

< 0.2

< 0.2

< 0.4

< 0.2

< 0.2

< 0.2

(000) 220	5-0020	
(603) 228	8-0525	12
		8270D
28 - 89	47	8270D

8270D

8270D

8270D

8270D

eastern analytical, inc.

3.2 (76 %R)

Phone: (603) 22

mg/kg

3.3 (78 %R) (3 RPD)

Eastern Analytical, Inc. ID#: 77486

Batch ID: 733496-60003/S033009ABN1

Client: The Johnson Company

QC Report

Client Designation:	Richmond Creamery 1-0346-3
---------------------	------------------------------

		ac nepon					
Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Carbazole	< 0.2			mg/kg			8270D
Dimethylphthalate	< 0.2			mg/kg			8270D
Diethylphthalate	< 0.2			mg/kg			8270D
Di-n-butylphthalate	< 0.5	4.2 (%R)	4.0 (%R) (RPD)	mg/kg			8270D
Butylbenzylphthalate	< 0.2			mg/kg			8270D
bis(2-Ethylhexyl)phthalate	< 1			mg/kg			8270D
Di-n-octylphthalate	< 0.2			mg/kg			8270D
Dibenzofuran	< 0.2			mg/kg			8270D
Naphthalene	< 0.2			mg/kg			8270D
2-Methylnaphthalene	< 0.2			mg/kg			8270D
Acenaphthylene	< 0.2			mg/kg			8270D
Acenaphthene	< 0.2	3.8 (91 %R)	3.6 (85 %R) (7 RPD)	mg/kg	31 - 137	19	8270D
Fluorene	< 0.2			mg/kg			8270D
Phenanthrene	< 0.2			mg/kg			8270D
Anthracene	< 0.2			mg/kg			8270D
Fluoranthene	< 0.2			mg/kg			8270D
Pyrene	· < 0.2	4.3 (103 %R)	3.9 (93 %R) (10 RPD)	mg/kg	35 - 142	36	8270D
Benzo[a]anthracene	< 0.2			mg/kg			8270D
Chrysene	< 0.2			mg/kg			8270D
Benzo[b]fluoranthene	< 0.2			mg/kg			8270D
Benzo[k]fluoranthene	< 0.2			mg/kg			8270D
Benzo[a]pyrene	< 0.2			mg/kg			8270D
Indeno[1,2,3-cd]pyrene	< 0.2			mg/kg			8270D
Dibenz[a,h]anthracene	< 0.2			mg/kg			8270D
Benzo[g,h,i]perylene	< 0.2			mg/kg			8270D
2-Fluorophenol (surr)	87 %R	87 %R	81 %R	mg/kg	25 - 121		8270D
Phenol-D5 (surr)	89 %R	89 %R	85 %R	mg/kg	24 - 113		8270D
2,4,6-Tribromophenol (surr)	79 %R	84 %R	82 %R	mg/kg	19 - 122		8270D
Nitrobenzene-D5 (surr)	88 %R	88 %R	84 %R	mg/kg	23 - 120		8270D
2-Fluorobiphenyl (surr)	86 %R	85 %R	81 %R	mg/kg	30 - 115		8270D
p-Terphenyl-D14 (surr)	91 %R	95 %R	88 %R	mg/kg	18 - 137		8270D

Batch ID: 733496-60003/S033009ABN1

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Acid and Base/Neutral Extractable Compounds QA/QC and Narrative Report

Matrix: Units: EPA Method:	Aqueous % RPD 8270D	Solid % RPD 8270D	Aqueous % 625(mod)
Acid Extractables Surrogates: 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	21-110 10-94 10-123	25-121 24-113 19-122	21-110 10-94 10-123
Base/Neutral Extractables Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl p-Terphenyl-d14	35-114 43-116 33-141	23-120 30-115 18-137	35-114 43-116 33-141
Acid Extractables Spikes: Phenol 2-Chlorophenol Pentachlorophenol 4-Nitrophenol 4-Chloro-3-methylphenol	12-110 42 27-123 40 9-103 50 10-80 50 23-97 42	26-90 35 25-102 50 17-109 47 11-114 50 26-103 33	
Base/Neutral Extractables Spikes: N-Nitroso-di-n-propylamine 1,4-Dichlorobenzene 1,2,4-Trichlorobenzene 2,4-Dinitrotoluene Acenaphthene Pyrene	41-116 38 36-97 28 39-98 28 24-96 38 46-118 31 26-127 31	41-126 38 28-104 27 38-107 23 28-89 47 31-137 19 35-142 36	

Samples were extracted and analyzed within holding time limits.

Instrumentation was tuned and calibrated in accordance with the method requirements.

The associated method blank(s) were free of contamination at the reporting limit.

The associated (MS) matrix spike(s) and/or (LCS) Laboratory Control Sample(s) met the above stated criteria.

There were no exceptions in the analyses, unless noted.

DOR: Diluted out of calibration range.

MI: Matrix interference.

(mod): EPA method 3510C and 8270D employed.

LABORATORY REPORT

Eastern Analytical, Inc. ID#: 77486

Client: The Johnson Company

Sample ID: 1.5-2.0' 0-0.5' 1.5-2.0' 0-0.5' 1.5-2.0' 0-0.5' 1.5-2.0' Lab Sample ID: 77486.01 77486.02 77486.03 77486.04 77486.05 77486.06 7 Matrix: soil	SS-RR-02 0-0.5' 77486.07 soil	SS-RR-02 1.5-2.0' 77486.08
Matrix: soil soil soil soil soil soil soil Date Sampled: 3/23/09 3/23/09 3/23/09 3/23/09 3/23/09 3/23/09 3/23/09 3/23/09 3/23/09 3/23/09 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 3/26/09		77486 08
Date Sampled: 3/23/09 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 3/26/09	soil	11-00.00
Date Received: 3/25/09 3/26/09 4/2/09 8/270D		soil
Date Received: 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 3/25/09 Units: mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Date of Extraction/Prep: 3/26/09 4/2/09 4/2/09 4/2/09 4/2/09 4/2/09 4/2/09 4/2/09 4/2/09 4/2/09 4/2/09 4/2/09 4/2/09 4/2/09 8/270D 0/02 0.02 0.02 0.002 0.002 0.002	3/23/09	3/23/09
Date of Extraction/Prep: 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 4/2/09	3/25/09	3/25/09
Date of Extraction/Prep: 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 3/26/09 4/2/09 <	mg/kg	mg/kg
Analyst: BML BM	3/26/09	3/26/09
Method: 8270D <	4/3/09	4/3/09
Dilution Factor: 3 3 2 2 6 3 Naphthalene <0.02	BML	BML
Naphthalene< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 2-Methylnaphthalene 0.03 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 Acenaphthylene< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 Acenaphthene< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 Acenaphthene< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 Fluorene< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 Phenanthrene< 0.04 < 0.02 < 0.02 < 0.02 < 0.02 Anthracene< 0.02 < 0.02 < 0.02 < 0.02 < 0.02 Fluoranthene< 0.08 < 0.02 < 0.49 < 0.04 < 0.04 Pyrene< 0.07 < 0.02 < 0.49 < 0.04 < 0.04 Benzo[a]anthracene< 0.05 < 0.02 < 0.24 < 0.02 < 0.03	8270D	8270D
2-Methylnaphthalene0.03< 0.02< 0.02< 0.02< 0.02< 0.02Acenaphthylene< 0.02	2	2
Acenaphthylene< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02Acenaphthene< 0.02	0.03	< 0.02
Acenaphthene < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.03 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.03 < 0.07 < 0.04 < 0.03 < 0.07 < 0.04 < 0.02 < 0.03 < 0.07 < 0.04 < 0.03 < 0.07 < 0.04 < 0.03 < 0.07 < 0.04 < 0.03 < 0.07 < 0.04 < 0.03 < 0.03 < 0.03 <	0.03	< 0.02
Fluorene < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.03 < 0.02 < 0.03 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.04 < 0.02 < 0.04 < 0.03 < 0.04 < 0.04 < 0.04 < 0.03 < 0.04 < 0.03 < 0.04 < 0.03 < 0.04 < 0.03 < 0.04 < 0.04 < 0.02 < 0.02 < 0.03 < 0.07 < 0.04 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.0	< 0.02	< 0.02
Phenanthrene 0.04 < 0.02 0.16 < 0.02 0.04 0.03 Anthracene < 0.02	< 0.02	< 0.02
Anthracene< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02< 0.02Fluoranthene0.08< 0.02	< 0.02	< 0.02
Fluoranthene0.08< 0.020.490.050.090.04Pyrene0.07< 0.02	0.05	0.03
Pyrene0.07< 0.020.490.040.100.04Benzo[a]anthracene0.05< 0.02	< 0.02	< 0.02
Benzo[a]anthracene 0.05 < 0.02 0.26 0.03 0.07 0.04 Chrysene 0.04 < 0.02	0.21	0.10
Chrysene 0.04 < 0.02 0.24 0.02 0.05 0.03	0.22 0.13	0.10 0.06
	0.13	0.08
Benzo[b]fluoranthene 0.06 < 0.02 0.33 0.03 0.07 0.04	0.13	0.07
Benzo[k]fluoranthene 0.02 < 0.02 0.13 < 0.02 0.02 < 0.02	0.21	0.03
Benzo[a]pyrene 0.04 < 0.01 0.25 0.02 0.05 0.03	0.00	0.06
Indeno[1,2,3-cd]pyrene 0.03 < 0.02 0.12 < 0.02 0.03 < 0.02	0.07	0.03
Dibenz[a,h]anthracene < 0.02 < 0.02 0.04 < 0.02 < 0.02 < 0.02	0.02	< 0.02
Benzo[g,h,i]perylene 0.04 < 0.02 0.13 < 0.02 0.03 < 0.02		0.04
p-Terphenyl-D14 (surr) 52 %R 60 %R 66 %R 64 %R 73 %R 59 %R	0.07	73 %R

Eastern Analytical, Inc. ID#: 77486

Client: The Johnson Company

Sample ID: Lab Sample ID: Matrix:	SS-RR-03 0-0.5' 77486.09 soil	SS-RR-03 1.5-2.0' 77486.1	SS-RR-04 0-0.5'	SS-RR-04 1.5-2.0'	SS-RR-05 0-0.5'	SS-RR-05 1.5-2.0'	SS-RR-06 0-0.5'	SS-RR-07 0-0.5'
Matrix:		77486.1						
	soil		77486.11	77486.12	77486.13	77486.14	77486.15	77486.16
	. • ••	soil	soil	soil	soil	soil	soil	soil
Date Sampled:	3/23/09	3/23/09	3/23/09	3/23/09	3/23/09	3/23/09	3/23/09	3/23/09
Date Received:	3/25/09	3/25/09	3/25/09	3/25/09	3/25/09	3/25/09	3/25/09	3/25/09
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Pr		3/26/09	3/26/09	3/26/09	3/26/09	3/26/09	3/26/09	3/26/09
Date of Analysis:	4/3/09	4/3/09	4/3/09	4/6/09	4/6/09	4/6/09	4/6/09	4/6/09
Analyst:	BML	BML	BML	BML	BML	BML	BML	BML
Method:	8270D	8270D	8270D	8270D	8270D	8270D	8270D	8270D
Dilution Factor:	3	3	2	2	2	2	2	2
Naphthalene	< 0.02	0.05	0.16	0.17	0.15	0.10	< 0.02	< 0.02
2-Methylnaphthalene	< 0.02	0.03	0.29	0.27	0.22	0.11	0.03	< 0.02
Acenaphthylene	0.04	0.09	0.14	0.16	0.24	0.46	0.02	0.05
Acenaphthene	< 0.02	0.09	< 0.02	0.05	< 0.02	< 0.02	< 0.02	< 0.02
Fluorene	< 0.02	0.13	< 0.02	0.06	0.02	0.05	< 0.02	< 0.02
Phenanthrene	0.16	1.7	0.31	0.95	0.43	0.84	0.05	0.05
Anthracene	0.02	0.37	0.08	0.14	0.09	0.19	< 0.02	0.02
Fluoranthene	0.59	2.9	0.82	1.8	1.5	3.7	0.17	0.28
Pyrene	0.43	1.9	0.72	1.2	1.4	3.5	0.13	0.28
Benzo[a]anthracene	0.25	1.1	0.37	0.71	0.78	1.7	0.09	0.19
Chrysene	0.30	1.2	0.35	0.85	0.92	2.1	0.11	0.19
Benzo[b]fluoranthene	0.46	1.7	1.1	1.2	1.7	4.0	0.18	0.34
Benzo[k]fluoranthene	0.15	0.49	0.37	0.43	0.55	1.3	0.05	0.11
Benzo[a]pyrene	0.30	1.1	0.40	0.58	1.1	2.7	0.09	0.26
Indeno[1,2,3-cd]pyrene	0.15	0.43	0.27	0.23	0.51	1.3	0.05	0.14
Dibenz[a,h]anthracene	0.05	0.14	0.09	0.08	0.14	0.36	< 0.02	0.04
Benzo[g,h,i]perylene p-Terphenyl-D14 (surr)	0.16 54 %R	0.40 54 %R	0.22 65 %R	0.18 58 %R	0.52 54 %R	1.4 55 %R	0.05 54 %R	0.16 56 %R

Eastern Analytical, Inc. ID#: 77486

Client: The Johnson Company

Sample ID:	SS-RR-07 0.5-1.0'	SS-RR-08 0-0.5'	SS-RR-08 1.5-2.0'	SS-RR-09 0-0.5'	SS-RR-10 0-0.5'	SS-RR-10 1.5-2.0'	SS-RR-DUP 5 0-0.5'	SS-RR-DUP 1.5-2.0'
Lab Sample ID:	77486.17	77486.18	77486.19	77486.2	77486.21	77486.22	77486.23	77486.24
Matrix:	soil	soil	soil	soil	soil	soil	soil	soil
Date Sampled:	3/23/09	3/23/09	3/23/09	3/23/09	3/23/09	3/23/09	3/23/09	3/23/09
Date Received:	3/25/09	3/25/09	3/25/09	3/25/09	3/25/09	3/25/09	3/25/09	3/25/09
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction	/Prep: 3/26/09	3/26/09	3/26/09	3/26/09	3/27/09	3/27/09	3/27/09	3/27/09
Date of Analysis:	4/1/09	4/1/09	4/1/09	4/1/09	4/1/09	4/1/09	4/1/09	4/1/09
Analyst:	BML	BML	BML	BML	BML	BML	BML	BML
Method:	8270D	8270D	8270D	8270D	8270D	8270D	8270D	8270D
Dilution Factor:	2	2	3	2	2	2	2	2
Naphthalene	< 0.02	0.07	0.06	0.07	< 0.02	0.02	0.13	0.15
2-Methylnaphthalen		0.07	0.08	0.07	0.02	0.02	0.13	0.15
Acenaphthylene	0.09	< 0.02	< 0.02	< 0.02	0.04	0.06	0.37	1.1
Acenaphthene	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.03
Fluorene	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.03	0.11
Phenanthrene	0.14	0.11	0.16	0.15	0.13	0.29	0.47	1.6
Anthracene	0.05	< 0.02	< 0.02	< 0.02	0.04	0.05	0.14	0.42
Fluoranthene	0.54	0.10	0.20	0.24	0.34	0.56	1.9	6.8
Pyrene	0.54	0.09	0.18	0.22	0.35	0.54	2.0	6.3
Benzo[a]anthracene	0.33	0.06	0.08	0.08	0.22	0.33	1.0	3.1
Chrysene	0.31	0.09	0.13	0.18	0.24	0.38	1.3	3.8
Benzo[b]fluoranthen		0.09	0.17	0.24	0.37	0.53	2.1	6.5
Benzo[k]fluoranthen		0.02	0.05	0.08	0.13	0.15	0.77	2.4
Benzo[a]pyrene	0.38	0.05	0.08	0.12	0.25	0.36	1.5	4.6
Indeno[1,2,3-cd]pyre		0.03	0.05	0.10	0.17	0.21	0.87	2.2
Dibenz[a,h]anthrace		< 0.02	< 0.02	0.03	0.05	0.06	0.23	0.59
Benzo[g,h,i]perylene		0.04	0.06	0.10	0.18	0.23	0.92	2.2
p-Terphenyl-D14 (su	urr) 66 %R	57 %R	52 %R	66 %R	84 %R	71 %R	66 %R	63 %R

Batch ID: 733492-59830/S032609PAH1

Client: The Johnson Company

Client Designation: Rich

Richmond Creamery | 1-0346-3

QC Report

Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Naphthalene	< 0.02	0.40 (61 %R)	0.35 (53 %R) (14 RPD)	mg/kg	30 - 160	50	8270D
2-Methylnaphthalene	< 0.02	0.43 (65 %R)	0.38 (57 %R) (13 RPD)	mg/kg	30 - 160	50	8270D
Acenaphthylene	< 0.02	0.43 (64 %R)	0.39 (59 %R) (8 RPD)	mg/kg	30 - 160	50	8270D
Acenaphthene	< 0.02	0.42 (63 %R)	0.38 (57 %R) (10 RPD)	mg/kg	31 - 137	19	8270D
Fluorene	< 0.02	0.41 (62 %R)	0.41 (61 %R) (2 RPD)	mg/kg	30 - 160	50	8270D
Phenanthrene	< 0.02	0.47 (71 %R)	0.44 (66 %R) (7 RPD)	mg/kg	30 - 160	50	8270D
Anthracene	< 0.02	0.41 (61 %R)	0.39 (58 %R) (5 RPD)	mg/kg	30 - 160	50	8270D
Fluoranthene	< 0.02	0.43 (65 %R)	0.43 (65 %R) (0 RPD)	mg/kg	30 - 160	50	8270D
Pyrene	< 0.02	0.45 (67 %R)	0.42 (63 %R) (6 RPD)	mg/kg	35 - 142	36	8270D
Benzo[a]anthracene	< 0.02	0.46 (68 %R)	0.44 (66 %R) (3 RPD)	mg/kg	30 - 160	50	8270D
Chrysene	< 0.02	0.47 (70 %R)	0.45 (67 %R) (4 RPD)	mg/kg	30 - 160	50	8270D
Benzo[b]fluoranthene	< 0.02	0.41 (62 %R)	0.41 (62 %R) (0 RPD)	mg/kg	30 - 160	50	8270D
Benzo[k]fluoranthene	< 0.02	0.45 (67 %R)	0.39 (59 %R) (13 RPD)	mg/kg	30 - 160	50	8270D
Benzo[a]pyrene	< 0.01	0.42 (63 %R)	0.41 (61 %R) (3 RPD)	mg/kg	30 - 160	50	8270D
Indeno[1,2,3-cd]pyrene	< 0.02	0.52 (78 %R)	0.51 (76 %R) (3 RPD)	mg/kg	30 - 160	50	8270D
Dibenz[a,h]anthracene	< 0.02	0.51 (77 %R)	0.50 (75 %R) (3 RPD)	mg/kg	30 - 160	50	8270D
Benzo[g,h,i]perylene	< 0.02	0.49 (74 %R)	0.49 (73 %R) (1 RPD)	mg/kg	30 - 160	50	8270D
p-Terphenyl-D14 (surr)	62 %R	69 %R	64 %R	mg/kg	18 - 137		8270D

Batch ID: 733493-52518/S032709PAH1

Client: The Johnson Company

Client Designation: **QC Report**

Richmond Creamery | 1-0346-3

Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Naphthalene	< 0.02	0.31 (46 %R)	0.33 (49 %R) (6 RPD)	mg/kg	30 - 160	50	8270D
2-Methylnaphthalene	< 0.02	0.33 (50 %R)	0.34 (52 %R) (4 RPD)	mg/kg	30 - 160	50	8270D
Acenaphthylene	< 0.02	0.34 (51 %R)	0.34 (52 %R) (2 RPD)	mg/kg	30 - 160	50	8270D
Acenaphthene	< 0.02	0.34 (51 %R)	0.34 (51 %R) (0 RPD)	mg/kg	31 - 137	19	8270D
Fluorene	< 0.02	0.36 (54 %R)	0.37 (56 %R) (4 RPD)	mg/kg	30 - 160	50	8270D
Phenanthrene	< 0.02	0.46 (69 %R)	0.45 (68 %R) (1 RPD)	mg/kg	30 - 160	50	8270D
Anthracene	< 0.02	0.41 (62 %R)	0.40 (61 %R) (2 RPD)	mg/kg	30 - 160	50	8270D
Fluoranthene	< 0.02	0.49 (73 %R)	0.48 (72 %R) (1 RPD)	mg/kg	30 - 160	50	8270D
Pyrene	0.04	0.50 (74 %R)	0.52 (78 %R) (5 RPD)	mg/kg	35 - 142	36	8270D
Benzo[a]anthracene	< 0.02	0.50 (75 %R)	0.50 (75 %R) (0 RPD)	mg/kg	30 - 160	50	8270D
Chrysene	< 0.02	0.51 (77 %R)	0.51 (76 %R) (1 RPD)	mg/kg	30 - 160	50	8270D
Benzo[b]fluoranthene	< 0.02	0.48 (71 %R)	0.46 (69 %R) (3 RPD)	mg/kg	30 - 160	50	8270D
Benzo[k]fluoranthene	< 0.02	0.46 (69 %R)	0.45 (68 %R) (1 RPD)	mg/kg	30 - 160	50	8270D
Benzo[a]pyrene	< 0.01	0.46 (69 %R)	0.45 (67 %R) (3 RPD)	mg/kg	30 - 160	50	8270D
Indeno[1,2,3-cd]pyrene	< 0.02	0.58 (87 %R)	0.60 (90 %R) (3 RPD)	mg/kg	30 - 160	50	8270D
Dibenz[a,h]anthracene	< 0.02	0.57 (86 %R)	0.59 (89 %R) (3 RPD)	mg/kg	30 - 160	50	8270D
Benzo[g,h,i]perylene	< 0.02	0.56 (83 %R)	0.59 (88 %R) (6 RPD)	mg/kg	30 - 160	50	8270D
p-Terphenyl-D14 (surr)	77 %R	74 %R	78 %R	mg/kg	18 - 137		8270D

Batch ID: 733492-59830/S032609PAH1

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Polynuclear Aromatic Hydrocarbons QA/QC and Narrative Report

Matrix: Units: EPA Method:	Aqueous % 8270D	RPD %	Solid % 8270D	RPD %	Oil % 8270D	RPD %
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	30-160 30-160 30-160 46-118 30-160 30-160 30-160 30-160 26-127	31	30-160 30-160 31-137 30-160 30-160 30-160 30-160 35-142	19 36	30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160	50
Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene Benzo[g,h,i]perylene Surrogate (p-Terphenyl-D14)	30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 33-141		30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160		30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160	

Samples were extracted and analyzed within holding time limits.

Instrumentation was tuned and calibrated in accordance with the method requirements.

The associated method blank(s) were free of contamination at the reporting limit.

Sample Surrogate Recoveries met the above stated criteria.

The associated matrix spike(s) and/or Laboratory Control Sample(s) met the above stated criteria. There were no exceptions in the analyses, unless noted below.

Eastern Analytical, Inc. ID#: 77486

Client: The Johnson Company Client Designation: Richmond Creamery | 1-0346-3

	SS-PS-01	SS-PS-02
Sample ID:		
Lab Sample ID:	77486.25	77486.26
Matrix:	soil	soil
Date Sampled:	3/23/09	3/23/09
Date Sampled. Date Received:	3/25/09	3/25/09
Units:	mg/kg	mg/kg
Date of Extraction/Prep:	3/26/09	3/26/09
Date of Analysis:	4/7/09	4/7/09
Analyst:	JC	JC
Method:	8081A	8081A
Dilution Factor:	1	2
Diation ractor.		_
Aldrin	< 0.01	< 0.01
alpha-BHC	< 0.01	< 0.01
beta-BHC	< 0.01	< 0.01
Lindane (gamma-BHC)	< 0.01	< 0.01
delta-BHC	< 0.01	< 0.01
Chlordane 4,4'-DDT	< 0.1 < 0.01	< 0.1 > < 0.01 >
4,4'-DDT 4,4'-DDE	< 0.01	< 0.01
4,4'-DDD	< 0.01	< 0.01
Dieldrin	< 0.01	< 0.01
Endosulfan I	< 0.01	< 0.01
Endosulfan II	< 0.01	< 0.01
Endosulfan Sulfate	< 0.01	< 0.01
Endrin Endrin Aldehyde	< 0.01 < 0.01	< 0.01 < 0.01
Endrin Ketone	< 0.01	< 0.01
Heptachlor	< 0.01	< 0.01
Heptachlor Epoxide	< 0.01	< 0.01
Methoxychlor	< 0.01	< 0.01
Toxaphene	< 0.1	< 0.1
TMX (surr)	94 %R	100 %R
DCB (surr)	82 %R	88 %R

Sample SS-PS-02: The dilution factor is elevated due the low solids content of the sample. There is no impact to the reporting limits.

TBA cleanup was performed on all samples and associated Batch QC.

Batch ID: 733492-56471/S032609Pest1

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

.

QC	Report		Date	e of Analysi	s
Blank	LCS	LCS Dup	Units		Method
< 0.01	0.04 (124 %R)	0.03 (100 %R) (8 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (126 %R)	0.03 (101 %R) (9 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (128 %R)	0.03 (103 %R) (11 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (128 %R)	0.03 (102 %R) (9 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.05 (150 %R)	0.05 (154 %R) (18 RPD)	mg/kg	4/6/09	8081A
< 0.1	< 0.1 (133 %R)	< 0.1 (107 %R) (8 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (132 %R)	0.04 (109 %R) (18 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (133 %R)	0.04 (108 %R) (11 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (126 %R)	0.03 (105 %R) (12 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (128 %R)	0.03 (103 %R) (7 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (129 %R)	0.04 (105 %R) (10 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (130 %R)	0.04 (106 %R) (10 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (123 %R)	0.04 (110 %R) (19 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (129 %R)	0.03 (103 %R) (10 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (132 %R)	0.03 (104 %R) (24 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (121 %R)	0.04 (108 %R) (9 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (126 %R)	0.03 (101 %R) (8 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (129 %R)	0.03 (104 %R) (10 RPD)	mg/kg	4/6/09	8081A
< 0.01	0.04 (130 %R)	0.04 (116 %R) (20 RPD)	mg/kg	4/6/09	8081A
< 0.1	< 0.1 (%R N/A)	< 0.1 (%R N/A) (RPD N/A)	mg/kg	4/6/09	8081A
38 %R	105 %R	109 %R	mg/kg	4/6/09	8081A
72 %R	132 %R	130 %R	mg/kg	4/6/09	8081A
	<pre>Blank < 0.01 < 0.0</pre>	 < 0.01 < 0.01 < 0.04 (124 %R) < 0.01 < 0.04 (126 %R) < 0.01 < 0.04 (128 %R) < 0.01 < 0.04 (128 %R) < 0.01 < 0.05 (150 %R) < 0.1 < 0.1 (133 %R) < 0.01 < 0.04 (132 %R) < 0.01 < 0.04 (132 %R) < 0.01 < 0.04 (133 %R) < 0.01 < 0.04 (128 %R) < 0.01 < 0.04 (129 %R) < 0.01 < 0.04 (129 %R) < 0.01 < 0.04 (129 %R) < 0.01 < 0.04 (121 %R) < 0.01 < 0.04 (129 %R) < 0.01 < 0.04 (120 %R) < 0.01 < 0.04 (130 %R) 	BlankLCSLCS Dup< 0.01	Blank LCS LCS Dup Units < 0.01	Blank LCS LCS Dup Units < 0.01

Batch ID: 733492-56471/S032609Pest1

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Pesticides QA/QC and Narrative Report

Matrix:	Aqueous	Solid
Units:	%	%
EPA Method:	8081A/8082	8081A/8082
Aldrin alpha-BHC beta-BHC gamma-BHC delta-BHC Chlordane 4,4'-DDT 4,4'-DDE 4,4'-DDD Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate Endrin	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140
Endrin Aldehyde	40-140	40-140
Endrin Ketone	40-140	40-140
Heptachlor	40-140	40-140
Heptachlor Epoxide	40-140	40-140
Methoxychlor	40-140	40-140
TMX(Surr)	30-150	30-150
DCB(Surr)	30-150	30-150

Samples were extracted and analyzed within holding time limits.

Instrumentation was tuned and calibrated in accordance with the method requirements.

The associated method blank(s) were free of contamination at the reporting limit.

All samples met the above stated criteria for surrogate recovery.

The associated Matrix Spike(s) and/or Laboratory Control Sample (LCS)(s) met the above stated criteria.

There were no exceptions in the analyses, unless noted below.

The analyte delta-BHC was above the acceptance criteria in both the LCS and LCSD samples. There is no impact to the data since no analytes were detected in the samples.

Eastern Analytical, Inc. ID#: 77486

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	SS-RR-08 0-0.5'	Sub Slab 2	SS-CB-01	SS-WR-01					
Lab Sample ID:	77486.18	77486.27	77486.28	77486.29					
Matrix:	soil	soil	soil	soil					
Date Sampled:	3/23/09	3/24/09	3/23/09	3/24/09	Analytical		Date of		
Date Received:	3/25/09	3/25/09	3/25/09	3/25/09	Matrix	Units	Analysis	Method	Analyst
	5/25/09	3123109	5/25/09	5/25/09			-		,
Aluminum	4600	4100	6500	11000	SolTotDry	mg/kg	3/30/09	6020	DS
Antimony	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	3/30/09	6020	DS
Arsenic	4.5	1.8	4.7	4.3	SolTotDry	mg/kg	3/30/09	6020	DS
Barium	42	10	62	68	SolTotDry	mg/kg	3/30/09	6020	DS
Beryllium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	3/30/09	6020	DS
Cadmium	< 0.5	< 0.5	1.1	< 0.5	SolTotDry	mg/kg	3/30/09	6020	DS
Chromium	7.5	9.3	19	16	SolTotDry	mg/kg	3/30/09	6020	DS
Copper	17	7.4	37	20	SolTotDry	mg/kg	3/30/09	6020	DS
Cobalt	5.0	17	4.9	7.7	SolTotDry	mg/kg	3/30/09	6020	DS
Iron	13000	8400	13000	18000	SolTotDry	mg/kg	3/30/09	6020	DS
Lead	110	3.8	290	28	SolTotDry	mg/kg	3/30/09	6020	DS
Manganese	210	120	260	360	SolTotDry	mg/kg	3/30/09	6020	DS
Mercury	< 0.1	< 0.1	< 0.1	0.1	SolTotDry	mg/kg	3/30/09	6020	DS
Nickel	11	14	13	18	SolTotDry	mg/kg	3/30/09	6020	DS
Selenium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	3/30/09	6020	DS
Silver	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	3/30/09	6020	DS
Thallium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	3/30/09	6020	DS
Vanadium	9.1	8.8	12	21	SolTotDry	mg/kg	3/30/09	6020	DS
Zinc	69	24	150	110	SolTotDry	mg/kg	3/30/09	6020	DS
Tin	1.8	0.28	18	1.4	SolTotDry	mg/kg	3/31/09	6020	DS
		0.20				33			-

24

Eastern Analytical, Inc. ID#: 77486

Client: The Johnson Company

Sample ID:	SS-FB-05	SS-SS-03					
Lab Sample ID:	77486.3	77486.31					
Matrix:	soil	soil					
Date Sampled:	3/23/09	3/24/09	Analytical		Date of		
Date Received:	3/25/09	3/25/09	Matrix	Units	Analysis	Method /	An
Aluminum	6700	5300	SolTotDry	mg/kg	3/30/09	6020	
Antimony	< 0.5	< 0.5	SolTotDry		3/30/09	6020	
Arsenic	4.4	4.1	SolTotDry	mg/kg	3/30/09	6020	
Barium	47	130	SolTotDry	mg/kg	3/30/09	6020	
Beryllium	< 0.5	< 0.5	SolTotDry	mg/kg	3/30/09	6020	
Cadmium	1.4	0.6	SolTotDry	mg/kg	3/30/09	6020	
Chromium	14	13	SolTotDry	mg/kg	3/30/09	6020	
Copper	93	41	SolTotDry	mg/kg	3/30/09	6020	
Cobalt	4.7	5.1	SolTotDry	mg/kg	3/30/09	6020	
Iron	18000	15000	SolTotDry		3/30/09	6020	
Lead	88	700	SolTotDry	mg/kg	3/30/09	6020	
Manganese	200	230	SolTotDry	mg/kg	3/30/09	6020	
Mercury	3.7	0.1	SolTotDry	mg/kg	3/30/09	6020	
Nickel	14	42	SolTotDry	mg/kg	3/30/09	6020	
Selenium	< 0.5	< 0.5	SolTotDry	mg/kg	3/30/09	6020	
Silver	< 0.5	< 0.5	SolTotDry	mg/kg	3/30/09	6020	
Thallium	< 0.5	< 0.5	SolTotDry	mg/kg	3/30/09	6020	ļ
Vanadium	16	180	SolTotDry	mg/kg	3/30/09	6020	
Zinc	2100	190	SolTotDry	mg/kg	3/30/09	6020	
Tin	1.5	4.8	SolTotDry	mg/kg	3/31/09	6020	

Eastern Analytical, Inc. ID#: 77486

Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

QC Report

		JUIT		Date of	
Parameter Name	Blank	LCS	Units	Analysis	Method
Aluminum	< 100	400 (94 %R)	mg/kg	3/30/09	6020
Antimony	< 0.5	36 (89 %R)	mg/kg	3/30/09	6020
Arsenic	< 0.5	35 (88 %R)	mg/kg	3/30/09	6020
Barium	< 0.5	35 (87 %R)	mg/kg	3/30/09	6020
Beryllium	< 0.5	38 (95 %R)	mg/kg	3/30/09	6020
Cadmium	< 0.5	35 (86 %R)	mg/kg	3/30/09	6020
Chromium	< 0.5	37 (91 %R)	mg/kg	3/30/09	6020
Copper	< 0.5	37 (92 %R)	mg/kg	3/30/09	6020
Cobalt	< 0.5	37 (93 %R)	mg/kg	3/30/09	6020
Iron	< 100	500 (103 %R)	mg/kg	3/30/09	6020
Lead	< 0.5	34 (85 %R)	mg/kg	3/30/09	6020
Manganese	< 0.5	38 (94 %R)	mg/kg	3/30/09	6020
Mercury	< 0.1	0.3 (87 %R)	mg/kg	3/30/09	6020
Nickel	< 0.5	37 (93 %R)	mg/kg	3/30/09	6020
Selenium	< 0.5	34 (85 %R)	mg/kg	3/30/09	6020
Silver	< 0.5	9.0 (90 %R)	mg/kg	3/30/09	6020
Tin	< 0.2	77 (96 %R)	mg/kg	3/31/09	6020
Thallium	< 0.5	34 (84 %R)	mg/kg	3/30/09	6020
Vanadium	< 0.5	36 (91 %R)	mg/kg	3/30/09	6020
Zinc	< 0.5	36 (90 %R)	mg/kg	3/30/09	6020

Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

	. ,	QC Report	•			
				Date	e of Analys	sis
Parameter Name	MS/MSD Parent	Matrix Spike	MSD	Units		Method
Aluminum	4500	14000 (86 %R)	14000 (86 %R) (0 RPD)	mg/kg	3/30/09	6020
Antimony	< 0.5	950 (95 %R)	960 (97 %R) (2 RPD)	mg/kg	3/30/09	6020
Arsenic	6.2	950 (95 %R)	950 (94 %R) (1 RPD)	mg/kg	3/30/09	6020
Barium	22	910 (89 %R)	930 (91 %R) (2 RPD)	mg/kg	3/30/09	6020
Beryllium	< 0.5	960 (97 %R)	950 (95 %R) (2 RPD)	mg/kg	3/30/09	6020
Cadmium	< 0.5	900 (90 %R)	910 (91 %R) (1 RPD)	mg/kg	3/30/09	6020
Chromium	5.8	860 (86 %R)	880 (88 %R) (2 RPD)	mg/kg	3/30/09	6020
Copper	5.6	780 (77 %R)	800 (80 %R) (4 RPD)	mg/kg	3/30/09	6020
Cobalt	2.5	840 (84 %R)	870 (87 %R) (4 RPD)	mg/kg	3/30/09	6020
Iron	8000	17000 (82 %R)	18000 (88 %R) (7 RPD)	mg/kg	3/30/09	6020
Lead	12	870 (87 %R)	880 (88 %R) (1 RPD)	mg/kg	3/30/09	6020
Manganese	140	980 (85 %R)	1000 (86 %R) (1 RPD)	mg/kg	3/30/09	6020
Mercury	< 0.1	1.0 (97 %R)	1.0 (97 %R) (0 RPD)	mg/kg	3/30/09	6020
Nickel	5.4	870 (86 %R)	870 (87 %R) (1 RPD)	mg/kg	3/30/09	6020
Selenium	< 0.5	930 (94 %R)	950 (96 %R) (2 RPD)	mg/kg	3/30/09	6020
Silver	< 0.5	1100 (111 %R)	1200 (117 %R) (5 RPD)	mg/kg	3/30/09	6020
Tin	4.8	43 (96 %R)	44 (99 %R) (3 RPD)	mg/kg	3/31/09	6020
Thallium	< 0.5	870 (87 %R)	900 (90 %R) (3 RPD)	mg/kg	3/30/09	6020
Vanadium	8.2	890 (88 %R)	910 (90 %R) (2 RPD)	mg/kg	3/30/09	6020
Zinc	35	870 (84 %R)	880 (85 %R) (1 RPD)	mg/kg	3/30/09	6020

Batch ID:

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

	Metals QA/	QC and Narrative Report	
QA/QC:	LCS	MS .	MSD
Matrix:	Aqueous/Soil	Aqueous/Soil	Aqueous/Soil
Units:	%	. %	. %
EPA Method:	6010B/6020	6010B/6020	6010B/6020
Aluminum	80-120	75-125	75-125
Antimony	80-120	75-125	75-125
Arsenic	80-120	75-125	75-125
Barium	80-120	75-125	75-125
Beryllium	80-120	75-125	75-125
Boron	80-120	75-125	75-125
Cadmium	80-120	75-125	75-125
Calcium	80-120	75-125	75-125
Chromium	80-120	75-125	75-125
Chromium III	80-120	75-125	75-125
Chromium IV	80-120	75-125	75-125
Cobalt	80-120	75-125	75-125
Copper	80-120	75-125	75-125
Iron	80-120	75-125	75-125
Lead	80-120	75-125	75-125
Magnesium	80-120	75-125	75-125
Manganese	80-120	75-125	75-125
Mercury	80-120	75-125	75-125
Molybdenum	80-120	75-125	75-125
Nickel	80-120	75-125	75-125
Phosphorus	80-120	75-125	75-125
Potassium	80-120	75-125	75-125
Selenium	80-120	75-125	75-125
Silicon	80-120	75-125	75-125
Silver	80-120	75-125	75-125
Sodium	80-120	75-125	75-125
Thallium	80-120	75-125	75-125
Tin	80-120	75-125	75-125
Titanium	80-120	75-125	75-125
Vanadium	80-120	75-125	75-125
Zinc	80-120	75-125	75-125

Samples were analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria.

There were no exceptions in the analyses, unless noted below.

URS

URS Corporation 5 Industrial Way Salem, NH 03079 Tel: 603.893.0616 Fax: 603.893.6240

Mr. Scott Kelley Eastern Analytical 25 Chenell Drive Concord, NH 03301

 URS Project #
 : 39741-683-00000

 Laboratory Batch #
 : 28744

 Date Samples Received
 : 3/27/2009

 Date Samples Analyzed
 : 4/3/2009

 Date of Final Report
 : 4/3/2009

Date of Final Report

Fifteen bulk samples from the Eastern Analytical; Vermont project; submitted by Scott Kelley.

These bulk samples were delivered to URS Corporation, Salem, New Hampshire for asbestos content determination.

ANALYTICAL METHOD;

SAMPLE IDENTIFICATION:

Analytical procedures were performed in accordance with the U.S. Environmental Protection Agency (EPA) Recommended Method for the Determination of Asbestos in Bulk Samples by Polarized Light Microscopy and Dispersion Staining (PLM/DS)(EPA-600/M4-82-020, EPA-600/R-93-116) and the New York Department of Health Environmental Laboratory Approval Program (NYDOH-ELAP 198.1) with the exception of resinously bound materials (please refer to the comments at the end of this report). This report relates only to those samples actually analyzed, and may not be indicative of other similar appearing materials existing at this, or other sites. Quantification of asbestos content was determined by Calibrated Visual Estimation.

The EPA requires that friable samples with analytical results of 10% or less asbestos, by visual estimation, be treated as asbestos-containing material unless these quantities are verified using the point counting method. The point counting method is a systematic technique for estimating concentration, also using PLM. The point counting method, however, does not increase the analyst's ability to detect fibers. If you would like any of your friable samples with an asbestos content of less than 10% to be point counted, please contact our office. Point counting is not required for those samples in which no asbestos is detected during analysis by PLM.

In any given material, fibers with a small diameter (<0.25µm) may not be detected by the PLM method. Floor tile and other resinously bound material may yield a false negative if the asbestos fibers are too small to be resolved using PLM. Additional analytical methods may be required. URS recommends using Transmission Electron Microscopy (TEM) for a more definitive analysis.

New York state regulations require that all friable samples in which asbestos is detected be point counted (using the NYDOH-ELAP stratified point counting method). New York state regulations also require TEM confirmation of NOB (Non Organically Bound) samples found to have No Asbestos Detected by PLM. These regulations apply only to samples taken within the State of New York.

URS will retain all samples for a minimum of three months. Further analysis or return of samples must be requested within this three month period to guarantee their availability. This report may not be reproduced except in full, without the written approval of the URS, Salem Asbestos Laboratory.

Use of the NVLAP and AIHA Logo in no way constitutes or implies product certification, approval, or endorsement by the National Institute of Standards and Technology or the American Industrial Hygiene Association.

The analysis of this soil sample was performed utilizing the U.S. EPA Region 1 Reference Method, to facilitate finding asbestos fibers present at low levels. This procedure differs from the EPA Method and should not be considered a recognized protocol.

If you have any questions regarding this report, please do not hesitate to contact us.

Douglas R. Lawson, Ph.D, CIH Laboratory Director

NVLAP Lab ID#: 101433-0 NYDOH-ELAP #: 11020 Control Document 1000 10/6/2008

Jamie L. Noel Laboratory Supervisor

Res 2

Page 1 of 2

C
7
ち

Laboratory Bulk Asbestos Analysis Results

Client/ Project Title : Eastern Analytical; Vermont Project Number : 39741-683-00000 Laboratory Batch : 28744

Date Received : 3/27/2009 Date Reported : 4/3/2009 Analyst : Jamie L. Noel

1			Asbest	tos Type	Asbestos Type(s) Detected	ted	Non-A	Non-Asbestos	os Materials	rials	
			e		te			ol	M)	ous	Comments
#			/sotil	site	idoli	r		r Gla I Wo	Fibr (OFI	Fibro l	Analysis Methods Per EPA-600/M4-82-020,
o ID			Chry	Amos	Croci	Othe	Cellu	eral	erial	lon-l erial	EPA-600/R-93-116, & NYDOH-ELAP 198.1
La	Client ID #/ Description	Color	% (%	% (% (Min	Mat	% N Mat	NAD - No Asbestos Detected
001	SS-RR-01, Soil						Å		P	P	P = Present; U.S. EPA Region 1 Reference Method
002	SS-RR-09, Soil						שי		Ą	Ą	P = Present; U.S. EPA Region 1 Reference Method
003	SS-RR-08, Soil						P		P	P	P = Present; U.S. EPA Region 1 Reference Method
004	SS-RR-04, Soil						P		Ą	P	P = Present; U.S. EPA Region 1 Reference Method
005	SS-FB-06, Soil						P			P	P = Present; U.S. EPA Region 1 Reference Method
900	SS-FB-07, Soil						Ψ		Р	P	P = Present; U.S. EPA Region 1 Reference Method
007	SS-FB-08, Soil						P		P	P	P = Present; U.S. EPA Region 1 Reference Method
800	SS-CB-01, Soil						P		P	P	P = Present; U.S. EPA Region 1 Reference Method
600	SS-CB-02, Soil						P			יש י	P = Present; U.S. EPA Region 1 Reference Method
010	SS-RR-05, Soil						P		P	P	P = Present; U.S. EPA Region 1 Reference Method
011	SS-FB-ACM-01, Soil						P		P	P	P = Present; U.S. EPA Region 1 Reference Method
012	SS-FB-ACM-02, Soil						P		P	Ą	P = Present; U.S. EPA Region 1 Reference Method
013	SS-FB-ACM-03, Soil			ļ			P		P	קי	P = Present; U.S. EPA Region 1 Reference Method
014	SS-FB-ACM-04, Soil				 		P		P	ъ	P = Present; U.S. EPA Region 1 Reference Method
015	SS-FB-ACM-05, Soil			 	 		P		P	٩	P = Present; U.S. EPA Region 1 Reference Method
				 					<u> </u>		
Γ			 	L	L	L	L	<u> </u>	 	 	
Rive	Control Document 1000 10/8/2008										

Rev. 2 Control Document 1000 10/6/2008

Page 2 of 2

AmeriSci Boston

8 SCHOOL STREET WEYMOUTH, MA 02189 TEL: (781) 337-9334 • FAX: (781) 337-7642

April 3, 2009

URS Corporation Attn: Jamie Noel 5 Industrial Way Salem, NH 03079

RE: URS Corporation Job Number 509031261 P.O. # 28746 39741683.00000; EA SRB #77486; Batch 28746 ,Soil Analysis By TEM

Dear Jamie Noel:

Enclosed are the results of Asbestos Analysis - Bulk Qualitative Protocol of the following URS Corporation samples, received at AmeriSci on Tuesday, March 31, 2009, for a 5 day turnaround:

SS-FB-ACM-05, SS-RR-050-05

The 2 samples, placed in Zip Lock Bags, were shipped to AmeriSci via Federal Express. URS Corporation requested Bulk-Qualitative analysis of these samples.

The samples were prepared and analyzed by using a Standard Operating Procedure developed by AmeriSci, Inc.. After preparation, using non-quantitative matrix reduction if necessary, the presence or absence of asbestos is determined by PLM and/or TEM as indicated on the attached summary table. Quantification after the fact is not possible without a new preparation. This report relates ONLY to the analysis expressed as "asbestos present" or "no asbestos visible". This report must not be used to claim product endorsement or approval by AmeriSci, NVLAP, ELAP or any other associated AmeriSci certifying agency. The National Institute of Standards and Technology Accreditation requirements, mandates that this report must not be reproduced, except in full without the approval of the laboratory.

AmeriSci appreciates this opportunity to serve your organization. Please contact us for any further assistance or with any questions.

Sincerely,

Clal

Bryan H. Cark Asbestos Lab Director

Boston • Los Angeles • New York • Richmond

AmeriSci Job #: 509031261 Client Name: URS Corporation

> Page <u>د</u> đ

> > ~32

Summary of Bulk Asbestos Analysis Results Table I

39741683.00000; EA SRB #77486; Batch 28746 ,Soil Analysis By TEM

02	01	AmeriSci Sample #
SS-RR-050-05	SS-FB-ACM-05	Client Sample# Location
		HG Area
I		Sample Weight (gram)
		Heat Sensitive Organic %
-		Acid Soluble Inorganic %
	-	Insoluble Non-Asbestos Inorganic %
NA	NA	Asbestos by PLM/DS
Chrysotile Present	Chrysotile Present	Asbestos by TEM

BULK QUALITATIVE Reporting Notes

Reviewed by:_ 4 : Date Reviewed: $\frac{\dot{4}}{2} - 7$ Analyzed By: Sandhya Gunasekara Mule Analyzed: 4/3/2009

Qualitative Analysis: Asbestos analysis results of "Present" or "NVA = No Visible Asbestos" represent results for Qualitative PLM or TEM Analysis only (no accreditation coverage available from any regulatory agency for qualitative analyses); NA = not analyzed; See ** Warning Notes below.

Warning Notes: Consider PLM fiber diameter limitation, only TEM will resolve fibers <0.25 micrometers in diameter. TEM bulk analysis is representative of the fine-grained matrix material and may not be representative of non-uniformly dispersed debris, soils or other heterogeneous materials for which a combination PLM/TEM evaluation is recommended.

Ameri Sci			STODY		RD			8 Si eymouth	SCI BOSTO chool Stre 1, MA 0211
www.amerisci.com		203	0312	261			Ph	one (781	3) 724-52: 1) 337-93: 1) 337-764
URS Corporat	ion S	ndu	strial				lem,		\vdash
PROJECT INFORMATIO	N ANALYSIS TYPE TEM/AHERA		TURI 12 HR 24 HR	AROUNI 48 Hr		X) 5 DAY	OTHER		R FILTER
EA SR8 #77486 JOB NUMBER:	TEM/LEVEL I TEM/BULK							PC 25 mm	
JOB MANAGER:	TEM/DUST TEM/WATER							37 min 0.45 um	
JOB DESCRIPTION:		RUSH RUSH						0.80 um TEMP:	
Besults TO: T. N	1 COP L_				RETUR	N SAMPL	es Ye	OTHER:	No
EMAIL TO: JAVNIE -	NOELQU	escok	P.CON	1	PHONE: FAX:	60		300	210
Comments:	JSTI	41.			SITE FA PAGER/	X:)_{)];		<u>40</u>
SAMPLE ID	SAMPLE LOCA	TION		START TIME	STOP TIME		X LITERS	TOTAL VOLUME	DATE COLLECT
SS-FB-PCM-05 Cosi	<u>1 - Ten</u>	$D \overline{D}$	inclys	L. Kon	5	tan	dace	T	AT
55-RR-05 0-0.5' ?	30:1 - 72	m v	Analy	210		574	ndar	1 1	AC
Sampled By:	Dati	ETIME: (1	RECEIVED B	Y:				•	DATE/TIME:

Eastern Analytical, Inc. 25 Chenell Dr. Concord, NH 03301	EAI SRB#77486ProjectProProCompanyURS CorporationAddress5 Industrial WayAddressSalem, NH 03079Account #893-0616Fax NumberFax Number	SS-RR-04 0-0.5'	SS-RR-08 0-0.5'	SS-RR-09 0-0.5'	SS-RR-01 0-0.5'	SS-RR-05 0-0.5'	Sample ID	CHAIN-C
5 Chenell Dr. C	Project State: VT Project ID: 29 poration al Way H 03079	3/23/2009 11:15	3/23/2009 13:10	3/23/2009 13:25	3/23/2009 10:25	3/23/2009 111:55	Date Sampled	OF-CU
oncord, N	nject State: VT Project ID: 2942 On Ay J79	soil	soil	soil	soil	soil	i Matrix	STC
JH 03301 Phone: (603)228-0525	ts Needed by: Preferred date <u>eliverables</u> □ A+ ⊠ B □ B+ □ C about project	Asbestos PLM Soil Subcontract	Asbestos TEM Soil Subcontract	aParameters	CHAIN-OF-CUSTODY RECORD			
1-800-287-0525 Fax: (603)228-4591	Std Eastern Analytical Inc. PO Number 23769 Report To: Front Office / Ship hard copy overnight E-Mail PDF: customerservice@eailabs.com Invoice To: Front Office with hard copy report Samples Collected by: Relinquished by Date/Time Received by Relinquished by Date/Time Received by Relinquished by Date/Time Received by						Sample Notes	eastern analytical professional laboratory services
	it is the second	1 1	I	I	I	1		34

CUSTODY RECORD eastern analytical professional laboratory services 30 soil Abestos PLM Soil Subcontract Sample Moti 30 soil Abestos PLM Soil Subcontract Sample Moti 30 soil Abestos PLM Soil Subcontract Sample Moti 31 Abestos PLM Soil Subcontract Image: Subcontract Sample Moti 32 soil Abestos PLM Soil Subcontract Image: Subcontract Image: Subcontract 32 soil Abestos PLM Soil Subcontract Image: Subcontract Image: Subcontract Image: Subcontract 33 soil Abestos PLM Soil Subcontract Image: Subcontract I	CompanyURS CorporationAddress5 Industrial WayAddressSalem, NH 03079Account #Phone #Phone #893-0616Fax NumberFax Number	EAI SRB# 77486 Pr	SS-FB-ACM-05 3/23/2	SS-FB-ACM-05 3/23/2	SS-FB-ACM-04 3/23/2 15:40	SS-FB-ACM-03 3/23/2	SS-FB-ACM-02 3/23/2	SS-FB-ACM-01 3/23/2 15:25	Sample ID Date	CHAIN-OF
RECORD eastern analytical professional laboratory services aPrameter sample Not sPLM Soil Subcontract sample Sole sPLM Soil Subcontract Scattern Analytical Inc. PO Number sample Sole Scattern Analytical Inc. PO Number eliverables Scattern Analytical Inc. PO Number sample Sole Scattern Analytical Inc. PO Number sample Sole Scattern Analytical Inc. PO Number eliverables E-Mail PDF: customerservice@eail sample Sole Scattern Analytical Inc. PO Number envoice To: Front Office / Ship harc Scattern Analytical Inc. PO Number Relinquisticative Notice To: Front Office with hard Noter Time Noter	ion 079	oject State Project II	600	600	600	600	600	600	Sampled	-CU
eastern analytical professional laboratory services sample Not Sample Not Sample Not Sample Not Sample Not Eastern Analytical Inc. PO Number Report To: Front Office / Ship harc E-Mail PDF: customerservice@eai Invoice To: Front Office with hard Samples Collected by: Felinquished by DateTime Relinquished by DateTime		9: VT 0: 2942							Matrix	STO
astern analytical Sample Not Sample Not Sample Not Star Sample Not Sample Not Sample Not Sample Not Sample Not Not Sample Not Sample Not Sample Not Sample Sollected by: Sample Sollected by: Samples Collected by: DateTime Notifice J Ship 1 Sample Sollected by: Samples Collected by: DateTime Notifice J Ship 1 Sample Sollected by: Samples Sollected by: DateTime	□ A+ ⊠ B □ B+	Results Needed by: Preferred date QC Deliverables	Asbestos TEM Soil Subcontract	Asbestos PLM Soil Subcontract	Asbestos PLM Soil Subcontract	Asbestos PLM Soil Subcontract	Asbestos PLM Soil Subcontract	Asbestos PLM Soil Subcontract	aParameters	DY RECORD
	<u> </u>								Sample Notes	eastern analytical professional laboratory services

CHAIN-0	OF-CU	STO	CHAIN-OF-CUSTODY RECORD	eastern analytical professional laboratory services
Sample ID	Date Sampled Matrix	Matrix	aParameters	Sample Notes
SS-FB-ACM-06	3/23/2009 15:55	soil	Asbestos PLM Soil Subcontract	
SS-FB-ACM-07	3/23/2009 16:00	soil	Asbestos PLM Soil Subcontract	
SS-FB-ACM-08	3/23/2009 16:05	soil	Asbestos PLM Soil Subcontract	
SS-CB-01	3/23/2009 16:10	soi	Asbestos PLM Soil Subcontract	
SS-CB-02	3/23/2009 16:15	soil	Asbestos PLM Soil Subcontract	
SS-RR-05 0-0.5'	3/23/2009 111:55	soil	Asbestos PLM Soil Subcontract	
EAI SRB# 77486	Project State: VT Proiect ID: 2942	te: VT	Results Needed by: Preferred date	S-FA Eastern Analytical Inc. PO Number 23769 Report To: Front Office / Ship hard copy overnight
company URS Corporation Address 5 Industrial Wav	URS Corporation 5 Industrial Wav		□ A □ A+ ⊠ B □ B+ □ C Notes about project	□ DE E-Mail PDF: customerservice@eailabs.com Invoice To: Front Office with hard copy report
-	Salem, NH 03079			sted by: ~ 3/34/19 Norman
Phone # 893-0616 Fax Number	6			Relinquished by Date/Time Received by
Eastern Analytical, Inc. 25 Chenell Dr. Concord, NH 03301	25 Chenell Dr. C	oncord,	VH 03301 Phone: (603)228-0525	5 1-800-287-0525 Fax: (603)228-4591

ý	PINK - Transporter copy GOLD - Sampler copy	сору	to the Johnson Co. YELLOW - Lab	WHITE - To accompany sample to the lab and returned to the Johnson Co.	E - To accompany s	WHITE	
				na Engineering	Environmental Sciences and Engineering		(802) 229-4600 Fax (802) 229-5876
Snipper IU #	be on co		THI	WOUTTO	WI, We WOUTT		100 State Street, Suite 600 Montpelier, VT 05602
<u> </u>		ATOBY					SAMPLE COLLECTOR
Date Time		Inature)	Disposed of by: (Signature)			lethod:	Sample Disposal Method:
5/09	fine		3-25-09 15:50				AND MA
Date Time	Received for Laboratory: (Signature)	_	!			ignature)	Relinquished by: (Signature)
3		<u> </u>	6.7		222	Mart	Mrs Mart
Data		Received by: (Simature)	Date Time		4	ignature)	Relinguished by: (S
			-		001	3	
					ð	1.5-201	07.5.1 20-22 55
					1040		2.0-0 to-22 45
					Ð	ţ,	5-90-01 1.5-20
					1025	ý	S>RC-01 0.0.5
ſ	0014				4	ř.O,	0-2-5-1 20-2N-55
2.0, R, S, R, P.Q, J, T	().0				1450	s,	5-NR-03-0-0.5
	low				4	20,	55-M2-01 1.5.20
	Plend	X	1:05		07 1425	rolsels . \$70.0	5-NR-01005
REMARKS		PAHU	Type of Sample	Lab Sample Number	Time	Date	Sample No. / Identification
		1 23				7	NIL NIJ
		- j. j. j.	Chain of Custody Tape No.	Chain of Cus		e)	Sampler: (Signature
		×1 -	MJM - O/	MJM - C		5	1-0346-3
	S ANALYZES		-0346-3	Richmond Cremery 1-0	. Richma	20 not	The Show
3	/		Project Location	Project		1e	Client / Project Name
- FLC 7		ECORD	CHAIN OF CUSTODY RECORD	ç			010
11100							、 ト 「

Same-from NEBS CUSTE-M "priviling service 1.590.649.6537 NESS are Relationships to Staffic and orders and

Ret No O YOUGOSY

ру	ab copy PINK - Transporter copy GOLD - Sampler copy	o the Johnson Co. YELLOW - Lab copy	WHITE - To accompany sample to the lab and returned to the Johnson Co.	WHITE - To acc
			Environmental Sciences and Engineering	
Shipper ID #	ORV OCovice	ANALYTICAL LABORATO	Mille Marott O	SAMPLE COLLECTOR M
Date	ure) V	Uisposed of by: (Signature)		
5/09	Chur John	3-25-09 15:50		M Dela
	Received for Laboratory: (Signature)	Date Time		Relinquished by: (Signature)
3.2509 1300	HU Delen	3/25/07 1300		MI Mort
Date Time	Received by: (Signature)	Date Time		Relinquished by: (<i>Signature</i>)
	₽ X	A	0121	4
			Ð	
			310	
			4	
PRI- METAL 157	242		1240	
Pars to GAM FUR	Pag		0441	21 12 20 90-21 12
sing.	PA4 PA4			X542-051-5-20 4
(0.0, Bup RL) For	(0,0		1155	
CERG	ii level			¥.
me to the	X. A Rever	1 iag	5	
REMARKS		Type of Sample	Lab Sample Time Number	Date
	ou eta	ouy rape No.		Campiei. (Distriction)
	1 2 2	M-01	ICM	2-9750-1
	S ANALYZES	Field Logbook No.	Smer y	T-
	82	ocation	R Troject Location	Client / Project Name
77486	õ	CHAIN OF CUSTODY REC	CH	Jof 6

Severe from NEBS CUSTE N[®] printing service - LEON 683-6337 - NSES we Provideroup, Nº 455456 - way represent

Ret Mor © Yest00574

ру	YELLOW - Lab copy PINK - Transporter copy GOLD - Sampler copy	imed to the Johnson Co. YELLC	WHITE - To accompany sample to the lab and returned to the Johnson Co.	WHITE - To acco	
	Refer to gran for program install 1:17	REFES to QM			
	low-lever 80 +1 for posticidis	** Piery UNE			(802) 229-4600 Fax (802) 229-5876
		ALL PAH	Environmental Sciences and Engineering		Montpelier, VT 05602
	1.2 1.2. 10.10 (n.1.1.1) MICOLAR 12.24 May	* Prave up 1	THE JOHNSON COMPANY, INC.		100 State Street, Suite 600
Shipper ID #	BORATORY EAI	ANALYTICAL LAB	MaroHo	Mine	SAMPLE COLLECTOR
10/0 51		++ ABA Per customer			
tte / Ti	(Signature)	Disposed of by: (Signature)		ä	Sample Disposal Metho
3/2-5/09 1550	15:50 her Her	3-25-09 15			M. Det.
	Received for Lab	Date Time		iture)	Relinquished by: (Signature)
3-25-09 1300	Pro Al Defense	101			WIN WW
Date Time	e Received by: (Signature)	Date Time		iture)	Relinquished by: (Signa
	×××	Ą	5	3/24/07 1145	10-2M-55
	×		0	0191 JOKT 15	55-(13-01
	X		51	3/24/09 1025	t aysar
	×		0051	51 4	55-85-07
	×		3	5511	55-85-01
	4		7	4	22-02 1.5-21
			0021	T 1	5, 2R-W2005
			7	A	55-22-10 1-5-20
			1340	21	5282-10 0-0.5
See notes		1:05	Ŏ	3/25/01/230	>>-0-0 0-0.5
REMARKS	A at to so so	Type of Sample	Lab Sample Number	Date T	Sample No. / Identification
	the part of	Chain of Custody Tape No.	Chain o		Sampler: (Signature)
	Ť.	MOL	M	r	
		Field Logbook No.	Field		Project No.
	y QNALYZES	Project Location	Rithmark Pro	07 (mmonu	Client / Project Name
7122 39	32 y	CHAIN OF CUSTODY RECORD			Lot 6
1 1 100	1~				

Senser from NEBS CUST®-M "printing service - tash 689-6527 - NESS ton Polionosciyn, Rh Guest - www.neuksion.

Rei No G Toutlaison

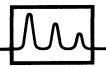
WHITE - To accompany sa	SAMPLE COLLECTOR 100 Sinte Street, Suite 600 Montpelier, VT 05602 (802) 229-4600 Fax (802) 229-5876 SAMPLE COLLECTOR Moi Lectron Moi Lectron Moi Lectron THE JOHNSON COMPANY, INC.	Relinquished by: (<i>Signature</i>)	Relinquished by: (<i>Signature</i>)	3/24/04/ 2	2/23/04 /	Sample No. / Identification Date Time	Sampler: (Signature)	1-0346-3	The Thrown Company Richmu	4076
WHITE - To accompany sample to the lab and returned to the Johnson Co.	d Engineering					Lab Sample Number	Chain of Custo	Field Logbook No.	Richmund Creaning Rich	СН/
the Johnson Co. YELLOW - Lab copy	ANALYTICAL LABORATORY	אַצאַן ער אַראַטעע אַן Date Time R 3-25-0ץ ואין אין Disposed of by: (Signature)	Date Time	4	50:1	Type of Sample	dy Tape No.	> o/	Project Location Richmond, VT	CHAIN OF CUSTODY RECORD
Lab copy PINK - Transporter copy		eceived for Laborato	Received by: (<i>Signature</i>)	ł	X	/ Ed /	128	5-65		ECORD
r copy GOLD - Sampler copy	OC on Ice	ry: (Signature)		for the					ANALYZES	
	Shipper ID #	3:25 cm)36 C Date Time 3/25/09 1550 Date Time	Date	DR 1- Metry - 1-55	r _	DEMADKO				7124 40

have a fine NEBS CUSTE M "printing service - 1-809 682-6527 - NE2S we helemately the Grass - leaveness on

મહાળા છે. છે. આ ગામ

	GOLD - Sampler copy	copy PINK - Transporter copy	1 Co. YELLOW - Lab copy	WHITE - To accompany sample to the lab and returned to the Johnson Co.	accompany sample to the la	WHITE - To	
					Environmental sciences and Engineering		(802) 229-4600 Fax (802) 229-5876
Shipper ID #		1001/00 14	EAT 6°C		Mille Marco Ho The Johnson Company, INC		300 State Street, Suite 600 Montpelier, VT 05602
Date' Time			Disposed of by. (Signature				
Slog		(Jar Jehn	3-2509 15:50			Ś	Sample Disposed Mathod
Date Time	nature)	Received for Laboratory: (Signature)	Time	Date		ature)	Relinquished by: (Signature)
3259 1300			UCEN LODA/C	C.	0	Must	N-V
Date Time		Received by: (Signature)	Time	Date		ature)	Relinquished by: (Signature)
A		4	×	A	1612	4	55-(3-07
					1610		10-21-55
					1605		22-413-4CM-08
					1600		3-FB-AM-07
					1555		55-F13-A(M-06
Samph Sussifier	H46.1	X			1545		55-FB-7KM-05
					1540		55-FB-12m-04
					1535		55-FB-AM-03
	1/5/1				1220		SS-FR-AIM-02
EPP manuel 600/R-	EPP 7	X		so;	1525	3/23/001	55-FB-A(M-01
REMARKS		AS AS	Type of Sample	Lab Sample Number		Date	Sample No. / Identification
		3X~			-	ET A	MUL M
		1		Chain of Custody Tape No.			Sampler: (Signature)
		105 12	-	MIN DY		N'O	1-0346-
	ANALYZES		VI	Project Location	my Crianors	JUMME (UMPMU	j', ē
7065		ORD	CHAIN OF CUSTODY RECORD	CHAIN OF C			Sot 6

Service Services NEBS CUST* M[®] printing service 1489 688-8537 NEES for Petrsterstein, RH 63456 1988 neus neus neu


Rei Nor © 194100514

WHITE - To accompany sample to the lab and returned to the Johnson Co.	SAMPLE COLLECTOR 100 Shate Street, Suite 600 Miller, VT 05602 (802) 229-4600 Fax (802) 229-5876 SAMPLE COLLECTOR Miller Miller McLothto THE JOHNSON COMPANY, INC.	Relinquished by: (<i>Signature</i>)	Relinquished by: (Signature)	2-02-04 0-0-5 V 115		25 00 00 5 × 10 200 00 5 × 10 0 00 00 × 10 0 00 00 00 00 00 00 00 00 00 00 00 0	5 3/23/05	Sample No. / Lab Sample Identification Date Time Number	Sampler: (Signature)		The Ehrson (unpay /Richmond (romer)	Client / Project Name	6005-801-3064
ind returned to the Johnson Co. YELLOW - Lab copy PINK - Transporter copy	ANALYTICAL LABORATORY	Received for La	Date Time Received by: (Signature)	4			X X 1:05	Type of Sample	the .	MISM 01	Kilmered , VT	Project Location	CHAIN OF CUSTODY RECORD
copy GOLD - Sampler copy	6° en 10° Shipper ID #	Date T JJJS/09 1 Date T	Date Time		000/12-2131116	LAP METHUD TEM	1.1.4	REMARKS			ANALYZES	4	77480 78477

General Frank NEBS CUSTS M "printing service 1-399.682-8527 NESS in Poliamscolp. No 63456 International

Чsг copy

9a Noriō 1(4160570

Rhonda Kay The Johnson Company 100 State Street Montpelier, VT 05602 eastern analytical

professional laboratory services

Subject: Laboratory Report

Eastern Analytical, Inc. ID: Client Identification: Date Received: 78234 Richmond Creamery | 1-0346-3 4/17/2009

Dear Ms. Kay:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. (EAI) certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.eailabs.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply throughout all EAI reports:

- Solid samples are reported on a dry weight basis, unless otherwise noted
- <: "less than" followed by the detection limit
- TNR: Testing Not Requested
- ND: None Detected, no established detection limit
- RL: Reporting Limits
- %R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269) and Vermont (VT1012).

This report package contains the following information: Sample Conditions summary, Analytical Results/Data and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

Analytical Deviation & QA/QC Documentation:

Quality Control Samples associated with this project are included in this report. At a minimum, a Method Blank and Laboratory Control Sample (LCS) are reported. Matrix Spikes and Duplicates are reported where applicable. Deviations are narrated on the QC pages.

If you have any questions regarding the results contained within, please feel free to directly contact me, or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

namo Des SI

Lorraine Olashaw, Lab DirectorDatEastern Analytical, Inc.25 Chenell Drive, Concord, NH 03301

Date

www.eailabs.com

of pages (excluding cover letter) TEL 603 228-0525 1-800-287-0525 FAX 603 228-4591

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Temperature upon receipt (°C): 3

Received on ice or cold packs (Yes/No): Y

Lab ID	Sample ID	Date Received	Date Sampled	Sample Matrix		tExceptions/Comments (other than thermal preservation)
78234.01	SS-AST-1 0-0.5'	4/17/09	4/14/09	soil	82.5	Adheres to Sample Acceptance Policy
78234.02	SS-AST-1 1.5- 2.0'	4/17/09	4/14/09	soil	81.2	Adheres to Sample Acceptance Policy
78234.03	SB-08 1.5-2.0'	4/17/09	4/15/09	soil	81.0	Adheres to Sample Acceptance Policy
78234.04	MW-1 3.5-4.0'	4/17/09	4/14/09	soil	92.4	Adheres to Sample Acceptance Policy
78234.05	MW-1 15.5-16.0'	4/17/09	4/14/09	soil	85.6	Adheres to Sample Acceptance Policy
78234.06	MW-2 12-13'	4/17/09	4/14/09	soil	84.6	Adheres to Sample Acceptance Policy
78234.07	MW-3 13-14'	4/17/09	4/14/09	soil	62.6	Adheres to Sample Acceptance Policy
78234.08	MW-4 13-14'	4/17/09	4/14/09	soil	73.5	Adheres to Sample Acceptance Policy
78234.09	MW-5 11-12'	4/17/09	4/14/09	soil	73.3	Adheres to Sample Acceptance Policy
78234.1	MW-6 7.5-8.0'	4/17/09	4/15/09	soil	74.5	Adheres to Sample Acceptance Policy
78234.11	MW-7 6.5-7.0'	4/17/09	4/15/09	soil	84.4	Adheres to Sample Acceptance Policy
78234.12	MW-8 7-7.5'	4/17/09	4/15/09	soil	81.9	Adheres to Sample Acceptance Policy
78234.13	MW-9 4.5-5.0'	4/17/09	4/15/09	soil	82.0	Adheres to Sample Acceptance Policy
78234.14	Trip Blank	4/17/09	3/10/09	aqueous		Adheres to Sample Acceptance Policy
78234.15	Sump	4/17/09	4/14/09	aqueous		Adheres to Sample Acceptance Policy
78234.16	MW-9 2.5-3.0'	4/17/09	4/16/09	soil	91.5	Adheres to Sample Acceptance Policy
78234.17	MW-6 15-15.5'	4/17/09	4/16/09	soil	84.1	Adheres to Sample Acceptance Policy
78234.18	MW-5 3.5-4.0'	4/17/09	4/16/09	soil	80.9	Adheres to Sample Acceptance Policy
78234.19	MW-3 1.5-2.0'	4/17/09	4/16/09	soil	78.1	Adheres to Sample Acceptance Policy
78234.2	MW-4 15.5-16.0'	4/17/09	4/16/09	soil	73.6	Adheres to Sample Acceptance Policy
78234.21	MW-2 16-18'	4/17/09	4/16/09	soil	78.5	Adheres to Sample Acceptance Policy
78234.22	MW-1 0-0.5'	4/17/09	4/16/09	soil	95.7	Adheres to Sample Acceptance Policy
78234.23	MW-7 1.5-2.0'	4/17/09	4/16/09	soil	82.8	Adheres to Sample Acceptance Policy
78234.24	MW-8 1.5-2.0'	4/17/09	4/16/09	soil	85.4	Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitibility, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater : Inorganics, 19th Edition, 1995; Microbiology, 20th Edition, 1998
 3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 2nd edition, 1992

eastern analytical, inc.

Toluene-d8 (surr)

Eastern Analytical, Inc. ID#: 78234

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	SS-AST-1 0-0.5'	SS-AST-1	MW-1
		1.5- 2.0'	15.5-16.0'
Lab Sample ID:	78234.01	78234.02	78234.05
Matrix:	soil	soil	soil
Date Sampled:	4/14/09	4/14/09	4/14/09
Date Received:	4/17/09	4/17/09	4/17/09
Units:	mg/kg	mg/kg	mg/kg
Date of Analysis:	4/22/09	4/22/09	4/22/09
Analyst:	BAM	BAM	BAM
Method:	8260B	8260B	8260B
Dilution Factor:	2	2	1
Methyl-t-butyl ether(MTBE)	< 0.2	< 0.2	< 0.1
Benzene	< 0.09	< 0.09	< 0.05
1,2-Dichloroethane	< 0.09	< 0.09	< 0.05
Toluene	< 0.09	0.13	< 0.05
1,2-Dibromoethane(EDB)	< 0.09	< 0.09	< 0.05
Ethylbenzene	< 0.09	< 0.09	< 0.05
mp-Xylene	< 0.09	0.16	< 0.05
o-Xylene	< 0.09	< 0.09	< 0.05
1,3,5-Trimethylbenzene	< 0.09	< 0.09	< 0.05
1,2,4-Trimethylbenzene	< 0.09	< 0.09	< 0.05
Naphthalene	< 0.5	< 0.6	< 0.3
4-Bromofluorobenzene (surr)	102 %R	100 %R	105 %R
1,2-Dichlorobenzene-d4 (surr)	102 %R	100 %R	97 %R

GC/MS analysis was employed for the determination of the 8021B compound list.

94 %R

SS-AST-1 0-0.5', SS-AST-1 1.5-2.0': Reporting limits are elevated due to the % solids content of the sample or the sample mass used for

95 %R

96 %R

2

Eastern Analytical, Inc. ID#: 78234

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	SB-08 1.5-2.0'	MW-2 12-13'	MW-3 13-14'	MW-4 13-14'	MW-5 11-12'	MW-6 7.5-8.0'	MW- 7 6.5-7.0
Lab Sample ID:	78234.03	78234.06	78234.07	78234.08	78234.09	78234.1	78234.11
Matrix:	soil	soil	soil	soil	soil	soil	soil
	4/15/09	4/14/09	4/14/09	4/14/09	4/14/09	4/15/09	4/15/09
Date Sampled:		4/14/09	4/14/09	4/14/09	4/17/09	4/15/09	4/15/09
Date Received:	4/17/09						
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Analysis:	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/23/09
Analyst:	BAM	BAM	BAM	BAM	BAM	BAM	BAM
Method:	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Dilution Factor:	1	1	1	1	1	1	1
Dichlorodifluoromethane	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chloromethane	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Vinyl chloride	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bromomethane	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chloroethane	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane	< 0.1 < 0.05	 < 0.1 < 0.05 	< 0.1 < 0.07	0.10.06	< 0.1 < 0.05	< 0.1 < 0.05	< 0.1 < < 0.05 <
Diethyl Ether Acetone	< 0.05	< 0.05		< 0.08	< 0.05	< 0.05	< 0.05
1,1-Dichloroethene	< 0.05	< 0.05	-		< 0.05	< 0.05	< 0.05
Methylene chloride	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Carbon disulfide	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Methyl-t-butyl ether(MTBE)	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
trans-1,2-Dichloroethene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,1-Dichloroethane	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
2,2-Dichloropropane	< 0.05	< 0.05			< 0.05	< 0.05	< 0.05
cis-1,2-Dichloroethene	< 0.05	< 0.05		< 0.06	< 0.05	< 0.05	< 0.05
2-Butanone(MEK)	< 0.5 < 0.05	< 0.5 < 0.05		0.6 > 0.06 >	< 0.5 < 0.05	< 0.5 < 0.05	< 0.5 < 0.05
Bromochloromethane Tetrahydrofuran(THF)	< 0.05	< 0.05	< 0.07	< 0.6	< 0.05	< 0.05	< 0.05
Chloroform	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,1,1-Trichloroethane	< 0.05	< 0.05			< 0.05	< 0.05	< 0.05
Carbon tetrachloride	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,1-Dichloropropene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
Benzene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,2-Dichloroethane	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
Trichloroethene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,2-Dichloropropane Dibromomethane	< 0.05 < 0.05	< 0.05 < 0.05	< 0.07 < 0.07	< 0.06 < 0.06	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Bromodichloromethane	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
4-Methyl-2-pentanone(MIBK)	< 0.05	< 0.00	< 0.7	< 0.6	< 0.5	< 0.5	< 0.5
cis-1,3-Dichloropropene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
Toluene	< 0.05	< 0.05	< 0.07	0.20	< 0.05	< 0.05	< 0.05
trans-1,3-Dichloropropene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,1,2-Trichloroethane	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
2-Hexanone	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tetrachloroethene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,3-Dichloropropane	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
Dibromochloromethane	< 0.05 < 0.05	< 0.05 < 0.05	< 0.07 < 0.07	< 0.06 < 0.06	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
1,2-Dibromoethane(EDB) Chlorobenzene	< 0.05 < 0.05	< 0.05	< 0.07	< 0.06	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05
1,1,1,2-Tetrachloroethane	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
Ethylbenzene	0.18	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
mp-Xylene	0.18	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
o-Xylene	0.10	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
Styrene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
Bromoform	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05

eastern analytical, inc.

Eastern Analytical, Inc. ID#: 78234

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	SB-08 1.5-2.0'	MW-2 12-13'	MW-3 13-14'	MW-4 13-14'	MW-5 11-12'	MW-6 7.5-8.0'	MW-7 6.5-7.0'
Lab Sample ID:	78234.03	78234.06	78234.07	78234.08	78234.09	78234.1	78234.11
Matrix:	soil	soil	soil	soil	soil	soil	soil
Date Sampled:	4/15/09	4/14/09	4/14/09	4/14/09	4/14/09	4/15/09	4/15/09
Date Received:	4/17/09	4/17/09	4/17/09	4/17/09	4/17/09	4/17/09	4/17/09
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Analysis:	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/23/09
Analyst:	BAM	BAM	BAM	BAM	BAM	BAM	BAM
Method:	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Dilution Factor:	1	1	1	1	1	1	1
IsoPropylbenzene	0.72	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
Bromobenzene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,2,3-Trichloropropane	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
n-Propylbenzene	1.8	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
2-Chlorotoluene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
4-Chlorotoluene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,3,5-Trimethylbenzene	1.1	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
tert-Butylbenzene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,2,4-Trimethylbenzene	7.9	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
sec-Butylbenzene	2.8	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
p-Isopropyltoluene	2.3	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
n-Butylbenzene	4.1	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,2-Dibromo-3-chloropropane	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
Naphthalene	6.8	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1
1,2,3-Trichlorobenzene	< 0.05	< 0.05	< 0.07	< 0.06	< 0.05	< 0.05	< 0.05
4-Bromofluorobenzene (surr)	143 %R	103 %R	105 %R	101 %R	101 %R	104 %R	98 %R
1,2-Dichlorobenzene-d4 (surr) Toluene-d8 (surr)	124 %R 98 %R	103 %R 92 %R	102 %R 96 %R	96 %R 94 %R	102 %R 95 %R	102 %R 97 %R	100 %R 93 %R

MW-3 13-14', MW-4 13-14': Reporting limits are elevated due to the % solids content of the sample or the sample mass used for analysis.

SB-08 1.5-2.0': The value for n-Butylbenzene may be elevated due to non-target interference.

SB-08 1.5-2.0': Non target interference in the sample resulted in recovery outside of the acceptance control limits of 74-121%R for the surrogate 4-Bromofluorobenzene (surr).

SB-08 1.5-2.0': Non target interference in the sample resulted in recovery outside of the acceptance control limits of 80-120%R for the surrogate 1,2-Dichlorobenzene-d4 (surr).

Eastern Analytical, Inc. ID#:

Client: The Johnson Company

c. ID#: 78234

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	MW-8 7-7.5' M	W-9 4.5-5.0'	Trip Blank	Sump	
Lab Sample ID:	78234.12	78234.13	78234.14	78234.15	
Matrix:	soil	soil	aqueous	aqueous	
				•	
Date Sampled:	4/15/09	4/15/09	3/10/09	4/14/09	
Date Received:	4/17/09	4/17/09	4/17/09	4/17/09	
Units:	mg/kg	mg/kg	ug/l	ug/l	
Date of Analysis:	4/23/09	4/22/09	4/18/09	4/18/09	
Analyst:	BAM	BAM	BAM	BAM	
Method:	8260B	8260B	8260B	8260B	
Dilution Factor:	1	1	1	1	
Dichlorodifluoromethane	< 0.1	< 0.1	< 5	< 5	
Chloromethane	< 0.1	< 0.1	< 2	< 2	
Vinyl chloride	< 0.1	< 0.1	< 2	< 2	
Bromomethane	< 0.1	< 0.1	< 2	< 2	
Chloroethane	< 0.1	< 0.1	< 5	< 5	
Trichlorofluoromethane	< 0.1	< 0.1	< 5	< 5	
Diethyl Ether	< 0.05	< 0.06	< 5	< 5	
	< 2	< 2	< 10	< 10	
,1-Dichloroethene	< 0.05	< 0.06	< 1	< 1	
lethylene chloride	< 0.1	< 0.1	< 5	< 5	
Carbon disulfide	< 0.1 < 0.1	< 0.1 < 0.1	< 5 < 5	< 5 < 5	
lethyl-t-butyl ether(MTBE) ans-1,2-Dichloroethene	< 0.05	< 0.06	< 2	< 2	
1-Dichloroethane	< 0.05	< 0.06	< 2	< 2	
,2-Dichloropropane	< 0.05	< 0.06	< 2	< 2	
s-1,2-Dichloroethene	< 0.05	< 0.06	< 2	< 2	
-Butanone(MEK)	< 0.5	< 0.6	< 10	< 10	
romochloromethane	< 0.05	< 0.06	< 2	< 2	
etrahydrofuran(THF)	< 0.5	< 0.6	< 10	< 10	
hloroform	< 0.05	< 0.06	< 2	< 2	
,1,1-Trichloroethane	< 0.05	< 0.06	< 2	< 2	
arbon tetrachloride	< 0.05	< 0.06	< 2	< 2	
1-Dichloropropene	< 0.05 < 0.05	< 0.06 < 0.06	< 2 < 1	< 2 < 1	
enzene ,2-Dichloroethane	< 0.05 < 0.05	< 0.06 < 0.06	< 2	< 2	
richloroethene	< 0.05	< 0.06	< 2	<2	
,2-Dichloropropane	< 0.05	< 0.06	< 2	< 2	
Dibromomethane	< 0.05	< 0.06	< 2	< 2	
Bromodichloromethane	< 0.05	< 0.06	< 1	< 1	
-Methyl-2-pentanone(MIBK)	< 0.5	< 0.6	< 10	< 10	
is-1,3-Dichloropropene	< 0.05	< 0.06	< 1	< 1	
oluene	< 0.05	< 0.06	< 1	< 1	
rans-1,3-Dichloropropene	< 0.05	< 0.06	< 1	< 1	
,1,2-Trichloroethane	< 0.05	< 0.06	< 2	< 2	
-Hexanone	< 0.1 < 0.05	< 0.1 < 0.06	< 10 < 2	< 10 < 2	
etrachloroethene ,3-Dichloropropane	< 0.05	< 0.06 < 0.06	< 2	< 2	
)ibromochloromethane	< 0.05	< 0.06	< 2	< 2	
,2-Dibromoethane(EDB)	< 0.05	< 0.06	< 1	< 1	
Chlorobenzene	< 0.05	< 0.06	< 2	< 2	
,1,1,2-Tetrachloroethane	< 0.05	< 0.06	< 2	< 2	
thylbenzene	< 0.05	< 0.06	< 1	< 1	
np-Xylene	< 0.05	< 0.06	< 1	< 1	
-Xylene	< 0.05	< 0.06	< 1	< 1	
Styrene	< 0.05	< 0.06	< 1	< 1	
Bromoform	< 0.05	< 0.06	< 2	< 2	

eastern analytical, inc.

Eastern Analytical, Inc. ID#: 78234

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	MW-8 7-7.5' M	W-9 4.5-5.0'	Trip Blank	Sump
Lab Sample ID:	78234.12	78234.13	78234.14	78234.15
Matrix:	soil	soil	aqueous	aqueous
Date Sampled:	4/15/09	4/15/09	3/10/09	4/14/09
Date Received:	4/17/09	4/17/09	4/17/09	4/17/09
Jnits:	mg/kg	mg/kg	ug/l	ug/l
Date of Analysis:	4/23/09	4/22/09	4/18/09	4/18/09
nalyst:	BAM	BAM	BAM	BAM
lethod:	8260B	8260B	8260B	8260B
ilution Factor:	1	1	1	1
oPropylbenzene	< 0.05	< 0.06	< 1	< 1
romobenzene	< 0.05	< 0.06	< 2	< 2
1,2,2-Tetrachloroethane	< 0.05	< 0.06	< 2	< 2
2,3-Trichloropropane	< 0.05	< 0.06	< 2	< 2
Propylbenzene	< 0.05	< 0.06	< 1	< 1
Chlorotoluene	< 0.05	< 0.06	< 2	< 2
Chlorotoluene	< 0.05	< 0.06	< 2	< 2
3,5-Trimethylbenzene	< 0.05	< 0.06	< 1	< 1
t-Butylbenzene	< 0.05	< 0.06	< 1	< 1
2,4-Trimethylbenzene	< 0.05	< 0.06	< 1	< 1
-Butylbenzene	< 0.05	< 0.06	< 1	< 1
B-Dichlorobenzene	< 0.05	< 0.06	< 1	< 1
sopropyltoluene	< 0.05	< 0.06	< 1	< 1
1-Dichlorobenzene	< 0.05	< 0.06	< 1	< 1
2-Dichlorobenzene	< 0.05	< 0.06	< 1	< 1
Butylbenzene	< 0.05	< 0.06	< 1	< 1
2-Dibromo-3-chloropropane	< 0.05	< 0.06	< 1	< 1
,4-Trichlorobenzene	< 0.05	< 0.06	< 1	< 1
xachlorobutadiene	< 0.05	< 0.06	< 1	< 1
ohthalene	< 0.1	< 0.1	< 5	< 5
2,3-Trichlorobenzene	< 0.05	< 0.06	< 1	< 1
Bromofluorobenzene (surr)	97 %R	99 %R	91 %R	92 %R
2-Dichlorobenzene-d4 (surr)	98 %R	102 %R	107 %R	107 %R
oluene-d8 (surr)	94 %R	94 %R	94 %R	95 %R

MW-9 4.5-5.0': Reporting limits are elevated due to the % solids content of the sample or the sample mass used for analysis.

Eastern Analytical, Inc. ID#:78234

Batch ID:

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

		QC Report		Date of Analysis		
Parameter Name	Blank	LCS	LCS Dup	Units		Method
Dichlorodifluoromethane	< 5			ug/l	4/18/09	8260B
Chloromethane	< 2			ug/l	4/18/09	8260B
Vinyl chloride	< 2			ug/l	4/18/09	8260B
Bromomethane	< 2			ug/l	4/18/09	8260B
Chloroethane	< 5			ug/l	4/18/09	8260B
Trichlorofluoromethane	< 5			ug/l	4/18/09	8260B
Diethyl Ether	< 5			ug/l	4/18/09	8260B
Acetone	< 10			ug/l	4/18/09	8260B
1,1-Dichloroethene	< 1	20 (100 %R)	20 (98 %R) (2 RPD)	ug/l	4/18/09	8260B
tert-Butyl Alcohol (TBA)	< 30			ug/l	4/18/09	8260B
Methylene chloride	< 5			ug/l	4/18/09	8260B
Carbon disulfide	< 5			ug/l	4/18/09	8260B
Methyl-t-butyl ether(MTBE)	< 5			ug/l	4/18/09	8260B
Ethyl-t-butyl ether(ETBE)	< 5			ug/i	4/18/09	8260B
Isopropyl ether(DIPE)	< 5			ug/l	4/18/09	8260B
tert-amyl methyl ether(TAME)	< 5			ug/l	4/18/09	8260B
trans-1,2-Dichloroethene	< 2			ug/l	4/18/09	8260B
1,1-Dichloroethane	< 2			ug/l	4/18/09	8260B
2,2-Dichloropropane	< 2			ug/l	4/18/09	8260B
cis-1,2-Dichloroethene	< 2			ug/l	4/18/09	8260B
2-Butanone(MEK)	< 10			ug/l	4/18/09	8260B
Bromochloromethane	< 2			ug/l	4/18/09	8260B
Tetrahydrofuran(THF)	< 10			ug/l	4/18/09	8260B
Chloroform	< 2			ug/l	4/18/09	8260B
1,1,1-Trichloroethane	< 2			ug/l	4/18/09	8260B
Carbon tetrachloride	< 2			ug/l	4/18/09	8260B
1,1-Dichloropropene	< 2			ug/l	4/18/09	8260B
Benzene	< 1	18 (91 %R)	18 (90 %R) (1 RPD)	ug/l	4/18/09	8260B
1,2-Dichloroethane	< 2			ug/l	4/18/09	8260B
Trichloroethene	< 2	19 (96 %R)	19 (94 %R) (2 RPD)	ug/l	4/18/09	8260B
1,2-Dichloropropane	< 2			ug/l	4/18/09	8260B
Dibromomethane	< 2			ug/l	4/18/09	8260B
Bromodichloromethane	< 0.5			ug/l	4/18/09	8260B
4-Methyl-2-pentanone(MIBK)	< 10			ug/l	4/18/09	8260B
cis-1,3-Dichloropropene	< 2			ug/l	4/18/09	8260B
Toluene	< 1	18 (88 %R)	17 (86 %R) (2 RPD)	ug/i ug/l	4/18/09	8260B
trans-1,3-Dichloropropene	< 2			ug/l	4/18/09	8260B
	< 2			•	4/18/09	8260B
1,1,2-Trichloroethane 2-Hexanone	< 10			ug/l	4/18/09	8260B
Z-Hexanone Tetrachloroethene	< 10			ug/l	4/18/09	8260B
	< 2			ug/l	4/18/09 4/18/09	
1,3-Dichloropropane	< 2			ug/l		8260B
Dibromochloromethane				ug/l	4/18/09	8260B
1,2-Dibromoethane(EDB)	< 2			ug/l	4/18/09	8260B
Chlorobenzene	< 2	19 (97 %R)	19 (95 %R) (2 RPD)	ug/l	4/18/09	8260B

eastern analytical, inc.

7

Eastern Analytical, Inc. ID#:78234

Batch ID:

Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

		QC Report		D	ate of Analy	ysis
Parameter Name	Blank	LCS	LCS Dup	Units	•	Method
1,1,1,2-Tetrachloroethane	< 2			ug/l	4/18/09	8260B
Ethylbenzene	< 1			ug/l	4/18/09	8260B
mp-Xylene	< 1			ug/l	4/18/09	8260B
o-Xylene	< 1			ug/l	4/18/09	8260B
Styrene	< 1			ug/l	4/18/09	8260B
Bromoform	< 2			ug/l	4/18/09	8260B
IsoPropylbenzene	< 1			ug/l	4/18/09	8260B
Bromobenzene	< 2			ug/l	4/18/09	8260B
1,1,2,2-Tetrachloroethane	< 2			ug/l	4/18/09	8260B
1,2,3-Trichloropropane	< 2			ug/l	4/18/09	8260B
n-Propylbenzene	< 1			ug/l	4/18/09	8260B
2-Chlorotoluene	< 2			ug/l	4/18/09	8260B
4-Chlorotoluene	< 2			ug/l	4/18/09	8260B
1,3,5-Trimethylbenzene	< 1			ug/l	4/18/09	8260B
tert-Butylbenzene	< 1			ug/l	4/18/09	8260B
1,2,4-Trimethylbenzene	< 1			ug/l	4/18/09	8260B
sec-Butylbenzene	< 1			ug/l	4/18/09	8260B
1,3-Dichlorobenzene	< 1			ug/l	4/18/09	8260B
p-Isopropyltoluene	< 1			ug/l	4/18/09	8260B
1,4-Dichlorobenzene	< 1			ug/l	4/18/09	8260B
1,2-Dichlorobenzene	< 1			ug/l	4/18/09	8260B
n-Butylbenzene	< 1			ug/l	4/18/09	8260B
1,2-Dibromo-3-chloropropane	< 2			ug/l	4/18/09	8260B
1,3,5-Trichlorobenzene	< 1			ug/l	4/18/09	8260B
1,2,4-Trichlorobenzene	< 1			ug/l	4/18/09	8260B
Hexachlorobutadiene	< 0.5			ug/l	4/18/09	8260B
Naphthalene	< 5			ug/l	4/18/09	8260B
1,2,3-Trichlorobenzene	< 1			ug/l	4/18/09	8260B
4-Bromofluorobenzene (surr)	91 %R	97 %R	96 %R	% Rec	4/18/09	8260B
1,2-Dichlorobenzene-d4 (surr)	107 %R	102 %R	102 %R	% Rec	4/18/09	8260B
Toluene-d8 (surr)	96 %R	95 %R	95 %R	% Rec	4/18/09	8260B

Eastern Analytical, Inc. ID#: 78234

Batch ID:

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

		QC Report				ysis
Parameter Name	Blank	LCS	LCS Dup	Units	·	Method
	.04				4/04/00	00000
Dichlorodifluoromethane	< 0.1 < 0.1			mg/kg	4/21/09	8260B
Chloromethane	< 0.1			mg/kg	4/21/09 4/21/09	8260B 8260B
Vinyl chloride Bromomethane	< 0.1			mg/kg	4/21/09 4/21/09	8260B
Chloroethane	< 0.1 < 0.1			mg/kg	4/21/09 4/21/09	8260B
Trichlorofluoromethane	< 0.1			mg/kg	4/21/09 4/21/09	8260B
	< 0.05			mg/kg		
Diethyl Ether				mg/kg	4/21/09	8260B
Acetone	< 2	4.0 (400.0/ D)		mg/kg	4/21/09	8260B
1,1-Dichloroethene	< 0.05	1.3 (126 %R)	1.1 (110 %R) (14 RPD)	mg/kg	4/21/09	8260B
Methylene chloride	< 0.1			mg/kg	4/21/09	8260B
Carbon disulfide	< 0.1			mg/kg	4/21/09	8260B
Methyl-t-butyl ether(MTBE)	< 0.1			mg/kg	4/21/09	8260B
trans-1,2-Dichloroethene	< 0.05			mg/kg	4/21/09	8260B
1,1-Dichloroethane	< 0.05			mg/kg	4/21/09	8260B
2,2-Dichloropropane	< 0.05			mg/kg	4/21/09	8260B
cis-1,2-Dichloroethene	< 0.05			mg/kg	4/21/09	8260B
2-Butanone(MEK)	< 0.5			mg/kg	4/21/09	8260B
Bromochloromethane	< 0.05			mg/kg	4/21/09	8260B
Tetrahydrofuran(THF)	< 0.5			mg/kg	4/21/09	8260B
Chloroform	< 0.05			mg/kg	4/21/09	8260B
1,1,1-Trichloroethane	< 0.05			mg/kg	4/21/09	8260B
Carbon tetrachloride	< 0.05			mg/kg	4/21/09	8260B
1,1-Dichloropropene	< 0.05			mg/kg	4/21/09	8260B
Benzene	< 0.05	1.1 (108 %R)	0.98 (98 %R) (10 RPD)	mg/kg	4/21/09	8260B
1,2-Dichloroethane	< 0.05			mg/kg	4/21/09	8260B
Trichloroethene	< 0.05	1.2 (119 %R)	1.1 (108 %R) (10 RPD)	mg/kg	4/21/09	8260B
1,2-Dichloropropane	< 0.05			mg/kg	4/21/09	8260B
Dibromomethane	< 0.05			mg/kg	4/21/09	8260B
Bromodichloromethane	< 0.05			mg/kg	4/21/09	8260B
4-Methyl-2-pentanone(MIBK)	< 0.5			mg/kg	4/21/09	8260B
cis-1,3-Dichloropropene	< 0.05			mg/kg	4/21/09	8260B
Toluene	< 0.05	1.1 (113 %R)	1.0 (103 %R) (9 RPD)	mg/kg	4/21/09	8260B
trans-1,3-Dichloropropene	< 0.05			mg/kg	4/21/09	8260B
1,1,2-Trichloroethane	< 0.05			mg/kg	4/21/09	8260B
2-Hexanone	< 0.1			mg/kg	4/21/09	8260B
Tetrachloroethene	< 0.05			mg/kg	4/21/09	8260B
1,3-Dichloropropane	< 0.05			mg/kg	4/21/09	8260B
Dibromochloromethane	< 0.05			mg/kg	4/21/09	8260B
1,2-Dibromoethane(EDB)	< 0.05			mg/kg	4/21/09	8260B
Chlorobenzene	< 0.05	1.2 (120 %R)	1.1 (109 %R) (10 RPD)	mg/kg	4/21/09	8260B
1,1,1,2-Tetrachloroethane	< 0.05	· · ·	,	mg/kg	4/21/09	8260B
Ethylbenzene	< 0.05			mg/kg	4/21/09	8260B
mp-Xylene	< 0.05			mg/kg	4/21/09	8260B
o-Xylene	< 0.05			mg/kg	4/21/09	8260B

eastern analytical, inc.

9

Eastern Analytical, Inc. ID#: 78234

Batch ID:

Client: The Johnson Company

		QC Report			ate of Analy	veie
Parameter Name	Blank	LCS	LCS Dup	Units		Method
Styrene	< 0.05			mg/kg	4/21/09	8260B
Bromoform	< 0.05			mg/kg	4/21/09	8260B
IsoPropylbenzene	< 0.05			mg/kg	4/21/09	8260B
Bromobenzene	< 0.05			mg/kg	4/21/09	8260B
1,1,2,2-Tetrachloroethane	< 0.05			mg/kg	4/21/09	8260B
1,2,3-Trichloropropane	< 0.05			mg/kg	4/21/09	8260B
n-Propylbenzene	< 0.05			mg/kg	4/21/09	8260B
2-Chlorotoluene	< 0.05			mg/kg	4/21/09	8260B
4-Chlorotoluene	< 0.05			mg/kg	4/21/09	8260B
1,3,5-Trimethylbenzene	< 0.05			mg/kg	4/21/09	8260B
tert-Butylbenzene	< 0.05			mg/kg	4/21/09	8260B
1,2,4-Trimethylbenzene	< 0.05			mg/kg	4/21/09	8260B
sec-Butylbenzene	< 0.05			mg/kg	4/21/09	8260B
1,3-Dichlorobenzene	< 0.05			mg/kg	4/21/09	8260B
p-Isopropyltoluene	< 0.05			mg/kg	4/21/09	8260B
1,4-Dichlorobenzene	< 0.05			mg/kg	4/21/09	8260B
1,2-Dichlorobenzene	< 0.05			mg/kg	4/21/09	8260B
n-Butylbenzene	< 0.05			mg/kg	4/21/09	8260B
1,2-Dibromo-3-chloropropane	< 0.05			mg/kg	4/21/09	8260B
1,2,4-Trichlorobenzene	< 0.05			mg/kg	4/21/09	8260B
Hexachlorobutadiene	< 0.05			mg/kg	4/21/09	8260B
Naphthalene	< 0.1			mg/kg	4/21/09	8260B
1,2,3-Trichlorobenzene	< 0.05			mg/kg	4/21/09	8260B
4-Bromofluorobenzene (surr)	97 %R	98 %R	99 %R	% Rec	4/21/09	8260B
1,2-Dichlorobenzene-d4 (surr)	100 %R	103 %R	104 %R	% Rec	4/21/09	8260B
Toluene-d8 (surr)	96 %R	95 %R	94 %R	% Rec	4/21/09	8260B

Batch ID:

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Volatile Organic Compounds QC limits and Narrative Summary

Matrix: Units: EPA Method	Solid % 8260B	RPD %	Aqueous % 8260B	RPD %
Surrogate Recovery 4-Bromofluorobenzene 1,2-Dichlorobenzene-D4 Toluene-d8	74-121 80-120 70-130		86-115 80-120 70-130	
Matrix Spike Recovery 1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	59-172 62-137 66-142 59-139 60-133	30 30 30 30 30	61-145 71-120 76-127 76-125 75-130	20 20 20 20 20

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

SB-08 1.5-2.0': Non target interference in the sample resulted in recovery outside of the acceptance control limits of 74-121%R for the surrogate 4-Bromofluorobenzene (surr) and 80-120%R for the surrogate 1,2-Dichlorobenzene-d4 (surr).

eastern analytical, inc.

Eastern Analytical, Inc. ID#: 78234

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

	SS-AST-1 0-0.5'	SS-AST-1 M	W-1 3.5-4.0'	MW-8 7-7.5'	MW-9
Sample ID:		1.5- 2.0'			4.5-5.0'
Lab Sample ID:	78234.01	78234.02	78234.04	78234.12	78234.13
Matrix:	soil	soil	soil	soil	soil
Date Sampled:	4/14/09	4/14/09	4/14/09	4/15/09	4/15/09
Date Received:	4/17/09	4/17/09	4/17/09	4/17/09	4/17/09
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/F	Prep: 4/23/09	4/23/09	4/24/09	4/24/09	4/24/09
Date of Analysis:	4/29/09	4/29/09	4/29/09	4/29/09	4/29/09
Analyst:	BML	BML	BML	BML	BML
Method:	8270D	8270D	8270D	8270D	8270D
Dilution Factor:	1	1	1	1	1
Naphthalene	0.05	0.06	< 0.02	< 0.02	< 0.02
2-Methylnaphthalene	0.10	0.13	< 0.02	< 0.02	< 0.02
Acenaphthylene	0.07	0.12	< 0.02	< 0.02	0.06
Acenaphthene	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Fluorene	< 0.02	< 0.02	< 0.02	< 0.02	0.03
Phenanthrene	0.05	0.04	< 0.02	< 0.02	0.27
Anthracene	0.13	0.09	< 0.02	< 0.02	0.09
Fluoranthene	0.02	0.05	< 0.02 < 0.02	< 0.02 < 0.02	0.62 0.46
Pyrene Benzo[a]anthracene	0.05 < 0.02	0.07 < 0.02	< 0.02	< 0.02	0.46
Chrysene	0.02	0.23	< 0.02	< 0.02	0.20
Benzo[b]fluoranthene		0.08	< 0.02	< 0.02	0.30
Benzo[k]fluoranthene	< 0.02	0.02	< 0.02	< 0.02	0.14
Benzo[a]pyrene	0.02	0.07	< 0.01	< 0.01	0.28
Indeno[1,2,3-cd]pyren		0.17	< 0.02	< 0.02	0.15
Dibenz[a,h]anthracen		0.03	< 0.02	< 0.02	0.04
Benzo[g,h,i]perylene	0.07	0.20	< 0.02	< 0.02	0.13
p-Terphenyl-D14 (sur	r) 37 %R	47 %R	50 %R	49 %R	49 %R

SS-AST-1 0-0.5': The sample demonstrated low internal standard response of 1,4-Dichlorobenzene-d4, Acenaphthene-d10, Phenanthrene-d10, Chrysene-d12, and Perylene-d12. Sample matrix interference is suspected.

SS-AST-1 1.5-2.0': The sample demonstrated low internal standard response of Chrysene-d12 and Perylene-d12. Sample matrix interference is suspected.

Batch ID: 733521-35552/S042409PAH1

Client: The Johnson Company

Client Designation

n:	Richmond	Creamery	1-0346-3
----	----------	----------	----------

QC Report **Parameter Name** Blank LCS LCSD Units Limits RPD Method Naphthalene < 0.02 0.29 (44 %R) 0.31 (46 %R) (4 RPD) mg/kg 30 - 160 50 8270D 2-Methylnaphthalene < 0.02 mg/kg 30 - 160 0.31 (47 %R) 0.33 (50 %R) (6 RPD) 50 8270D Acenaphthylene < 0.02 0.35 (52 %R) 0.36 (54 %R) (4 RPD) mg/kg 30 - 160 50 8270D Acenaphthene < 0.02 mg/kg 31 - 137 0.34 (51 %R) 0.35 (52 %R) (2 RPD) 19 8270D Fluorene < 0.02 0.34 (51 %R) 0.34 (51 %R) (0 RPD) mg/kg 30 - 160 50 8270D Phenanthrene < 0.02 0.31 (47 %R) 0.33 (49 %R) (4 RPD) mg/kg 30 - 160 50 8270D < 0.02 Anthracene 0.32 (48 %R) 0.33 (49 %R) (2 RPD) mg/kg 30 - 160 50 8270D mg/kg 30 - 160 Fluoranthene < 0.02 0.36 (54 %R) 0.36 (54 %R) (0 RPD) 50 8270D Pyrene < 0.02 0.35 (52 %R) 0.35 (53 %R) (2 RPD) mg/kg 35 - 142 36 8270D Benzo[a]anthracene < 0.02 0.32 (49 %R) 0.33 (49 %R) (0 RPD) mg/kg 30 - 160 50 8270D Chrysene < 0.02 0.36 (53 %R) 0.36 (54 %R) (2 RPD) mg/kg 30 - 160 50 8270D < 0.02 Benzo[b]fluoranthene 0.35 (52 %R) 0.36 (54 %R) (4 RPD) mg/kg 30 - 160 50 8270D Benzo[k]fluoranthene < 0.02 0.37 (56 %R) 0.37 (55 %R) (2 RPD) mg/kg 30 - 160 50 8270D < 0.01 0.36 (54 %R) 0.36 (53 %R) (2 RPD) mg/kg 30 - 160 Benzo[a]pyrene 50 8270D mg/kg 30 - 160 < 0.02 Indeno[1,2,3-cd]pyrene 0.38 (57 %R) 0.38 (57 %R) (0 RPD) 50 8270D Dibenz[a,h]anthracene < 0.02 0.33 (50 %R) 0.33 (50 %R) (0 RPD) mg/kg 30 - 160 50 8270D 0.38 (56 %R) Benzo[g,h,i]perylene < 0.02 0.37 (56 %R) (0 RPD) mg/kg 30 - 160 50 8270D p-Terphenyl-D14 (surr) 52 %R 58 %R 51 %R mg/kg 18 - 137 8270D

Batch ID: 733520-58281/S042309PAH1

Client: The Johnson Company

Client Designation: QC Report

Richmond Creamery | 1-0346-3

Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Naphthalene	< 0.02	1.8 (54 %R)	1.8 (54 %R) (0 RPD)	mg/kg	30 - 160	50	8270D
2-Methylnaphthalene	< 0.02	1.9 (56 %R)	1.9 (57 %R) (2 RPD)	mg/kg	30 - 160	50	8270D
Acenaphthylene	< 0.02	2.0 (60 %R)	2.0 (61 %R) (2 RPD)	mg/kg	30 - 160	50	8270D
Acenaphthene	< 0.02	2.0 (59 %R)	2.0 (60 %R) (2 RPD)	mg/kg	31 - 137	19	8270D
Fluorene	< 0.02	2.2 (67 %R)	2.2 (67 %R) (0 RPD)	mg/kg	30 - 160	50	8270D
Phenanthrene	< 0.02	2.5 (75 %R)	2.4 (72 %R) (4 RPD)	mg/kg	30 - 160	50	8270D
Anthracene	< 0.02	2.4 (72 %R)	2.3 (70 %R) (3 RPD)	mg/kg	30 - 160	50	8270D
Fluoranthene	< 0.02	2.8 (85 %R)	2.7 (82 %R) (4 RPD)	mg/kg	30 - 160	50	8270D
Pyrene	< 0.02	2.3 (70 %R)	2.2 (67 %R) (4 RPD)	mg/kg	35 - 142	36	8270D
Benzo[a]anthracene	< 0.02	2.5 (76 %R)	2.5 (74 %R) (3 RPD)	mg/kg	30 - 160	50	8270D
Chrysene	< 0.02	2.7 (80 %R)	2.6 (78 %R) (3 RPD)	mg/kg	30 - 160	50	8270D
Benzo[b]fluoranthene	< 0.02	2.5 (74 %R)	2.4 (72 %R) (3 RPD)	mg/kg	30 - 160	50	8270D
Benzo[k]fluoranthene	< 0.02	2.5 (74 %R)	2.4 (72 %R) (3 RPD)	mg/kg	30 - 160	50	8270D
Benzo[a]pyrene	< 0.02	2.5 (76 %R)	2.5 (74 %R) (3 RPD)	mg/kg	30 - 160	50	8270D
Indeno[1,2,3-cd]pyrene	< 0.02	2.9 (88 %R)	2.9 (86 %R) (2 RPD)	mg/kg	30 - 160	50	8270D
Dibenz[a,h]anthracene	< 0.02	2.9 (86 %R)	2.8 (85 %R) (1 RPD)	mg/kg	30 - 160	50	8270D
Benzo[g,h,i]perylene	< 0.02	2.8 (83 %R)	2.7 (81 %R) (2 RPD)	mg/kg	30 - 160	50	8270D
p-Terphenyl-D14 (surr)	61 %R	72 %R	69 %R	mg/kg	18 - 137		8270D

Eastern Analytical, Inc. ID#: 78234

Batch ID: 733521-35552/S042409PAH1

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Polynuclear Aromatic Hydrocarbons QA/QC and Narrative Report

Matrix: Units: EPA Method:	Aqueous % 8270D	RPD %	Solid % 8270D	RPD %	Oil % 8270D	RPD %
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	30-160 30-160 46-118 30-160 30-160 30-160 30-160 26-127	31 31	30-160 30-160 31-137 30-160 30-160 30-160 30-160 35-142	19 36	30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160	50 50
Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene Benzo[g,h,i]perylene Surrogate (p-Terphenyl-D14)	30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 33-141		30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 18-137		30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160	

Samples were extracted and analyzed within holding time limits.

Instrumentation was tuned and calibrated in accordance with the method requirements.

The associated method blank(s) were free of contamination at the reporting limit.

Sample Surrogate Recoveries met the above stated criteria.

The associated matrix spike(s) and/or Laboratory Control Sample(s) met the above stated criteria. There were no exceptions in the analyses, unless noted below.

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	SB-08 1.5-2.0'	MW-2 12-13'	MW-3 13-14'	MW-4 13-14'	MW-5 11-12'	MW-6 7.5-8.0'	MW-7 6.5-7.0'
Lab Sample ID:	78234.03	78234.06	78234.07	78234.08	78234.09	78234.1	78234.11
Matrix:	soil	soil	soil	soil	soil	soil	soil
Date Sampled:	4/15/09	4/14/09	4/14/09	4/14/09	4/14/09	4/15/09	4/15/09
Date Received:	4/17/09	4/17/09	4/17/09	4/17/09	4/17/09	4/17/09	4/17/09
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Preparation	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09
Date of Analysis:	4/30/09	4/29/09	4/29/09	4/29/09	4/29/09	4/30/09	4/29/09
Analyst:	BML	BML	BML	BML	BML	BML	BML
Method:	8270D	8270D	8270D	8270D	8270D	8270D	8270D
Dilution Factor:	24	1	2	1	1	13	1
Phenol	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
2-Chlorophenol	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
2,4-Dichlorophenol	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
2,4,5-Trichlorophenol	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
2,4,6-Trichlorophenol	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
Pentachlorophenol 2-Nitrophenol	< 4 < 0.8	1 > 0.2 >	1 > < 0.2	1 > 2.0 >	1 > < 0.2	< 2 < 0.4	1 > < 0.2
4-Nitrophenol	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
2,4-Dinitrophenol	< 20	< 1	< 1	< 1	< 1	< 10	< 1
2-Methylphenol	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
3/4-Methylphenol	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
2,4-Dimethylphenol	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
4-Chloro-3-methylphenol	< 0.8 < 4	< 0.2 < 1 < 1	< 0.2 < 1	< 0.2 < 1 < 1	< 0.2 < 1	< 0.4 < 2	< 0.2 < 1
4,6-Dinitro-2-methylphenol Benzoic Acid	7	< 1	< 1	< 1	< 1	< 2	< 1
N-Nitrosodimethylamine	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
n-Nitroso-di-n-propylamine	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
n-Nitrosodiphenylamine	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
bis(2-Chloroethyl)ether	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
bis(2-chloroisopropyl)ether	< 0.8 < 0.8	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.4 < 0.4	< 0.2 < 0.2
bis(2-Chloroethoxy)methane 1,3-Dichlorobenzene	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2 < 0.2	< 0.4 < 0.4	< 0.2 < 0.2
1,4-Dichlorobenzene	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
1,2-Dichlorobenzene	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
1,2,4-Trichlorobenzene	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
2-Chloronaphthalene	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
4-Chlorophenyl-phenylether	< 0.8	< 0.2	< 0.2	< 0.2 < 0.2	< 0.2	< 0.4	< 0.2
4-Bromophenyl-phenylether Hexachloroethane	< 0.8 < 0.8	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2	< 0.2 < 0.2	< 0.4 < 0.4	< 0.2 < 0.2
Hexachlorobutadiene	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
Hexachlorocyclopentadiene	< 4	< 1	< 1	< 1	< 1	< 2	< 1
Hexachlorobenzene	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
4-Chloroaniline	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
2-Nitroaniline	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
3-Nitroaniline	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
4-Nitroaniline Benzyl alcohol	< 0.8 < 0.8	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.4 < 0.4	< 0.2 < 0.2
Nitrobenzene	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
Isophorone	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
2,4-Dinitrotoluene	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
2,6-Dinitrotoluene	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
Benzidine	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
3,3'-Dichlorobenzidine	< 0.8 < 0.8	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.4 < 0.4	< 0.2 < 0.2
Pyridine Azobenzene	< 0.8 < 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4 < 0.4	< 0.2 < 0.2
						- · ·	

eastern analytical, inc.

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	SB-08 1.5-2.0'	MW-2 12-13'	MW-3 13-14'	MW-4 13-14'	MW-5 11-12'	MW-6 7.5-8.0'	MW-7 6.5-7.0'
Lab Sample ID:	78234.03	78234.06	78234.07	78234.08	78234.09	78234.1	78234.11
Matrix:	soil	soil	soil	soil	soil	soil	soil
Date Sampled:	4/15/09	4/14/09	4/14/09	4/14/09	4/14/09	4/15/09	4/15/09
Date Received:	4/17/09	4/17/09	4/17/09	4/17/09	4/17/09	4/17/09	4/17/09
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Preparation	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09
Date of Analysis:	4/30/09	4/29/09	4/29/09	4/29/09	4/29/09	4/30/09	4/29/09
Analyst:	BML	BML	BML	BML	BML	BML	BML
Method:	8270D	8270D	8270D	8270D	8270D	8270D	8270D
Dilution Factor:	24	1	2	1	1	13	1
Carbazole	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
Dimethylphthalate	< 0.8	< 0.2		< 0.2	< 0.2	< 0.4	< 0.2
Diethylphthalate	< 0.8	< 0.2		< 0.2	< 0.2	< 0.4	< 0.2
Di-n-butylphthalate	< 0.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Butylbenzylphthalate	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
bis(2-Ethylhexyl)phthalate	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Di-n-octylphthalate	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
Dibenzofuran	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2
Naphthalene	1.5	< 0.02		0.05	< 0.02	< 0.04	< 0.02
2-Methylnaphthalene	11	< 0.02	< 0.02	0.05	< 0.02	< 0.04	< 0.02
Acenaphthylene	0.21	< 0.02	< 0.02	0.07	< 0.02	< 0.04	< 0.02
Acenaphthene	0.54	< 0.02		< 0.02	< 0.02	0.05	< 0.02
Fluorene	1.9	< 0.02	< 0.02	0.04	< 0.02	0.34	< 0.02
Phenanthrene	4.2	< 0.02		0.28	< 0.02	0.52	< 0.02
Anthracene	< 0.08	< 0.02		0.08	< 0.02	< 0.04	< 0.02
Fluoranthene	0.20	< 0.02		0.52	< 0.02	0.04	< 0.02
Pyrene	0.60	< 0.02		0.45	< 0.02	0.10	< 0.02
Benzo[a]anthracene	< 0.08	< 0.02		0.24	< 0.02	0.04	< 0.02
Chrysene	< 0.08	< 0.02	< 0.02	0.29	< 0.02	< 0.04	< 0.02
Benzo[b]fluoranthene	< 0.08	< 0.02		0.43	< 0.02	< 0.04	< 0.02
Benzo[k]fluoranthene	< 0.08 < 0.08	< 0.02 < 0.01	< 0.02 < 0.01	0.16 0.29	< 0.02 < 0.01	< 0.04 < 0.04	< 0.02 < 0.01
Benzo[a]pyrene	< 0.08	< 0.01	< 0.01	0.29	< 0.01	< 0.04 < 0.04	< 0.01
Indeno[1,2,3-cd]pyrene	< 0.08	< 0.02	< 0.02	0.18	< 0.02	< 0.04	< 0.02
Dibenz[a,h]anthracene	< 0.08	< 0.02	< 0.02	0.14	< 0.02	< 0.04	< 0.02
Benzo[g,h,i]perylene 2-Fluorophenol (surr)	DOR	< 0.02 42 %R	< 0.02 44 %R	40 %R	< 0.02 45 %R	< 0.04 72 %R	< 0.02 35 %R
Phenol-d6 (surr)	DOR	45 %R	45 %R	40 %R	45 %R	81 %R	34 %R
2,4,6-Tribromophenol (surr)	DOR	68 %R	58 %R	61 %R	45 %R	116 %R	66 %R
Nitrobenzene-D5 (surr)	DOR	44 %R	46 %R	40 %R	43 %R	18 %R	34 %R
2-Fluorobiphenyl (surr)	DOR	50 %R	38 %R	40 %R	49 %R	26 %R	39 %R
p-Terphenyl-D14 (surr)	DOR	54 %R	44 %R	44 %R	50 %R	26 %R	52 %R

DOR: Diluted out of calibration range.

SB-08 1.5-2.0', MW-6 7.5-8.0: A dilution was required due to high levels of non-target analytes.

Eastern Analytical, Inc. ID#: 78234

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

	Sump
Sample ID:	
Lab Sample ID:	78234.15
·	
Matrix:	aqueous
Date Sampled:	4/14/09
Date Received:	4/17/09
Units:	ug/l
Date of Extraction/Prep:	4/21/09
Date of Analysis:	4/28/09
-	
Analyst:	BML
Method:	8270D
Dilution Factor:	1
Phenol	< 1
2-Chlorophenol	< 1
2,4-Dichlorophenol	< 1
2,4,5-Trichlorophenol	< 1
2,4,6-Trichlorophenol Pentachlorophenol	< 1 < 5
2-Nitrophenol	< 5 < 1
4-Nitrophenol	< 5
2,4-Dinitrophenol	< 5
2-Methylphenol	< 1
3/4-Methylphenol	< 1
2,4-Dimethylphenol	< 1
4-Chloro-3-methylphenol 4,6-Dinitro-2-methylphenol	< 1 < 5
Benzoic Acid	< 5
2-Fluorophenol (surr)	51 %R
Phenol-d6 (surr)	34 %R
2,4,6-Tribromophenol (surr)	79 %R

Eastern Analytical, Inc. ID#: 78234

Client: The Johnson Company

	Sump
Sample ID:	
Lab Sample ID:	78234.15
-	
Matrix:	aqueous
Date Sampled:	4/14/09
Date Received:	4/17/09
Units:	ug/l
Date of Extraction/Prep:	4/21/09
Date of Analysis:	4/28/09
Analyst:	BML
Method:	8270D
Dilution Factor:	1
N-Nitrosodimethylamine	< 1
n-Nitroso-di-n-propylamine	< 1
-Nitrosodiphenylamine	< 1
bis(2-Chloroethyl)ether	< 1
bis(2-chloroisopropyl)ether	< 1
bis(2-Chloroethoxy)methane	< 1
,3-Dichlorobenzene	< 1
,4-Dichlorobenzene	< 1
,2-Dichlorobenzene	< 1
,2,4-Trichlorobenzene	< 1
2-Chloronaphthalene I-Chlorophenyl-phenylether	< 1 < 1
-Bromophenyl-phenylether	< 1
lexachloroethane	< 1
lexachlorobutadiene	< 1
lexachlorocyclopentadiene	< 5
lexachlorobenzene	< 1
-Chloroaniline	< 1
-Nitroaniline	< 5
-Nitroaniline	< 1
-Nitroaniline	< 1
Benzyl alcohol Nitrobenzene	< 1 < 1
sophorone	< 1
2,4-Dinitrotoluene	< 1
2,6-Dinitrotoluene	< 1
Benzidine	< 5
,3'-Dichlorobenzidine	< 1
Pyridine	< 5
zobenzene	< 1
Carbazole	< 1
Dimethylphthalate	< 1
Diethylphthalate	< 1
Di-n-butylphthalate Butylbenzylphthalate	< 5 < 1
ic/2. Ethylhoxyl)nhthalato	C h
is(2-Ethylhexyl)phthalate)i-n-octylphthalate	< 5 < 1

Eastern Analytical, Inc. ID#: 78234

Client: The Johnson Company

	Sump
Sample ID:	0 amp
-	
Lab Sample ID:	78234.15
Matrix:	aqueous
Date Sampled:	4/14/09
Date Received:	4/17/09
Units:	ug/l
Date of Extraction/Prep:	4/21/09
Date of Analysis:	4/28/09
-	BML
Analyst:	
Method:	8270D
Dilution Factor:	1
Naphthalene	< 0.1
2-Methylnaphthalene	< 0.1
Acenaphthylene	< 0.1
Acenaphthene	< 0.1
Fluorene	< 0.1
Phenanthrene Anthracene	< 0.1 < 0.1
Fluoranthene	< 0.1
Pyrene	< 0.1
Benzo[a]anthracene	< 0.1
Chrysene	< 0.1
Benzo[b]fluoranthene	< 0.1
Benzo[k]fluoranthene	< 0.1
Benzo[a]pyrene	< 0.1
Indeno[1,2,3-cd]pyrene	< 0.1 < 0.1
Dibenz[a,h]anthracene Benzo[g,h,i]perylene	< 0.1
Nitrobenzene-D5 (surr)	72 %R
2-Fluorobiphenyl (surr)	71 %R
p-Terphenyl-D14 (surr)	75 %R

Batch ID: 733519-45831/S042209ABN1

Client: The Johnsor	Client Designation: Richmond Creamery 1-0346-3 QC Report						
Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Phenol	< 0.2	0.8 (47 %R)	0.7 (45 %R) (4 RPD)	mg/kg	26 - 90	35	8270D
2-Chlorophenol	< 0.2	0.8 (49 %R)	0.7 (44 %R) (11 RPD)	mg/kg	25 - 102	50	8270D
2,4-Dichlorophenol	< 0.2			mg/kg			8270D
2,4,5-Trichlorophenol	< 0.2			mg/kg			8270D
2,4,6-Trichlorophenol	< 0.2			mg/kg			8270D
Pentachlorophenol	< 1	1 (70 %R)	1 (66 %R) (6 RPD)	mg/kg	17 - 109	47	8270D
2-Nitrophenol	< 0.2			mg/kg			8270D
4-Nitrophenol	< 0.2	1.1 (64 %R)	1.0 (59 %R) (8 RPD)		11 - 114	50	8270D
2,4-Dinitrophenol	< 1			mg/kg			8270D
2-Methylphenol	< 0.2			mg/kg			8270D
3/4-Methylphenol	< 0.2			mg/kg			8270D
2,4-Dimethylphenol	< 0.2			mg/kg			8270D
4-Chloro-3-methylphenol	< 0.2	0.9 (52 %R)	0.8 (50 %R) (4 RPD)		26 - 103	33	8270D
4,6-Dinitro-2-methylphenol	< 1			mg/kg			8270D
Benzoic Acid	< 1			mg/kg			8270D
N-Nitrosodimethylamine	< 0.2			mg/kg			8270D
n-Nitroso-di-n-propylamine	< 0.2	0.4 (53 %R)	0.4 (51 %R) (4 RPD)		41 - 126	38	8270D
n-Nitrosodiphenylamine	< 0.2			mg/kg			8270D
bis(2-Chloroethyl)ether	< 0.2			mg/kg			8270D
bis(2-chloroisopropyl)ether	< 0.2			mg/kg			8270D
bis(2-Chloroethoxy)methane	< 0.2			mg/kg			8270D
1,3-Dichlorobenzene	< 0.2			mg/kg			8270D
1,4-Dichlorobenzene	< 0.2	0.4 (48 %R)	0.4 (44 %R) (9 RPD)	mg/kg	28 - 97	27	8270D
1,2-Dichlorobenzene	< 0.2			mg/kg			8270D
1,2,4-Trichlorobenzene	< 0.2	0.4 (50 %R)	0.4 (48 %R) (4 RPD)	mg/kg	38 - 107	23	8270D
2-Chloronaphthalene	< 0.2			mg/kg			8270D
4-Chlorophenyl-phenylether	< 0.2			mg/kg			8270D
4-Bromophenyl-phenylether	< 0.2			mg/kg			8270D
Hexachloroethane	< 0.2			mg/kg			8270D
Hexachlorobutadiene	< 0.2			mg/kg			8270D
Hexachlorocyclopentadiene	< 1			mg/kg			8270D
Hexachlorobenzene	< 0.2			mg/kg			8270D
4-Chloroaniline	< 0.2			mg/kg			8270D
2-Nitroaniline	< 0.2			mg/kg			8270D
3-Nitroaniline	< 0.2			mg/kg			8270D
4-Nitroaniline	< 0.2			mg/kg			8270D
Benzyl alcohol	< 0.2			mg/kg			8270D
Nitrobenzene	< 0.2			mg/kg			8270D
Isophorone	< 0.2			mg/kg			8270D
2,4-Dinitrotoluene	< 0.2	0.5 (59 %R)	0.5 (57 %R) (3 RPD)	mg/kg	28 - 89	47	8270D
2,6-Dinitrotoluene	< 0.2			mg/kg			8270D
Benzidine	< 0.4			mg/kg			8270D
3,3'-Dichlorobenzidine	< 0.2			mg/kg			8270D
Pyridine	< 0.2			mg/kg			8270D
Azobenzene	< 0.2			mg/kg			8270D
							21

eastern analytical, inc.

Eastern Analytical, Inc. ID#: 78234

Batch ID: 733519-45831/S042209ABN1

Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

QC Report

de riepon					
LCS	LCSD	Units	Limits	RPD	Method
		mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
0.6 (%R)	0.5 (%R) (RPD)	mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
0.46 (55 %R)	0.42 (51 %R) (8 RPD)	mg/kg	31 - 137	19	8270D
		mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
0.52 (63 %R)	0.49 (59 %R) (7 RPD)	mg/kg	35 - 142	36	8270D
		mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
		mg/kg			8270D
44 %R	40 %R	mg/kg	25 - 121		8270D
46 %R	43 %R	mg/kg	24 - 113		8270D
65 %R	59 %R	mg/kg	19 - 122		8270D
47 %R	45 %R	mg/kg	23 - 120		8270D
51 %R	48 %R	mg/kg	30 - 115		8270D
58 %R	54 %R	mg/kg	18 - 137		8270D
	0.6 (%R) 0.46 (55 %R) 0.52 (63 %R) 44 %R 46 %R 65 %R 47 %R 51 %R	0.6 (%R) 0.5 (%R) (RPD) 0.46 (55 %R) 0.42 (51 %R) (8 RPD) 0.52 (63 %R) 0.49 (59 %R) (7 RPD) 44 %R 40 %R 46 %R 43 %R 65 %R 59 %R 47 %R 45 %R 51 %R 48 %R	mg/kg mg/kg 0.6 (%R) 0.5 (%R) (RPD) mg/kg mg/kg <td>mg/kg mg/kg 0.6 (%R) 0.5 (%R) (RPD) mg/kg mg/kg mg/kg</td> <td>0.6 (%R) 0.5 (%R) (RPD) mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 0.46 (55 %R) 0.42 (51 %R) (8 RPD) mg/kg mg/</td>	mg/kg mg/kg 0.6 (%R) 0.5 (%R) (RPD) mg/kg mg/kg mg/kg	0.6 (%R) 0.5 (%R) (RPD) mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 0.46 (55 %R) 0.42 (51 %R) (8 RPD) mg/kg mg/

Batch ID: 733518-38562/A042109AcidC1

Richmond Creamery | 1-0346-3

Client: The Johnson Company

QC Report

Client Designation:

QC Report							
Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Phenol	< 1	9 (36 %R)	9 (37 %R) (3 RPD)	ug/l	12 - 110	42	8270D
2-Chiorophenol	< 1	19 (76 %R)	19 (78 %R) (3 RPD)	ug/l	27 - 123	40	8270D
2,4-Dichlorophenol	< 1	19 (%R)	19 (%R) (RPD)	ug/i			8270D
2,4,5-Trichlorophenol	< 1	19 (%R)	19 (%R) (RPD)	ug/l			8270D
2,4,6-Trichlorophenol	< 1	18 (%R)	18 (%R) (RPD)	ug/l			8270D
Pentachlorophenol	< 5	17 (66 %R)	15 (61 %R) (8 RPD)	ug/l	9 - 103	50	8270D
2-Nitrophenol	< 1	18 (%R)	18 (%R) (RPD)	ug/ì			8270D
4-Nitrophenol	< 5	7 (30 %R)	6 (25 %R) (18 RPD)	ug/l	10 - 80	50	8270D
2,4-Dinitrophenol	< 5	13 (%R)	12 (%R) (RPD)	ug/i			8270D
2-Methylphenol	< 1	17 (%R)	17 (%R) (RPD)	ug/l			8270D
3/4-Methylphenol	< 1	16 (%R)	16 (%R) (RPD)	ug/l			8270D
2,4-Dimethylphenol	< 1	17 (%R)	18 (%R) (RPD)	ug/l			8270D
4-Chloro-3-methylphenol	< 1	17 (70 %R)	18 (70 %R) (0 RPD)	ug/l	23 - 97	42	8270D
4,6-Dinitro-2-methylphenol	< 5	14 (%R)	13 (%R) (RPD)	ug/l			8270D
Benzoic Acid	< 5			ug/l			8270D
2-Fluorophenol (surr)	53 %R	55 %R	55 %R	% Rec	21 - 110		8270D
Phenol-d6 (surr)	34 %R	36 %R	36 %R	% Rec	10 - 94		8270D
2,4,6-Tribromophenol (surr)	69 %R	86 %R	86 %R	% Rec	10 - 123		8270D

Batch ID: 733518-38708/A042109BaseN1

Client: The Johnson Company

QC Report

Client Designation:

			•					
	Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
N-	Nitrosodimethylamine	< 1	7 (%R)	7 (%R) (RPD)	ug/l			8270D
n-l	Nitroso-di-n-propylamine	< 1	21 (82 %R)	20 (81 %R) (1 RPD)	ug/l	41 - 116	38	8270D
n-l	Nitrosodiphenylamine	< 1	22 (%R)	24 (%R) (RPD)	ug/l			8270D
bis	(2-Chloroethyl)ether	< 1	20 (%R)	21 (%R) (RPD)	ug/l			8270D
bis	(2-chloroisopropyl)ether	< 1	20 (%R)	21 (%R) (RPD)	ug/l			8270D
bis	(2-Chloroethoxy)methane	< 1	19 (%R)	19 (%R) (RPD)	ug/l			8270D
1,3	3-Dichlorobenzene	< 1	16 (%R)	17 (%R) (RPD)	ug/l			8270D
1,4	1-Dichlorobenzene	< 1	17 (66 %R)	18 (72 %R) (9 RPD)	ug/l	36 - 97	28	8270D
1,2	2-Dichlorobenzene	< 1	17 (%R)	18 (%R) (RPD)	ug/l			8270D
1,2	2,4-Trichlorobenzene	< 1	16 (66 %R)	18 (72 %R) (9 RPD)	ug/l	39 - 98	28	8270D
2-(Chloronaphthalene	< 1	17 (%R)	18 (%R) (RPD)	ug/l			8270D
4-(Chlorophenyl-phenylether	< 1	17(%R)	18 (%R) (RPD)	ug/l			8270D
4-{	Bromophenyl-phenylether	< 1	17 (%R)	18 (%R) (RPD)	ug/l			8270D
He	exachloroethane	< 1	15 (%R)	16 (%R) (RPD)	ug/l			8270D
He	exachlorobutadiene	< 1	14 (%R)	14 (%R) (RPD)	ug/l			8270D
He	exachlorocyclopentadiene	< 5	12 (%R)	14 (%R) (RPD)	ug/l			8270D
He	exachlorobenzene	< 1	17 (%R)	18 (%R) (RPD)	ug/l			8270D
4-(Chloroaniline	< 1	20 (%R)	20 (%R) (RPD)	ug/l			8270D
2-1	Nitroaniline	< 5	21 (%R)	20 (%R) (RPD)	ug/l			8270D
3-1	Nitroaniline	< 1	18 (%R)	18 (%R) (RPD)	ug/l			8270D
4-1	Nitroaniline	< 1	18 (%R)	17 (%R) (RPD)	ug/l			8270D
Be	nzyl alcohol	< 1	15 (%R)	15 (%R) (RPD)	ug/l			8270D
Nit	robenzene	< 1	20 (%R)	21 (%R) (RPD)	ug/l			8270D
lsc	phorone	< 1	22 (%R)	22 (%R) (RPD)	ug/l			8270D
2,4	1-Dinitrotoluene	< 1	16 (66 %R)	16 (62 %R) (6 RPD)	ug/l	24 - 96	38	8270D
2,6	5-Dinitrotoluene	< 1	21 (%R)	20 (%R) (RPD)	ug/l			8270D
Be	nzidine	< 5	29 (%R)	32 (%R) (RPD)	ug/l			8270D
3,3	3'-Dichlorobenzidine	< 1	20 (%R)	22 (%R) (RPD)	ug/l			8270D
Рy	ridine	< 5	12 (%R)	13 (%R) (RPD)	ug/l			8270D
Az	obenzene	< 1	20 (%R)	22 (%R) (RPD)	ug/l			8270D
Са	Irbazole	< 1	20 (%R)	21 (%R) (RPD)	ug/l			8270D
Dir	methylphthalate	< 1	5 (%R)	5 (%R) (RPD)	ug/l			8270D
Die	ethylphthalate	< 1	13 (%R)	13 (%R) (RPD)	ug/l			8270D
Di-	-n-butylphthalate	< 5	18 (%R)	17 (%R) (RPD)	ug/l			8270D
	tylbenzylphthalate	< 1	11 (%R)	11 (%R) (RPD)	ug/l			8270D
bis	(2-Ethylhexyl)phthalate	< 5	19 (%R)	18 (%R) (RPD)	ug/l			8270D
Di-	n-octylphthalate	< 1	20 (%R)	20 (%R) (RPD)	ug/l			8270D
Dil	penzofuran	< 1	15 (%R)	16 (%R) (RPD)	ug/l			8270D

17 (70 %R)

16 (63 %R)

19 (76 %R)

17 (68 %R)

18 (73 %R)

18 (72 %R)

18 (73 %R)

< 0.1

< 0.1

< 0.1

< 0.1

< 0.1

< 0.1

< 0.1

Naphthalene

Acenaphthylene

Acenaphthene

Phenanthrene

Anthracene

Fluorene

2-Methylnaphthalene

19 (75 %R) (7 RPD)

17 (68 %R) (8 RPD)

20 (79 %R) (4 RPD)

18 (70 %R) (3 RPD)

19 (75 %R) (3 RPD)

19 (76 %R) (5 RPD)

19 (76 %R) (4 RPD)

ug/l 30 - 160

ug/l 30 - 160

ug/l 30 - 160

ug/l 46 - 118

ug/l 30 - 160

ug/l 30 - 160

ug/l 30 - 160

50

50

50

31

50

50

50

24

8270D

8270D

8270D

8270D

8270D

8270D

8270D

Batch ID: 733518-38708/A042109BaseN1

Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

QC Report

		•					
Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Fluoranthene	< 0.1	20 (79 %R)	20 (80 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Pyrene	< 0.1	17 (68 %R)	17 (67 %R) (1 RPD)	ug/l	26 - 127	31	8270D
Benzo[a]anthracene	< 0.1	20 (79 %R)	21 (83 %R) (5 RPD)	ug/l	30 - 160	50	8270D
Chrysene	< 0.1	19 (78 %R)	20 (81 %R) (4 RPD)	ug/l	30 - 160	50	8270D
Benzo[b]fluoranthene	< 0.1	19 (75 %R)	20 (82 %R) (9 RPD)	ug/l	30 - 160	50	8270D
Benzo[k]fluoranthene	< 0.1	19 (76 %R)	20 (78 %R) (3 RPD)	ug/l	30 - 160	50	8270D
Benzo[a]pyrene	< 0.1	18 (73 %R)	19 (77 %R) (5 RPD)	ug/l	30 - 160	50	8270D
Indeno[1,2,3-cd]pyrene	< 0.1	21 (84 %R)	23 (91 %R) (8 RPD)	ug/l	30 - 160	50	8270D
Dibenz[a,h]anthracene	< 0.1	21 (83 %R)	23 (91 %R) (9 RPD)	ug/l	30 - 160	50	8270D
Benzo[g,h,i]perylene	< 0.1	20 (81 %R)	22 (87 %R) (7 RPD)	ug/l	30 - 160	50	8270D
Nitrobenzene-D5 (surr)	77 %R	81 %R	85 %R	% Rec	35 - 114		8270D
2-Fluorobiphenyl (surr)	72 %R	68 %R	74 %R	% Rec	43 - 116		8270D
p-Terphenyl-D14 (surr)	80 %R	74 %R	74 %R	% Rec	33 - 141		8270D

eastern analytical, inc.

Batch ID: 733519-45831/S042209ABN1

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Acid and Base/Neutral Extractable Compounds QA/QC and Narrative Report

Matrix: Units: EPA Method:	Aqueous % RPD 8270D	Solid % RPD 8270D	Aqueous % 625(mod)
Acid Extractables Surrogates: 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	21-110 10-94 10-123	25-121 24-113 19-122	21-110 10-94 10-123
Base/Neutral Extractables Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl p-Terphenyl-d14	35-114 43-116 33-141	23-120 30-115 18-137	35-114 43-116 33-141
Acid Extractables Spikes: Phenol 2-Chlorophenol Pentachlorophenol 4-Nitrophenol 4-Chloro-3-methylphenol	12-110 42 27-123 40 9-103 50 10-80 50 23-97 42	26-90 35 25-102 50 17-109 47 11-114 50 26-103 33	
Base/Neutral Extractables Spikes: N-Nitroso-di-n-propylamine 1,4-Dichlorobenzene 1,2,4-Trichlorobenzene 2,4-Dinitrotoluene Acenaphthene Pyrene	41-116 38 36-97 28 39-98 28 24-96 38 46-118 31 26-127 31	41-126 38 28-104 27 38-107 23 28-89 47 31-137 19 35-142 36	

Samples were extracted and analyzed within holding time limits.

Instrumentation was tuned and calibrated in accordance with the method requirements.

The associated method blank(s) were free of contamination at the reporting limit.

The associated (MS) matrix spike(s) and/or (LCS) Laboratory Control Sample(s) met the above stated criteria. There were no exceptions in the analyses, unless noted.

DOR: Diluted out of calibration range.

MI: Matrix interference.

(mod): EPA method 3510C and 8270D employed.

Eastern Analytical, Inc. ID#: 78234

Client: The Johnson Company

Sample ID:	MW-9 2.5-3.0'	MW-6 15-15.5'	MW-5 3.5-4.0'	MW-3 1.5-2.0'					
Lab Sample ID:	78234.16	78234.17	78234.18	78234.19					
Matrix:	soil	soil	soil	soil					
Date Sampled:	4/16/09	4/16/09	4/16/09	4/16/09	Analytical		Date of		
Date Received:	4/17/09	4/17/09	4/17/09	4/17/09	Matrix	Units	Analysis	Method	Analyst
Aluminum	6900	11000	13000	7500	SolTotDry	mg/kg	4/22/09	6020	DS
Antimony	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Arsenic	3.5	2.8	4.9	43	SolTotDry	mg/kg	4/22/09	6020	DS
Barium	31	38	59	200	SolTotDry	mg/kg	4/22/09	6020	DS
Beryllium	< 0.5	< 0.5	< 0.5	1.2	SolTotDry	mg/kg	4/22/09	6020	DS
Cadmium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Chromium	12	17	19	11	SolTotDry	mg/kg	4/22/09	6020	DS
Copper	9.9	13	21	49	SolTotDry	mg/kg	4/22/09	6020	DS
Cobalt	5.4	7	. 8	5.7	SolTotDry	mg/kg	4/22/09	6020	DS
Iron	14000	20000	19000	15000	SolTotDry	mg/kg	4/22/09	6020	DS
Lead	9.2	5.6	25	72	SolTotDry	mg/kg	4/22/09	6020	DS
Manganese	290	440	310	330	SolTotDry	mg/kg	4/22/09	6020	DS
Mercury	< 0.1	< 0.1	0.2	< 0.1	SolTotDry	mg/kg	4/22/09	6020	DS
Nickel	13	15	21	12	SolTotDry	mg/kg	4/22/09	6020	DS
Selenium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Silver	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Thallium	< 0.5	< 0.5	< 0.5	1.0	SolTotDry	mg/kg	4/22/09	6020	DS
Vanadium	14	10	23	20	SolTotDry	mg/kg	4/22/09	6020	DS
Zinc	81	19	71	75	SolTotDry	mg/kg	4/22/09	6020	DS
Tin	0.49	0.28	2.6	4.2	SolTotDry	mg/kg	4/23/09	6020	DS

Eastern Analytical, Inc. ID#: 78234

Client: The Johnson Company

Sample ID:	MW-4 15.5-16.0'	MW-2 16-18'	MW-1 0-0.5'	MW-7 1.5-2.0'					
Lab Sample ID:	78234.2	78234.21	78234.22	78234.23					
Matrix:	soil	soil	soil	soil					
Date Sampled:	4/16/09	4/16/09	4/16/09	4/16/09	Analytical		Date of		
Date Received:	4/17/09	4/17/09	4/17/09	4/17/09	Matrix	Units	Analysis	Method	Analyst
Aluminum	18000	4600	5700	8800	SolTotDry	mg/kg	4/22/09	6020	DS
Antimony	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Arsenic	6.5	9.0	4.9	3.6	SolTotDry	mg/kg	4/22/09	6020	DS
Barium	93	14	31	35	SolTotDry	mg/kg	4/22/09	6020	DS
Beryllium	0.6	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Cadmium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Chromium	29	17	12	15	SolTotDry	mg/kg	4/22/09	6020	DS
Copper	25	15	11	12	SolTotDry	mg/kg	4/22/09	6020	DS
Cobalt	12	6.9	· 4.8	6.8	SolTotDry	mg/kg	4/22/09	6020	DS
Iron	26000	18000	13000	16000	SolTotDry	mg/kg	4/22/09	6020	DS
Lead	12	4.8	160	5.2	SolTotDry	mg/kg	4/22/09	6020	DS
Manganese	330	190	240	280	SolTotDry	mg/kg	4/22/09	6020	DS
Mercury	< 0.1	< 0.1	< 0.1	< 0.1	SolTotDry	mg/kg	4/22/09	6020	DS
Nickel	28	20	13	19	SolTotDry	mg/kg	4/22/09	6020	DS
Selenium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Silver	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Thallium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Vanadium	30	17	13	16	SolTotDry	mg/kg	4/22/09	6020	DS
Zinc	79	20	52	29	SolTotDry	mg/kg	4/22/09	6020	DS
Tin	0.43	< 0.2	1.6	0.29	SolTotDry	mg/kg	4/23/09	6020	DS

Eastern Analytical, Inc. ID#:

78234

Client: The Johnson Company

Sample ID:	MW-8 1.5-2.0'					
Lab Sample ID:	78234.24					
Matrix:	soil					
Date Sampled:	4/16/09	Analytical		Date of		
Date Received:	4/17/09	Matrix	Units	Analysis	Method	Analyst
Aluminum	8100	SolTotDry	mg/kg	4/22/09	6020	DS
Antimony	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Arsenic	7.0	SolTotDry	mg/kg	4/22/09	6020	DS
Barium	55	SolTotDry	mg/kg	4/22/09	6020	DS
Beryllium	0.6	SolTotDry	mg/kg	4/22/09	6020	DS
Cadmium	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Chromium	13	SolTotDry	ˈmg/kg	4/22/09	6020	DS
Copper	15	SolTotDry	mg/kg	4/22/09	6020	DS
Cobalt	6.8	SolTotDry	mg/kg	4/22/09	6020	DS
Iron	13000	SolTotDry	mg/kg	4/22/09	6020	DS
Lead	28	SolTotDry	mg/kg	4/22/09	6020	DS
Manganese	240	SolTotDry	mg/kg	4/22/09	6020	DS
Mercury	< 0.1	SolTotDry	mg/kg	4/22/09	6020	DS
Nickel	16	SolTotDry	mg/kg	4/22/09	6020	DS
Selenium	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Silver	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Thallium	< 0.5	SolTotDry	mg/kg	4/22/09	6020	DS
Vanadium	16	SolTotDry	mg/kg	4/22/09	6020	DS
Zinc	96	SolTotDry	mg/kg	4/22/09	6020	DS
Tin	2.0	SolTotDry	mg/kg	4/23/09	6020	DS

Eastern Analytical, Inc. ID#: 78234

Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

QC Report

	QC Rep		Date of		
Parameter Name	Blank	LCS	Units	Analysis	Method
Aluminum	< 100	400 (84 %R)	mg/kg	4/22/09	6020
Antimony	< 0.5	39 (97 %R)	mg/kg	4/22/09	6020
Arsenic	< 0.5	37 (92 %R)	mg/kg	4/22/09	6020
Barium	< 0.5	36 (90 %R)	mg/kg	4/22/09	6020
Beryllium	< 0.5	37 (92 %R)	mg/kg	4/22/09	6020
Cadmium	< 0.5	36 (90 %R)	mg/kg	4/22/09	6020
Chromium	< 0.5	36 (89 %R)	mg/kg	4/22/09	6020
Copper	< 0.5	36 (89 %R)	mg/kg	4/22/09	6020
Cobalt	< 0.5	36 (89 %R)	mg/kg	4/22/09	6020
Iron	< 100	400 (94 %R)	mg/kg	4/22/09	6020
Lead	< 0.5	38 (95 %R)	mg/kg	4/22/09	6020
Manganese	< 0.5	37 (92 %R)	mg/kg	4/22/09	6020
Mercury	< 0.1	0.4 (97 %R)	mg/kg	4/22/09	6020
Nickel	< 0.5	37 (92 %R)	mg/kg	4/22/09	6020
Selenium	< 0.5	37 (93 %R)	mg/kg	4/22/09	6020
Silver	< 0.5	8.7 (87 %R)	mg/kg	4/22/09	6020
Tin	< 0.2	40 (101 %R)	mg/kg	4/23/09	6020
Thallium	< 0.5	37 (93 %R)	mg/kg	4/22/09	6020
Vanadium	< 0.5	36 (89 %R)	mg/kg	4/22/09	6020
Zinc	< 0.5	36 (89 %R)	mg/kg	4/22/09	6020

Eastern Analytical, Inc. ID#: 78234

Batch ID:

Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

	MS/MSD		Report		Dat	e of Analy	sis
Parameter Name	Parent ID	Parent	Matrix Spike	MSD	Units	•	Method
Aluminum	78234.24	8100	16000 (75 %R)	16000 (75 %R) (0 RPD)	mg/kg	4/22/09	6020
Antimony	78234.24	< 0.5	1000 (104 %R)	1100 (106 %R) (2 RPD)	mg/kg	4/22/09	6020
Arsenic	78234.24	7.0	930 (93 %R)	940 (94 %R) (1 RPD)	mg/kg	4/22/09	6020
Barium	78234.24	55	1000 (96 %R)	1000 (95 %R) (1 RPD)	mg/kg	4/22/09	6020
Beryllium	78234.24	0.6	880 (88 %R)	870 (87 %R) (1 RPD)	mg/kg	4/22/09	6020
Cadmium	78234.24	< 0.5	950 (96 %R)	960 (97 %R) (1 RPD)	mg/kg	4/22/09	6020
Chromium	78234.24	13	810 (80 %R)	810 (80 %R) (0 RPD)	mg/kg	4/22/09	6020
Copper	78234.24	15	780 (77 %R)	780 (77 %R) (0 RPD)	mg/kg	4/22/09	6020
Cobalt	78234.24	6.8	800 (80 %R)	800 (80 %R) (0 RPD)	mg/kg	4/22/09	6020
Iron	78234.24	13000	23000 (86 %R)	23000 (88 %R) (2 RPD)	mg/kg	4/22/09	6020
Lead	78234.24	28	950 (93 %R)	970 (95 %R) (2 RPD)	mg/kg	4/22/09	6020
Manganese	78234.24	240	1000 (81 %R)	1000 (81 %R) (0 RPD)	mg/kg	4/22/09	6020
Mercury	78234.24	< 0.1	1.1 (105 %R)	1.1 (106 %R) (1 RPD)	mg/kg	4/22/09	6020
Nickel	78234.24	16	810 (80 %R)	800 (79 %R) (1 RPD)	mg/kg	4/22/09	6020
Selenium	78234.24	< 0.5	920 (93 %R)	940 (95 %R) (2 RPD)	mg/kg	4/22/09	6020
Silver	78234.24	< 0.5	870 (88 %R)	880 (88 %R) (0 RPD)	mg/kg	4/22/09	6020
Tin	78234.24	2.0	42 (100 %R)	42 (100 %R) (0 RPD)	mg/kg	4/23/09	6020
Thallium	78234.24	< 0.5	930 (94 %R)	950 (95 %R) (1 RPD)	mg/kg	4/22/09	6020
Vanadium	78234.24	16	810 (80 %R)	830 (82 %R) (2 RPD)	mg/kg	4/22/09	6020
Zinc	78234.24	96	860 (76 %R)	850 (76 %R) (0 RPD)		4/22/09	6020

Batch ID:

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

	Metals QA/	QC and Narrative Report	
QA/QC:	LCS	MS	MSD
Matrix:	Aqueous/Soil	Aqueous/Soil	Aqueous/Soil
Units:	%	%	%
EPA Method:	6010B/6020	6010B/6020	6010B/6020
Aluminum	80-120	75-125	75-125
Antimony	80-120	75-125	75-125
Arsenic	80-120	75-125	75-125
Barium	80-120	75-125	75-125
Beryllium	80-120	75-125	75-125
Boron	80-120	75-125	75-125
Cadmium	80-120	75-125	75-125
Calcium	80-120	75-125	75-125
Chromium	80-120	75-125	75-125
Chromium III	80-120	75-125	75-125
Chromium IV	80-120	75-125	75-125
Cobalt	80-120	75-125	75-125
Copper	80-120	75-125	75-125
Iron	80-120	75-125	75-125
Lead	80-120	75-125	75-125
Magnesium	80-120	75-125	75-125
Manganese	80-120	75-125	75-125
Mercury	80-120	75-125	75-125
Molybdenum	80-120	75-125	75-125
Nickel	80-120	75-125	75-125
Phosphorus	80-120	75-125	75-125
Potassium	80-120	75-125	75-125
Selenium	80-120	75-125	75-125
Silicon	80-120	75-125	75-125
Silver	80-120	75-125	75-125
Sodium	80-120	75-125	75-125
Thallium	80-120	75-125	75-125
Tin	80-120	75-125	75-125
Titanium	80-120	75-125	75-125
Vanadium	80-120	75-125	75-125
Zinc	80-120	75-125	75-125

Samples were analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria.

There were no exceptions in the analyses, unless noted below.

Eastern Analytical, Inc. ID#: 78234

Client: The Johnson Company

ID:	Sump		
Sample ID:	78234.15		
rix:	aqueous		
te Sampled:	4/14/09	Analytical Date of	
te Received:	4/17/09	Matrix Units Analysis Method	Ana
ntimony	< 0.001	AqTot mg/L 4/22/09 200.8	I
senic	0.012	AqTot mg/L 4/22/09 200.8	1
arium	0.033	AqTot mg/L 4/22/09 200.8	[
admium	< 0.001	AqTot mg/L 4/22/09 200.8	[
nromium	0.003	AqTot mg/L 4/22/09 200.8	I
ead	< 0.001	AqTot mg/L 4/22/09 200.8	(
anganese	0.016	AqTot mg/L 4/22/09 200.8	0
ercury	< 0.0001	AqTot mg/L 4/22/09 200.8	(
ckel	< 0.001	AqTot mg/L 4/22/09 200.8	[
lenium	< 0.001	AqTot mg/L 4/22/09 200.8	[
allium	< 0.001	AqTot mg/L 4/22/09 200.8	I

Eastern Analytical, Inc. ID#: 78234

Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

	QC Re	Da	sis		
Parameter Name	Blank	LCS	Units		Method
Antimony	< 0.001	1.1 (106 %R)	mg/L	4/22/09	200.8
Arsenic	< 0.001	0.97 (97 %R)	mg/L	4/22/09	200.8
Barium	< 0.001	0.96 (96 %R)	mg/L	4/22/09	200.8
Cadmium	< 0.001	0.98 (98 %R)	mg/L	4/22/09	200.8
Chromium	< 0.001	0.97 (97 %R)	mg/L	4/22/09	200.8
Lead	< 0.001	0.98 (98 %R)	mg/L	4/22/09	200.8
Manganese	< 0.005	0.99 (99 %R)	mg/L	4/22/09	200.8
Mercury	< 0.0001	0.0011 (107 %R)	mg/L	4/22/09	200.8
Nickel	< 0.001	0.97 (97 %R)	mg/L	4/22/09	200.8
Selenium	< 0.001	0.99 (99 %R)	mg/L	4/22/09	200.8
Thallium	< 0.001	0.99 (99 %R)	mg/L	4/22/09	200.8

Parameter Name	Matrix Spike	Matrix Spike Duplicate
Antimony	1.1 (108 %R)	1.1 (114 %R) (5 RPD)
Arsenic	2.6 (88 %R)	2.6 (86 %R) (2 RPD)
Barium	0.99 (99 %R)	1.0 (105 %R) (6 RPD)
Cadmium	1.1 (105 %R)	1.1 (108 %R) (3 RPD)
Chromium	0.99 (98 %R)	1.0 (104 %R) (6 RPD)
Lead	1.0 (102 %R)	1.1 (106 %R) (4 RPD)
Manganese	1.0 (100 %R)	1.1 (105 %R) (5 RPD)
Mercury	0.0012 (119 %R)	0.0012 (121 %R) (2 RPD)
Nickel	0.97 (96 %R)	1.0 (103 %R) (7 RPD)
Selenium	1.1 (114 %R)	1.1 (113 %R) (1 RPD)
Thallium	1.0 (102 %R)	1.1 (105 %R) (3 RPD)

Batch ID:

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

	Metals QA/G	QC and Narrative Report	
QA/QC:	LCS	MS	MSD
Matrix:	Aqueous	Aqueous	Aqueous
Units:	%	. %	. %
EPA Method:	200.7/200.8	200.7/200.8	200.7/200.8
Aluminum	85-115	70-130	70-130
Antimony	85-115	70-130	70-130
Arsenic	85-115	70-130	70-130
Barium	85-115	70-130	70-130
Beryllium	85-115	70-130	70-130
Boron	85-115	70-130	70-130
Cadmium	85-115	70-130	70-130
Calcium	85-115	70-130	70-130
Chromium	85-115	70-130	70-130
Cobalt	85-115	70-130	70-130
Copper	85-115	70-130	70-130
Iron	85-115	70-130	70-130
Lead	85-115	70-130	70-130
Magnesium	85-115	70-130	70-130
Manganese	85-115	70-130	70-130
Mercury	85-115	70-130	70-130
Molybdenum	85-115	70-130	70-130
Nickel	85-115	70-130	70-130
Phosphorus	85-115	70-130	70-130
Potassium	85-115	70-130	70-130
Selenium	85-115	70-130	70-130
Silicon	85-115	70-130	70-130
Silver	85-115	70-130	70-130
Sodium	85-115	70-130	70-130
Thallium	85-115	70-130	70-130
Tin	85-115	70-130	70-130
Titanium	85-115	70-130	70-130
Vanadium	85-115	70-130	70-130
Zinc	85-115	70-130	70-130

Samples were analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria.

There were no exceptions in the analyses, unless noted below.

		1000	Qu		Rec	STATE:	PRI	SIT.	· ፲	FAX:			AD	2	PA	٤		الآلا (00	7			L N	····	11	~			. 4.		Page	J
		>	Quote #:		REGULATORY PROGRAM: NPDES: RGP POTW STORMWATER OR		Project #:	SITE NAME:		104		\neg	بغ سا	COMPANY:	PROJECT MANAGER:	PRESERVATIVE: H-HCL; N-HNO;; S-H;SO;; Na-NaOH; M-MEOH	WW-WASTE WATER	TRIX: A-AIR;	Mur-6	MAR T	Mw-4	MIN-3	Mury	MW-1	MW-1	513-09	55-952-1	55-Ast. 1	SA		¢.		ge	_
	N eas			GWI	GRAM: NF	A M A	1-07		-12		- [-7	5+2		INAGER:	I-HCL; N-H	VASTE WATER	S-SOIL: GM	L N	11-121	13-141	-5/	12-131	15.5	3.5-4.0	1.5-2.0	-1 1.	N-1 0-	SAMPLE I.D.				o	ı
profession	iterm			P, OIL FUNC	DES:	ЧË,	0746.7	200	Jonari		- 1	ノーの		Nord N	Khund)) <u>- Hi</u> s		-GROUND V	7.5-9.01		14.	13-141	15	15.5-16.0	4.0	0	1.5-2.1	-0,5	Ō				l	Ν
professional laboratory services	eastern analytical, inc.			GWP, OIL FUND, BROWNFIELD OR OTHER:	RGP POTV	(F)		10	깐	- M			- (/ -!	- 5	3 al	04; Na-NaC		VATER; SW-1	 나(24	4/1	4	4/10	411	411	eilh -	1110	411	s=	*				
ory service	tical,		P0 #:	ld or Othe	V STORMWA	OTHER: _		1 Convery	M M M	•				(Jones	An	H; M-MEO		URFACE WA	4/15/12 /1	11111	(14/04)	14/08	4/14/05/	14/04	14/091	1.109/1	14/09/	4/14/09/	NDICATE	DATE / TIME	6	i		
				R.	ITER OR			r	A le			4	ŢĻ	4	×			TER: DW-D	0580	0451	1415	0511	1040	10905	09/15	1200	1045	1045	INDICATE BOTH Start & Finish Date / Time	TIME				
	25 CHEN								1.0.2	1	- = = = = = = = = = = = = = = = = = = =			5				RINKING W	√ √	V	v.	5			5	5	v	S	MATRIX	SEE BEL	ow)		80	
	ell Dri								- 2.1			000						ATER:	٢	r	r	r	9	r	\mathcal{T}	Ŧ	9	<u></u> ज	GRAB/*(Сомро	SITE			
(¥H)	25 CHENELL DRIVE CONCORD, NH 03301 TEL: 603.228.0525 1.800.287.0525 FAX: 603.228.4591 E-MAIL: CUSTOMER SERVICE@EAILARS.COM WWW.FAILARS.COM				.				1.20				/						X	X	X	X	X			X			524.2 BTEX (\$260B) 624	524.2 MTBE VTICs EDB DBCP		VOC	FIELDS REQUIRED.	
WHITE: ORIGINAL	CORD. 7	RELIN		RELIN	Ż	REIN		SAMPLER(S):	FRESC			7	KEPOI	QA/QC	DATE	-		_											8021B BTEX 8015B GRO	HALOS MEGRO M	AVPH	Õ	Requ	C H C
RIGIN	1H 0330	RELINQUISHED BY:		RELINOUISHED BY:		REI MOITICHEN		R(S):		5	z,		KEPORTING LEVEL		ZEE			<	X	X	X	X	X			X			82700 625 Abn a bi	SYTICs			IRED.	CHAIN-OF-CUSTODY RECORD
AL -		ED BY:		D BY:	$\vec{\gamma}$		1	A A			S C C	20			NEEDED:)						TPHBIOO LI	12				Č.
GRI	1: 603.3			10 4		-			AININ			Ċ)			-		-				5-11							608 PEST/PCB		AEPH	X 0C	PLEASE CIRCLE REQUESTED ANALYSIS	TSU;
GREEN: PROJECT MANAGER)	228.05	DATE:			phile:	Ŧ	-	۶		<u>-</u> -								+				Š							PEST 8081A OIL & GREASE 16	<u>PCB 8082</u> 64 tph I	664		CIRC	GO.
PROI	25 1			105	5	To,		2		No Fax	ELECTRONIC OPTIONS	IF YES:	PRELIMS: (YES/OR NO)	Repoi								570							TCLP 1311 A VOC PEST	BN METALS Herb				Z
ECT	.800.2	TIME:	1	「そうと	HINE		-		γ	E-N	RONI	FAX 0	(TE	ALILY								\vdash				ļ			DISSOLVED METALS		/)	METALS	REQU	
MAN	87.05		:	₹Ŋ) "	γ,	3 j	3		E-MAIL	ڰٛ	JO4	PK F	OPTI															TOTAL METALS (LI	·		S	JEST	RD
AGEF	25 7		0	J.) J	K	. r	E		PDF	IONS		0	ONS	[-		+											Br Cl F	S SPEC. CO	DN.		ED /	
2	- AX: 6	RECEIVED BY:		KERTINED RY.		Conner Dr.	Z	4		m			-					+											NO ₂ NO ₃	NO2/NO3 T. Alk.		Z	₽z	
	03.22	ED BY:		<u>ا</u> چ				NG DV		Equis				Æ	TERP	-													TKN NH3			NORGANICS	ALY'S	
	8.459			Ma		P		K T					k	<u>A</u>	Si			_											pH T. RES. CH			GD	IS.	
				110	2	Q		<u>}</u>						N				-											COD PHENOLS	TOC				
				K		22	,								<u></u>														Total Cyanide	TOTAL SULFIDE		S		
	CUSTO	FIELD			_				1	2) NOIE		7	OTHE	ME															REACTIVE SU	LFIDE			
,	OMER	Field Readings:	SUSPECTED CONTAMINATION:	Site History:			•	3	/	E T	S: (IE:)			OTHER METALS:	METALS:														F. COLIFORM	. Coli				
	SERVIO	NGS: _	ONTAM	, 			C	4	\$	С (Л	PECIAL	IEIAL		5				_						L					ENTEROCOCCI HETEROTROPHIC PL			RO		
(CE@E/		INATION					1		y Z	DETECT				8 RCRA			_				 		\times	ļ		X	\times	8260B	Petrol r	ing	9		
	VILABS		Ī							$\langle v \rangle$		VISSULVED METALS FIELD FILTERED!			13 PP			+		_		jk j	}		X		ア	\times	AY OF 68	HSIM			à	1
_										JANK RA	ALLZ' BIL	, ,			PP	-		+				ß		1	6.1	0.1	0					Ð	18234	>
	~~~									カチ	LING IN	.   Ē	•		Fe, Mn	-			$\frac{\gamma}{c}$		$\mathcal{L}$	Y	$\frac{\varphi}{\varphi}$	1 8	<i>←</i> →	у У		<u> </u>	# OF CONTAINERS				4	•
										F	FO, IF D	. No	:		N.		j,		いない	SHULT	ENDE (	2 JANZ	1465	27956	3	hhbt P	guver.	545	6H / 연					
											NOTES: (TE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT)				PB, CU			-	1	2	1	4 de 24	41	6		44	å	2	Notes MeOH Vial #			c	I	
-	2	ı	1	1							J	· 1			<u>ر</u>	L					I			<u> </u>	l	l				·····		U		

S

3

	1 1 a pastern and	QUOTE #:	GWP, OIL FUND, BROWNFIELD OR OTHER:		5-925	chowed	2	-	Anto Inc	1-1-2 00	COMPANY: The Theory	· //O	PRESERVATIVE: H-HCL: N-HNO;: S-H-SO;: Na-NaOH: M-MEOH	MATRIX: A-AIR; S-SOIL; GW-GROUND WATER; SW-SUNFACE WATER; DW-DRINKING WATER;	MW-4 15.5-16.0	MW-3 1.5-2.0	MW-5 3.3-4.0	MW-6 12-15.5	2	8	14 Trip Flank	13 MW-9 4.5.5.01	12 MW-8 7-7.5'	11 MW-7 6.5-7.01	SAMPLE I.D.			0	₽ 9 1 7
	analytical inc actions	P0 #:	POT W STORMWATER OR	VT OTHER:		54	Min @ Trancil	EXT.:.	STATE: VT	2.x 60D	- 1		a-NaOH. M-MEOH	SW-SURFACE WATER; DW-DRINKING V	4/16/09/11310 2	4/16/04/1450 S	4/16/09/1420 S	4/16/09/1400 5	< 1000 13=0 S	4/19/09/09/10/W	3/10/05/ (1000 W	<del> </del>	1255	4/15/09/0950 5	TIF COMPOSITE, (S) INDICATE BOTH START & FINISH DATE / TIME			B	
(WHITE: ORIGINAL	RELINQUISHED BY:		RELINQUISHED BY:	RELINQUISHED	SAMPLER(S): -		CON PRESUMPT	K	0360× A	QA/QC REPORTING LEVEL	DATE NEEDED:			ATER;	<u>٢</u>	<u>٢</u>	9	<u>٩</u>	9	G X V	۶ X	9 X	۶ ×	9 X	8260B) 624 1, 4 Dioxane ED 8021B BTEX 8015B GRO ME	OMPOSITE 4.2 MTBE ONLY TTICS B DBCP HALOS GRO MAVPH SYTICS	VOC	BOLD FIELDS REQUIRED.	CHAIN
Ē	SHED BY: DATE:		14 (an 4/17/09 SHED BY: DATE:	SHED BY: ULL + U	Hun way		PRESUMPTIVE CERTAINTY NO FAI		0		EEDED: Amales														ABN A BN TPH8100 LI 8015B DRO ME 608 PEST/PCB PEST 8081A PC OIL & GREASE 1664 TCLP 1311 ABN	PAH L2 DRO MAEPH B 8082 TPH 1664	SVOC TCLP ME	D. PLEASE CIRCLE RE	CHAIN-OF-CUSTODY RECORD
603.228.0525   1.800.287.0525   FAX: 603.2 GREEN: Project Manager)	TIME: RECEIVED BY:		1+25 7 Yell Alver	TIME: RECEIVED BY:	N Ner		NO FAX E-MALL PDF EQUIS	ELECTRONIC OPTIONS	FAX OR PDF	REPORTING OPTIONS ICE?					X	X	7	Χ.	X						BR CI F NO ₂ NO ₃ NC BOD CBOD	BELOW)	TALS	REQUESTED ANALYSIS	ECORD
28,4591   E-Mail:: Custome	Field Readings:		Neilley SITE HISTORY:	am		Toma	60	Notes: (1	Dissolve	? (YES) NO OTHER METALS:	P°C METALS:														REACTIVE CYANIDE FLASHPOINT IGNITA T. COLIFORM E. C	TOC TAL SULFIDE REACTIVE SULFIDE BILITY	NORGANICS	SIS.	
SR_SERVICE@EAILABS.COM	ADINGS:	Suspected Contamination:	TORY:		ri matis	34	HUD JON WIS OF PAH	NOTES: (IE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT)	DISSOLVED METALS FIELD FILTERED?	fetals:	8 RCRA I3 PP					1				× ×	q	X	X		F. COLIFORM ENTEROCOCCI HETEROTROPHIC PLATE 8270 PA 8270 PA 82	Count H SI M colem inforty tals		10204	78021
NWW.EAILABS.COM							PAH	ing Info, If Different)	Yes No		Fe, Mn Pb, Cu				]	-	\	1		1	1	00086 7		BSULC 2	MEOH VAL #			Ţ	-

										 	24	$\underline{C}_{\underline{C}}$	22	5	) 	
Professional I		REGULATORY PROGRAM: NPDES: RGP POTW STORMWATER OR GWP, OIL FUND, BROWNFIELD OR OTHER: QUOTE #:PO #:	STATE: NH MA ME (	Inter Richmand	FINE (402) 229-46	to stat	PROJECT MANAGER: RUMA	Preservative: H-HCL; N-HNO3; S-H3SO4; Na-NaOH; M-MEOH	Waster I has f fair fill former Mine		Mw-9 1.5-20	MW-7 1.5-2.0	MW-1 0-0.5	MW-2 16-18		Page of
professional laboratory services		<b>NPDES:</b> RGP POTW STORHWATER OR GWP, OIL FUND, BROWNFIELD OR OTHER:PO #:	VT OTHER:	(rone cy	100	Sty Sty 600	and Very	r; yw-jurface water; uw-jurinkin Na-NaOH; M-MEOH			1/10/09/1005-0	16	4/16/04/1545	1/10/120	PLING ITIME MPOSITE, TE BOTH & FINISH & TIME	
IENELL				1.(01			-	WAIER		 	<u>ک</u> ج	50	$\frac{1}{2}$	- V G	MATRIX (SEE BELOW	
25 CHENELL DRIVE   CONCORD, NH 03301   TEL: 603.228.0525   1.800.287.0525   FAX: 603.228.4591   E-MAIL: CUSTOMER_SERVICE@EAILABS.COM   WWW.EAILABS.COM (WHITE: ORIGINAL GREEN: PROJECT MANAGER)	RELINQUISHED BY: DATE: TIME: RECEIVED BY:	- 4/17/09 14	-4/12/07 1137		TE MUNIC OPTIONS	SGO A B C IF YES: FAX OX PDF	DATE NEEDED: J. W. CO								S24.2         S24.2       BTEX       S24.2       MTBE ONLY         8260B       624       VTICs       I, 4         J, 4       DIOXAME       EDB       DBCP         8021B       BTEX       HALOS         8015B       GRO       MEGRO       MAYPH         8270C       625       SYTICs         ABN       A       BN       PAH         TPHB100       L1       L2         8015B       DRO       MEDRO       MAEPH         608       PEST/PCB       PEST       8082         01L       & GREASE       1664       TPH 1664         TCLP       1311       ABN       METALS         VOC       PEST       HEAB       DISSOLVED METALS (LIST BELOW)         TOTAL METALS       (LIST BELOW)       TOTAL METALS (LIST BELOW)         TS       TSS       TDS       SPEC. CON.         BR       CI       F       SO4         NO3       NO3/NO3       NO3/NO3         BOD       CBOD       T. ALX.         TKN       NH3       T. PHOS.         PH       T. RES. CHLONINE       COD         COD       PHENOLS       TOC	CHAIN-OF-CUSTODY RECORD BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.
CUSTOMER_SERVICE@EAILABS.COM	FIELD READINGS:	SITE HISTORY:			NOTES: (IE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT)	Other Metals: Dissolved Metals Field Filtered? Yes No	METALS: 8 RCRA 13 PP FE, MN PB, CU					×.	7	×	REACTIVE CVANIDE REACTIVE SULFIDE FLASHPOINT IGNITABILITY T. COLIFORM E. COLI F. COLIFORM E. COLI F. COLIFORM ENTEROCOCCI HETEROTROPHIC PLATE COUNT PPCC MOLALS # OF CONTAINERS # OF CONTAINERS # S	

Rhonda Kay The Johnson Company 100 State Street Montpelier, VT 05602 eastern analytical

professional laboratory services



Subject: Laboratory Report

Eastern Analytical, Inc. ID: Client Identification: Date Received: 78343 Richmond Creamery | 1-0346-3 4/22/2009

Dear Ms. Kay:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. (EAI) certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.eailabs.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply throughout all EAI reports:

Solid samples are reported on a dry weight basis, unless otherwise noted

- <: "less than" followed by the detection limit
- TNR: Testing Not Requested
- ND: None Detected, no established detection limit
- RL: Reporting Limits
- %R: % Recovery

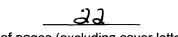
Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269) and Vermont (VT1012).

This report package contains the following information: Sample Conditions summary, Analytical Results/Data and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

#### Analytical Deviation & QA/QC Documentation:

Quality Control Samples associated with this project are included in this report. At a minimum, a Method Blank and Laboratory Control Sample (LCS) are reported. Matrix Spikes and Duplicates are reported where applicable. Deviations are narrated on the QC pages.

If you have any questions regarding the results contained within, please feel free to directly contact me, or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.


We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

on une D

Lorraine Olashaw, Lab DirectorDateEastern Analytical, Inc.25 Chenell Drive, Concord, NH 2384

Date



# of pages (excluding cover letter)

www.eailabs.com



Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Temperature upon receipt (°C): 3

Received on ice or cold packs (Yes/No): Y

Lab ID	Sample ID	Date Received	Date Sampled	Sample % Dry Matrix Weigh	t Exceptions/Comments (other than thermal preservation)
78343.01	MW-1	4/22/09	4/20/09	aqueous	Adheres to Sample Acceptance Policy
78343.02	MW-2	4/22/09	4/20/09	aqueous	Adheres to Sample Acceptance Policy
78343.03	MW-5	4/22/09	4/20/09	aqueous	Adheres to Sample Acceptance Policy
78343.04	MW-7	4/22/09	4/20/09	aqueous	Adheres to Sample Acceptance Policy
78343.05	MW-9	4/22/09	4/20/09	aqueous	Adheres to Sample Acceptance Policy
78343.06	MW-3	4/22/09	4/20/09	aqueous	Adheres to Sample Acceptance Policy
78343.07	MW-4	4/22/09	4/20/09	aqueous	Adheres to Sample Acceptance Policy
78343.08	MW-Dup	4/22/09	4/20/09	aqueous	Adheres to Sample Acceptance Policy
78343.09	MW-6	4/22/09	4/20/09	aqueous	Adheres to Sample Acceptance Policy
78343.1	MW-8	4/22/09	4/20/09	aqueous	Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitibility, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater : Inorganics, 19th Edition, 1995; Microbiology, 20th Edition, 1998
 3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 2nd edition, 1992



Eastern Analytical, Inc. ID#: 78343

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

	-						
Sample ID:	MW-2	MW-5	MW-7	MW-9	MW-3	MW-4	MW-Dup
Lab Sample ID:	78343.02	78343.03	78343.04	78343.05	78343.06	78343.07	78343.08
Matrix:	aqueous						
Date Sampled:	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09
Date Received:	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09
Units:	ug/l						
Date of Analysis:	4/24/09	4/24/09	4/24/09	4/24/09	4/24/09	4/24/09	4/24/09
Analyst:	BAM						
Method:	8260B						
Dilution Factor:	1	1	1	1	1	1	1
Dichlorodifluoromethane	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Chloromethane	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Vinyl chloride	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Bromomethane Chloroethane	< 2 < 5						
Trichlorofluoromethane	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Diethyl Ether	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Acetone	< 10	< 10	< 10	< 10	< 10	< 10	< 10
1,1-Dichloroethene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Methylene chloride	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Carbon disulfide	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Methyl-t-butyl ether(MTBE)	< 5	< 5	< 5	< 5	< 5	< 5	< 5
trans-1,2-Dichloroethene	< 2	< 2	< 2	< 2	< 2	< 2	< 2
1,1-Dichloroethane	< 2	< 2	< 2	< 2	< 2	< 2	< 2
2,2-Dichloropropane	< 2	< 2	< 2	< 2	< 2	< 2	< 2
cis-1,2-Dichloroethene	< 2	< 2	< 2	< 2	< 2	< 2	< 2
2-Butanone(MEK)	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Bromochloromethane	< 2	< 2	< 2 < 10	< 2 < 10	< 2 < 10	< 2 < 10	< 2
Tetrahydrofuran(THF) Chloroform	< 10 < 2	< 10 < 2	< 2	< 10	< 2	< 10	<pre>10 &lt; 10 &lt; 2</pre>
1,1,1-Trichloroethane	< 2	< 2	< 2	<2	< 2	< 2	< 2
Carbon tetrachloride	< 2	< 2	< 2	< 2	< 2	< 2	< 2
1,1-Dichloropropene	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Benzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-Dichloroethane	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Trichloroethene	< 2	< 2	< 2	< 2	< 2	< 2	< 2
1,2-Dichloropropane	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Dibromomethane	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Bromodichloromethane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
4-Methyl-2-pentanone(MIBK)	< 10	< 10	< 10	< 10	< 10	< 10	< 10
cis-1,3-Dichloropropene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Toluene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,1,2-Trichloroethane	< 2	< 2	< 2	< 2	< 2	< 2	< 2
2-Hexanone	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Tetrachloroethene	< 2 < 2	< 2					
1,3-Dichloropropane Dibromochloromethane	< 2	< 2 < 2	< 2	< 2 < 2	< 2	< 2	< 2 < 2
Dibromocnioromethane 1,2-Dibromoethane(EDB)	< 2 < 1	< 1	< 1	< 2 < 1	< 1	< 1	< 2
Chlorobenzene	< 2	< 2	< 2	< 2	< 2	< 2	< 2
1,1,1,2-Tetrachloroethane	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Ethylbenzene	< 1	< 1	< 1	<1	<1	< 1	<1
mp-Xylene	2	< 1	< 1	< 1	< 1	< 1	<1
o-Xylene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
				•	•	•	
Styrene	< 1	< 1	< 1	< 1	< 1	< 1	< 1

eastern analytical, inc.

2



Eastern Analytical, Inc. ID#: 78343

Client: The Johnson Company

			U		21		
Sample ID:	MW-2	MW-5	MW-7	MW-9	MW-3	MW-4	MW-Dup
Lab Sample ID:	78343.02	78343.03	78343.04	78343.05	78343.06	78343.07	78343.08
Matrix:	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous
Date Sampled:	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09
Date Received:	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09
Units:	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/i
Date of Analysis:	4/24/09	4/24/09	4/24/09	4/24/09	4/24/09	4/24/09	4/24/09
Analyst:	BAM	BAM	BAM	BAM	BAM	BAM	BAM
Method:	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Dilution Factor:	1	1	1	1	1	1	1
IsoPropylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Bromobenzene	< 2	< 2	< 2	< 2	< 2	< 2	< 2
1,1,2,2-Tetrachloroethane	< 2	< 2	< 2	< 2	< 2	< 2	< 2
1,2,3-Trichloropropane	< 2	< 2	< 2	< 2	< 2	< 2	< 2
n-Propylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	
2-Chlorotoluene	< 2	< 2	< 2	< 2	< 2	< 2	< 2
4-Chlorotoluene	< 2	< 2 < 1	< 2 < 1	< 2 < 1	< 2 < 1	< 2 < 1	< 2 < 1
1,3,5-Trimethylbenzene	<b>30</b> < 1	< 1	< 1	< 1	< 1	< 1	< 1
tert-Butylbenzene 1,2,4-Trimethylbenzene	16	< 1	< 1	< 1	< 1	<1	< 1
sec-Butylbenzene	< 1	< 1	< 1	<1	< 1	< 1	< 1
1,3-Dichlorobenzene	<1	< 1	< 1	< 1	< 1	< 1	< 1
p-Isopropyltoluene	1	< 1	< 1	< 1	< 1	< 1	< 1
1.4-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
n-Butylbenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-Dibromo-3-chloropropane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-Trichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Naphthalene	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2,3-Trichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
4-Bromofluorobenzene (surr)	97 %R	94 %R	93 %R	93 %R	93 %R	92 %R	94 %R
1,2-Dichlorobenzene-d4 (surr)	105 %R	106 %R	107 %R 95 %R	107 %R	107 %R 94 %R	108 %R 93 %R	107 %R 95 %R
Toluene-d8 (surr)	96 %R	94 %R	30 %K	95 %R	34 %K	93 %K	30 %K



#### Eastern Analytical, Inc. ID#: 78343

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	MW-6	MW-8	
Lab Sample ID:	78343.09	78343.1	
Matrix:	aqueous		
	•	aqueous	
Date Sampled:	4/20/09	4/20/09	
Date Received:	4/22/09	4/22/09	
Units:	ug/l	ug/l	
Date of Analysis:	4/24/09	4/24/09	
Analyst:	BAM	BAM	
Method:	8260B	8260B	
Dilution Factor:	1	1	
Dichlorodifluoromethane	< 5	< 5	
Chloromethane	< 2	< 2	
Vinyl chloride	< 2	< 2	
Bromomethane	< 2	< 2	
Chloroethane	< 5	< 5	
Trichlorofluoromethane	< 5	< 5	
Diethyl Ether	< 5 < 10	< 5	
Acetone 1.1-Dichloroethene	< 10	< 10 < 1	
Methylene chloride	< 5	< 5	
Carbon disulfide	< 5	< 5	
Methyl-t-butyl ether(MTBE)	< 5	< 5	
trans-1,2-Dichloroethene	< 2	< 2	
1,1-Dichloroethane	< 2	< 2	
2,2-Dichloropropane	< 2	< 2	
cis-1,2-Dichloroethene	< 2	< 2	
2-Butanone(MEK) Bromochloromethane	< 10 < 2	< 10 < 2	
Tetrahydrofuran(THF)	< 10	< 10	
Chloroform	< 2	< 2	
1,1,1-Trichloroethane	< 2	< 2	
Carbon tetrachloride	< 2	< 2	
1,1-Dichloropropene	< 2	< 2	
Benzene	< 1	< 1	
1,2-Dichloroethane	< 2	< 2	
Trichloroethene	< 2	< 2	
1,2-Dichloropropane	< 2	< 2	
Dibromomethane Bromodichloromethane	< 2 < 1	< 2 < 1	
4-Methyl-2-pentanone(MIBK)	< 10	< 10	
cis-1,3-Dichloropropene	< 10	< 10	
Toluene	< 1	< 1	
trans-1,3-Dichloropropene	< 1	< 1	
1,1,2-Trichloroethane	< 2	< 2	
2-Hexanone	< 10	< 10	
Tetrachloroethene	< 2	< 2	
1,3-Dichloropropane	< 2	< 2	
Dibromochloromethane	< 2	< 2	
1,2-Dibromoethane(EDB)	< 1	<1	
Chlorobenzene 1,1,1,2-Tetrachloroethane	< 2 < 2	< 2 < 2	
Ethylbenzene	< 2	< 2	
mp-Xylene	<1	< 1	
o-Xylene	< 1	< 1	
Styrene	< 1	< 1	
Bromoform	< 2	< 2	

#### Eastern Analytical, Inc. ID#: 78343

Client: The Johnson Company

Sample ID:	MW-6	MW-8
Lab Sample ID:	78343.09	78343.1
Matrix:	aqueous	aqueous
Date Sampled:	4/20/09	4/20/09
Date Received:	4/22/09	4/22/09
Units:	ug/l	ug/l
Date of Analysis:	4/24/09	4/24/09
Analyst:	BAM	BAM
Method:	8260B	8260B
Dilution Factor:	1	1
IsoPropylbenzene	< 1	< 1
Bromobenzene	< 2	< 2
1,1,2,2-Tetrachloroethane	< 2	< 2
1,2,3-Trichloropropane	< 2 < 1	< 2 < 1
n-Propylbenzene 2-Chlorotoluene	< 2	< 2
4-Chlorotoluene	<2	< 2
1,3,5-Trimethylbenzene	< 1	< 1
tert-Butylbenzene	< 1	< 1
1,2,4-Trimethylbenzene	< 1	< 1
sec-Butylbenzene	< 1	< 1
1,3-Dichlorobenzene	< 1	< 1
p-Isopropyltoluene	< 1	< 1
1,4-Dichlorobenzene	< 1	< 1
1,2-Dichlorobenzene	< 1	< 1
n-Butylbenzene	< 1	< 1
1,2-Dibromo-3-chloropropane	< 1	< 1
1,2,4-Trichlorobenzene Hexachlorobutadiene	< 1 < 1	< 1 < 1
	< 1 < 5	< 5
Naphthalene 1,2,3-Trichlorobenzene	< 1	< 1
4-Bromofluorobenzene (surr)	93 %R	93 %R
1,2-Dichlorobenzene-d4 (surr)	107 %R	106 %R
Toluene-d8 (surr)	94 %R	93 %R

### Eastern Analytical, Inc. ID#: 78343

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

GC/MS analysis was employed for the determination of the 8021B compound list.

÷.,

# LABORATORY REPORT

### Eastern Analytical, Inc. ID#: 78343

### **Batch ID:**

		QC Report		Date of Analysis			
		-					
Parameter Name	Blank	LCS	LCS Dup	Units	· · · · · · · · · · · · · · · · · · ·	Method	
Dichlorodifluoromethane	< 5			ug/l	4/24/09	8260	
Chloromethane	< 2			ug/i	4/24/09	8260	
Vinyl chloride	< 2			ug/l	4/24/09	8260	
Bromomethane	< 2			ug/l	4/24/09	8260	
Chloroethane	< 5			ug/l	4/24/09	82601	
Trichlorofluoromethane	< 5			ug/l	4/24/09	8260	
Diethyl Ether	< 5			ug/l	4/24/09	8260	
Acetone	< 10			ug/l	4/24/09	8260	
1,1-Dichloroethene	< 1	20 (101 %R)	21 (105 %R) (4 RPD)	ug/l	4/24/09	8260	
tert-Butyl Alcohol (TBA)	< 30			ug/l	4/24/09	8260	
Methylene chloride	< 5			ug/l	4/24/09	8260	
Carbon disulfide	< 5			ug/l	4/24/09	8260	
Methyl-t-butyl ether(MTBE)	< 5			ug/l	4/24/09	8260	
Ethyl-t-butyl ether(ETBE)	< 5			ug/l	4/24/09	82608	
Isopropyl ether(DIPE)	< 5			ug/l	4/24/09	8260	
tert-amyl methyl ether(TAME)	< 5			ug/l	4/24/09	82608	
trans-1,2-Dichloroethene	< 2			ug/l	4/24/09	8260	
1,1-Dichloroethane	< 2			ug/l	4/24/09	8260	
2,2-Dichloropropane	< 2			ug/l	4/24/09	8260	
cis-1,2-Dichloroethene	< 2			ug/l	4/24/09	8260	
2-Butanone(MEK)	< 10			ug/l	4/24/09	8260	
Bromochloromethane	< 2			ug/l	4/24/09	8260	
Tetrahydrofuran(THF)	< 10			ug/l	4/24/09	82608	
Chloroform	< 2			ug/l	4/24/09	82608	
1,1,1-Trichloroethane	< 2			ug/l	4/24/09	8260E	
Carbon tetrachloride	< 2			ug/l	4/24/09	8260E	
1,1-Dichloropropene	< 2			ug/l	4/24/09	8260E	
Benzene	< 1	18 (91 %R)	19 (94 %R) (3 RPD)	ug/l	4/24/09	82608	
1,2-Dichloroethane	< 2			ug/l	4/24/09	8260E	
Trichloroethene	< 2	20 (98 %R)	21 (103 %R) (5 RPD)	ug/l	4/24/09	8260E	
1,2-Dichloropropane	< 2			ug/l	4/24/09	8260E	
Dibromomethane	< 2			ug/l	4/24/09	8260E	
Bromodichloromethane	< 0.5			ug/l	4/24/09	8260E	
4-Methyl-2-pentanone(MIBK)	< 10			ug/l	4/24/09	8260E	
cis-1,3-Dichloropropene	< 2			ug/i	4/24/09	8260E	
Toluene	< 1	17 (87 %R)	18 (90 %R) (3 RPD)	ug/l	4/24/09	8260E	
rans-1,3-Dichloropropene	< 2			ug/l	4/24/09	8260E	
1,1,2-Trichloroethane	< 2			ug/l	4/24/09	8260E	
2-Hexanone	< 10			ug/l	4/24/09	8260E	
<b>Fetrachloroethene</b>	< 2			ug/l	4/24/09	8260E	
1,3-Dichloropropane	< 2			ug/i	4/24/09	8260E	
Dibromochloromethane	< 2			ug/i	4/24/09	8260E	
1,2-Dibromoethane(EDB)	< 2			ug/l	4/24/09	8260E	
Chlorobenzene	< 2	19 (95 %R)	19 (97 %R) (2 RPD)	ug/l	4/24/09	8260E	

eastern analytical, inc.

Phone: (603) 228-0525

7

### Eastern Analytical, Inc. ID#: 78343

### Batch ID:

Client: The Johnson Company

			Date of Analysis			
Parameter Name	Blank	LCS	LCS Dup	Units		Method
1,1,1,2-Tetrachloroethane	< 2			ug/l	4/24/09	8260B
Ethylbenzene	< 1			ug/i	4/24/09	8260B
mp-Xylene	< 1			ug/l	4/24/09	8260B
o-Xylene	< 1			ug/l	4/24/09	8260B
Styrene	< 1			ug/l	4/24/09	8260B
Bromoform	< 2			ug/l	4/24/09	8260B
IsoPropylbenzene	< 1			ug/l	4/24/09	8260B
Bromobenzene	< 2			ug/l	4/24/09	8260B
1,1,2,2-Tetrachloroethane	< 2			ug/l	4/24/09	8260B
1,2,3-Trichloropropane	< 2			ug/l	4/24/09	8260B
n-Propylbenzene	< 1			ug/l	4/24/09	8260B
2-Chlorotoluene	< 2			ug/l	4/24/09	8260B
4-Chlorotoluene	< 2			ug/l	4/24/09	8260B
1,3,5-Trimethylbenzene	< 1			ug/l	4/24/09	8260B
tert-Butylbenzene	< 1			ug/l	4/24/09	8260B
1,2,4-Trimethylbenzene	< 1			ug/l	4/24/09	8260B
sec-Butylbenzene	< 1			ug/l	4/24/09	8260B
1,3-Dichlorobenzene	< 1			ug/l	4/24/09	8260B
p-isopropyltoluene	< 1			ug/l	4/24/09	8260B
1,4-Dichlorobenzene	< 1			ug/l	4/24/09	8260B
1,2-Dichlorobenzene	< 1			ug/l	4/24/09	8260B
n-Butylbenzene	< 1			ug/l	4/24/09	8260B
1,2-Dibromo-3-chloropropane	< 2			ug/l	4/24/09	8260B
1,3,5-Trichlorobenzene	< 1			ug/l	4/24/09	8260B
1,2,4-Trichlorobenzene	< 1			ug/l	4/24/09	8260B
Hexachlorobutadiene	< 0.5			ug/l	4/24/09	8260B
Naphthalene	< 5			ug/l	4/24/09	8260B
1,2,3-Trichlorobenzene	< 1			ug/l	4/24/09	8260B
4-Bromofluorobenzene (surr)	94 %R	96 %R	97 %R	% Rec	4/24/09	8260B
1,2-Dichlorobenzene-d4 (surr)	106 %R	102 %R	104 %R	% Rec	4/24/09	8260B
Toluene-d8 (surr)	95 %R	95 %R	95 %R	% Rec	4/24/09	8260B



Batch ID:

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

#### Volatile Organic Compounds QC limits and Narrative Summary

Matrix: Units: EPA Method	Solid % 8260B	RPD %	Aqueous % 8260B	RPD %
Surrogate Recovery 4-Bromofluorobenzene 1,2-Dichlorobenzene-D4 Toluene-d8	74-121 80-120 70-130		86-115 80-120 70-130	
Matrix Spike Recovery 1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	59-172 62-137 66-142 59-139 60-133	30° 30 30 30 30	61-145 71-120 76-127 76-125 75-130	20 20 20 20 20

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.

# LABORATORY REPORT

Eastern Analytical, Inc. ID#:

#### Client: The Johnson Company

78343

Client Designation: Richmond Creamery | 1-0346-3 _____

Sample ID:	MW-2	MW-5	MW-7	MW-9	MW-Dup	MW-6	MW-8
Lab Sample ID:	78343.02	78343.03	78343.04	78343.05	78343.08	78343.09	78343.1
Matrix:	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous
	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09
Date Sampled:							
Date Received:	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09
Units:	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Date of Extraction/Preparation	4/23/09	4/23/09	4/23/09	4/23/09	4/23/09	4/23/09	4/23/09
Date of Analysis:	5/4/09	5/4/09	5/4/09	5/4/09	5/4/09	5/4/09	5/4/09
Analyst:	BML	BML	BML	BML	BML	BML	BML
Method:	8270D	8270D	8270D	8270D	8270D	8270D	8270D
Dilution Factor:	1	1	1	1	1	1	1
Phenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Chlorophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2,4-Dichlorophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2,4,5-Trichlorophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2,4,6-Trichlorophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Pentachlorophenol	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2-Nitrophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1
4-Nitrophenol	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2,4-Dinitrophenol	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2-Methylphenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1
3/4-Methylphenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2,4-Dimethylphenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1
4-Chloro-3-methylphenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1
4,6-Dinitro-2-methylphenol	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Benzoic Acid	< 5	< 5	< 5	< 5	< 5	< 5	< 5
N-Nitrosodimethylamine	< 1	< 1	< 1	< 1	< 1	< 1	< 1
n-Nitroso-di-n-propylamine	< 1	< 1	< 1	< 1	< 1	< 1	< 1
n-Nitrosodiphenylamine	< 1	< 1	< 1	< 1	< 1	< 1	< 1
bis(2-Chloroethyl)ether	< 1	< 1	< 1	< 1	< 1	< 1	< 1
bis(2-chloroisopropyl)ether	< 1	< 1	< 1	< 1	< 1	< 1	< 1
bis(2-Chloroethoxy)methane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,3-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,4-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1 < 1	_ <1 <1
1,2-Dichlorobenzene	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1 < 1	< 1	< 1
1,2,4-Trichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Chloronaphthalene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether	<1	< 1	< 1	< 1	< 1	< 1	< 1
Hexachloroethane	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Hexachlorobutadiene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Hexachlorocyclopentadiene	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Hexachlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
4-Chloroaniline	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2-Nitroaniline	< 5	< 5	< 5	< 5	< 5	< 5	< 5
3-Nitroaniline	< 1	< 1	< 1	< 1	< 1	< 1	< 1
4-Nitroaniline	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Benzyl alcohol	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Nitrobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Isophorone	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2,4-Dinitrotoluene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
2,6-Dinitrotoluene	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Benzidine	< 5	< 5	< 5	< 5	< 5	< 5	< 5
3,3'-Dichlorobenzidine	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Pyridine	<ul> <li>5</li> </ul>	<ul> <li>5</li> </ul>	- 5	- 0	• 0	• 0	- 0

	Eastern Analytical, Inc. ID#:			78343			
Client: The Johnson Company		Client De	signation:	Richmond C			
and the second					· · • · · · · · · · · · · · · · · · · ·	<b>.</b>	
Sample ID:	MW-2	MW-5	MW-7	MW-9	MW-Dup	MW-6	MW-8
Lab Sample ID:	78343.02	78343.03	78343.04	78343.05	78343.08	78343.09	78343.1
Matrix:	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous	aqueous
Date Sampled:	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09
Date Received:	4/22/09	4/22/09	4/22/09		4/22/09	4/22/09	4/22/09
Units:	ug/l	ug/l	ug/l		ug/l	ug/l	ug/l
Date of Extraction/Preparation	4/23/09	4/23/09	4/23/09		4/23/09	4/23/09	4/23/09
•							
Date of Analysis:	5/4/09	5/4/09	5/4/09		5/4/09	5/4/09	5/4/09
Analyst:	BML	BML	BML		BML	BML	BML
Method:	8270D	8270D	8270D	8270D	8270D	8270D	8270D
Dilution Factor:	1	1	1	1	1	1	1
Carbazole	< 1	< 1	< 1		< 1	< 1	< 1
Dimethylphthalate	< 1	< 1	< 1		< 1	< 1	< 1
Diethylphthalate	< 1	< 1	< 1		< 1	< 1	2
Di-n-butylphthalate	< 5 < 1	< 5 < 1	< 5		< 5 < 1	< 5 < 1	< 5
Butylbenzylphthalate	< 1	< 5	< 1 < 5		< 5	< 5	<b>3</b> < 5
bis(2-Ethylhexyl)phthalate Di-n-octylphthalate	< 1	< 1	< 1	-	< 1	< 1	< 1
Dibenzofuran	< 1	< 1	< 1		< 1	< 1	< 1
Naphthalene	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1
2-Methylnaphthalene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1
Acenaphthene	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1
Fluorene	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1
Phenanthrene	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1
Anthracene	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1		< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1
Fluoranthene Pyrene	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1
Benzo[a]anthracene	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1
Chrysene	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1
Benzo[b]fluoranthene	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1
Benzo[k]fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo[a]pyrene	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1
Indeno[1,2,3-cd]pyrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenz[a,h]anthracene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo[g,h,i]perylene	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1
2-Fluorophenol (surr)	*16 %R	*14 %R	*16 %R 11 %R		*17 %R 13 %R	*15 %R 11 %R	*13 %R 11 %R
Phenol-d6 (surr) 2,4,6-Tribromophenol (surr)	11 %R 46 %R	11 %R 57 %R	48 %R		58 %R	59 %R	63 %R
Nitrobenzene-D5 (surr)	*25 %R	*22 %R	*27 %R		*28 %R	*25 %R	*21 %R
2-Fluorobiphenyl (surr)	*27 %R	*26 %R	*29 %R		*32 %R	*26 %R	*29 %R
p-Terphenyl-D14 (surr)	54 %R	55 %R	55 %R		57 %R	55 %R	57 %R

* Flagged surrogate and matrix spike values deviated from the method QA/QC limits. These deviations are suspected to be due to the sample concentration process during the extraction procedure.



Batch ID: 733520-42200/A042309ABN1

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

**QC** Report

Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Phenol	< 1	* 2 (10 %R)	* 3 (11 %R) (10 RPD)	ug/l	12 - 110	42	8270D
2-Chlorophenol	< 1	* 6 (23 %R)	* 6 (25 %R) (8 RPD)	ug/l	27 - 123	40	8270D
2,4-Dichlorophenol	< 1			ug/l			8270D
2,4,5-Trichlorophenol	< 1			ug/l			8270D
2,4,6-Trichlorophenol	< 1			ug/l			8270D
Pentachlorophenol	< 5	10 (40 %R)	10 (40 %R) (0 RPD)	ug/l	9 - 103	50	8270D
2-Nitrophenol	< 1			ug/l			8270D
4-Nitrophenol	< 5	*0(0 %R)	*0 ( 0 %R) (0 RPD)	ug/l	10 - 80	50	8270D
2,4-Dinitrophenol	< 5			ug/l			8270D
2-Methylphenol	< 1			ug/l			8270D
3/4-Methylphenol	< 1			ug/l			8270D
2,4-Dimethylphenol	< 1			ug/l			8270D
4-Chloro-3-methylphenol	< 1	6 (25 %R)	7 (28 %R) (11 RPD)	ug/l	23 - 97	42	8270D
4,6-Dinitro-2-methylphenol	< 5			ug/l			8270D
Benzoic Acid	< 5			ug/l			8270D
N-Nitrosodimethylamine	< 1			ug/l			8270D
n-Nitroso-di-n-propylamine	< 1	* 6 (24 %R)	* 7 (26 %R) (8 RPD)	ug/l	41 - 116	38	8270D
n-Nitrosodiphenylamine	< 1			ug/l			8270D
bis(2-Chloroethyl)ether	< 1			ug/l			8270D
bis(2-chloroisopropyl)ether	< 1			ug/l			8270D
bis(2-Chloroethoxy)methane	< 1			ug/l			8270D
1,3-Dichlorobenzene	< 1			ug/l			8270D
1,4-Dichlorobenzene	< 1	* 5 (22 %R)	* 6 (23 %R) (4 RPD)	ug/l	36 - 97	28	8270D
1,2-Dichlorobenzene	< 1			ug/l			8270D
1,2,4-Trichlorobenzene	< 1	* 6 (24 %R)	* 6 (25 %R) (4 RPD)	ug/l	39 - 98	28	8270D
2-Chloronaphthalene	< 1			ug/l			8270D
4-Chlorophenyl-phenylether	< 1			ug/i			8270D
4-Bromophenyl-phenylether	< 1			ug/l			8270D
Hexachloroethane	< 1			ug/l			8270D
Hexachlorobutadiene	< 1			ug/l			8270D
Hexachlorocyclopentadiene	< 5			ug/l			8270D
Hexachlorobenzene	< 1			ug/l			8270D
4-Chloroaniline	< 1			ug/l			8270D
2-Nitroaniline	< 5			ug/l			8270D
3-Nitroaniline	< 1			ug/l			8270D
4-Nitroaniline	< 1			ug/l			8270D
Benzyl alcohol	< 1			ug/l			8270D
Nitrobenzene	< 1			ug/l			8270D
Isophorone	< 1			ug/l		~~	8270D
2,4-Dinitrotoluene	< 1	9 (34 %R)	9 (36 %R) (6 RPD)	ug/l	24 - 96	38	8270D
2,6-Dinitrotoluene	< 1			ug/i			8270D
Benzidine	< 5			ug/l			8270D
3,3'-Dichlorobenzidine	< 1			ug/i			8270D
Pyridine	< 5			ug/l			8270D
Azobenzene	< 1			ug/l			8270D <b>1 2</b>
							1.7



Batch ID: 733520-42200/A042309ABN1

Client: The Johnson Company

Client Designation: Richmo

Richmond Creamery | 1-0346-3

**QC Report** 

Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Carbazole	< 1			ug/l			8270D
Dimethylphthalate	< 1			ug/l			8270D
Diethylphthalate	< 1			ug/l			8270D
Di-n-butylphthalate	< 5			ug/l			8270D
Butylbenzylphthalate	< 1			ug/l			8270D
bis(2-Ethylhexyl)phthalate	< 5			ug/l			8270D
Di-n-octylphthalate	< 1			ug/i			8270D
Dibenzofuran	< 1			ug/l			8270D
Naphthalene	< 0.1	* 5.8 (23 %R)	* 6.1 (25 %R) (8 RPD)	ug/l	30 - 160	50	8270D
2-Methylnaphthalene	< 0.1	* 5.6 (23 %R)	* 6.1 (24 %R) (4 RPD)	ug/l	30 - 160	50	8270D
Acenaphthylene	< 0.1	* 5.4 (21 %R)	* 6.3 (25 %R) (17 RPD)	ug/l	30 - 160	50	8270D
Acenaphthene	< 0.1	* 6.0 (24 %R)	* 7.0 (28 %R) (15 RPD)	ug/l	46 - 118	31	8270D
Fluorene	< 0.1	* 6.7 (27 %R)	7.8 (31 %R) (14 RPD)	ug/l	30 - 160	50	8270D
Phenanthrene	< 0.1	9.2 (37 %R)	9.3 (37 %R) (0 RPD)	ug/l	30 - 160	50	8270D
Anthracene	< 0.1	9.3 (37 %R)	9.5 (38 %R) (3 RPD)	ug/l	30 - 160	50	8270D
Fluoranthene	< 0.1	12 (48 %R)	12 (48 %R) (0 RPD)	ug/l	30 - 160	50	8270D
Pyrene	< 0.1	13 (51 %R)	13 (53 %R) (4 RPD)	ug/l	26 - 127	31	8270D
Benzo[a]anthracene	< 0.1	12 (48 %R)	12 (48 %R) (0 RPD)	ug/l	30 - 160	50	8270D
Chrysene	< 0.1	13 (51 %R)	13 (51 %R) (0 RPD)	ug/l	30 - 160	50	8270D
Benzo[b]fluoranthene	< 0.1	14 (56 %R)	14 (55 %R) (2 RPD)	ug/l	30 - 160	50	8270D
Benzo[k]fluoranthene	· < 0.1	14 (58 %R)	14 (57 %R) (2 RPD)	ug/l	30 - 160	50	8270D
Benzo[a]pyrene	< 0.1	14 (54 %R)	13 (53 %R) (2 RPD)	ug/l	30 - 160	50	8270D
Indeno[1,2,3-cd]pyrene	< 0.1	13 (51 %R)	13 (51 %R) (0 RPD)	ug/l	30 - 160	50	8270D
Dibenz[a,h]anthracene	< 0.1	12 (49 %R)	12 (49 %R) (0 RPD)	ug/l	30 - 160	50	8270D
Benzo[g,h,i]perylene	< 0.1	12 (48 %R)	12 (48 %R) (0 RPD)	ug/l	30 - 160	50	8270D
2-Fluorophenol (surr)	*13 %R	* 14 %R	* 15 %R	% Rec	21 - 110		8270D
Phenol-d6 (surr)	*9 %R	10 %R	11 %R	% Rec	10 - 94		8270D
2,4,6-Tribromophenol (surr)	25 %R	46 %R	48 %R	% Rec	10 - 123		8270D
Nitrobenzene-D5 (surr)	*20 %R	* 22 %R	* 26 %R	% Rec	35 - 114		8270D
2-Fluorobiphenyl (surr)	*21 %R	* 21 %R	* 24 %R	% Rec	43 - 116		8270D
p-Terphenyl-D14 (surr)	56 %R	56 %R	56 %R	% Rec	33 - 141		8270D



**Batch ID:** 

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

#### Acid and Base/Neutral Extractable Compounds QA/QC and Narrative Report

Matrix: Units: EPA Method:	Aqueous % RPD 8270D	Solid % RPD 8270D	Aqueous % 625(mod)
Acid Extractables Surrogates: 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	21-110 10-94 10-123	25-121 24-113 19-122	21-110 10-94 10-123
Base/Neutral Extractables Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl p-Terphenyl-d14	35-114 43-116 33-141	23-120 30-115 18-137	35-114 43-116 33-141
Acid Extractables Spikes: Phenol 2-Chlorophenol Pentachlorophenol 4-Nitrophenol 4-Chloro-3-methylphenol	12-110 42 27-123 40 9-103 50 10-80 50 23-97 42	26-90 35 25-102 50 17-109 47 11-114 50 26-103 33	
Base/Neutral Extractables Spikes: N-Nitroso-di-n-propylamine 1,4-Dichlorobenzene 1,2,4-Trichlorobenzene 2,4-Dinitrotoluene Acenaphthene Pyrene	41-116 38 36-97 28 39-98 28 24-96 38 46-118 31 26-127 31	41-126 38 28-104 27 38-107 23 28-89 47 31-137 19 35-142 36	

Samples were extracted and analyzed within holding time limits.

Instrumentation was tuned and calibrated in accordance with the method requirements.

The associated method blank(s) were free of contamination at the reporting limit.

The associated (MS) matrix spike(s) and/or (LCS) Laboratory Control Sample(s) met the above stated criteria. There were no exceptions in the analyses, unless noted.

There were no exceptions in the analyses, unless

DOR: Diluted out of calibration range.

MI: Matrix interference.

(mod): EPA method 3510C and 8270D employed.

* Flagged surrogate and matrix spike values deviated from the method QA/QC limits. These deviations are suspected to be due to the sample concentration process during the extraction procedure.

Dibenz[a,h]anthracene

p-Terphenyl-D14 (surr)

Benzo[g,h,i]perylene

# LABORATORY REPORT

#### Eastern Analytical, Inc. ID#: 78343 Client Designation: Richmond Creamery | 1-0346-3 Client: The Johnson Company MW-1 Sample ID: Lab Sample ID: 78343.01 aqueous Matrix: 4/20/09 Date Sampled: Date Received: 4/22/09 Units: ug/l Date of Extraction/Prep: 4/22/09 4/30/09 Date of Analysis: BML Analyst: Method: 8270D 1 **Dilution Factor:** < 0.1 Naphthalene 2-Methylnaphthalene < 0.1 Acenaphthylene < 0.1 Acenaphthene < 0.1 Fluorene < 0.1 Phenanthrene < 0.1 Anthracene < 0.1 < 0.1 Fluoranthene < 0.1 Pyrene < 0.1 Benzo[a]anthracene Chrysene < 0.1 Benzo[b]fluoranthene < 0.1 Benzo[k]fluoranthene < 0.1 Benzo[a]pyrene < 0.1 Indeno[1,2,3-cd]pyrene < 0.1

### eastern analytical, inc.

< 0.1

< 0.1

59 %R



Indeno[1,2,3-cd]pyrene

Dibenz[a,h]anthracene

p-Terphenyl-D14 (surr)

Benzo[g,h,i]perylene

### Eastern Analytical, Inc. ID#: 78343

< 0.1

< 0.1

< 0.1

69 %R

Batch ID: 733520-27633/A042209PAH1

ug/l 30 - 160

ug/l 30 - 160

ug/l 30 - 160

% Rec 33 - 141

50

50

50

8270D

8270D

8270D

8270D

#### Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

16 (78 %R) (3 RPD)

15 (75 %R) (4 RPD)

15 (74 %R) (6 RPD)

68 %R

		QC Report					
Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Naphthalene	< 0.1	13 (63 %R)	13 (66 %R) (5 RPD)	ug/l	30 - 160	50	8270D
2-Methylnaphthalene	< 0.1	13 (67 %R)	13 (66 %R) (2 RPD)	ug/l	30 - 160	50	8270D
Acenaphthylene	< 0.1	14 (71 %R)	14 (72 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Acenaphthene	< 0.1	14 (69 %R)	14 (70 %R) (1 RPD)	ug/l	46 - 118	31	8270D
Fluorene	< 0.1	14 (71 %R)	14 (71 %R) (0 RPD)	ug/l	30 - 160	50	8270D
Phenanthrene	< 0.1	12 (61 %R)	13 (66 %R) (8 RPD)	ug/l	30 - 160	50	8270D
Anthracene	< 0.1	13 (63 %R)	13 (67 %R) (6 RPD)	ug/l	30 - 160	50	8270D
Fluoranthene	< 0.1	14 (68 %R)	14 (71 %R) (4 RPD)	ug/l	30 - 160	50	8270D
Pyrene	< 0.1	13 (67 %R)	14 (72 %R) (7 RPD)	ug/l	26 - 127	31	8270D
Benzo[a]anthracene	< 0.1	13 (64 %R)	13 (64 %R) (0 RPD)	ug/l	30 - 160	50	8270D
Chrysene	< 0.1	14 (69 %R)	14 (70 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Benzo[b]fluoranthene	< 0.1	14 (70 %R)	14 (69 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Benzo[k]fluoranthene	< 0.1	14 (70 %R)	14 (71 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Benzo[a]pyrene	< 0.1	15 (73 %R)	15 (74 %R) (1 RPD)	ug/l	30 - 160	50	8270D

15 (76 %R)

14 (72 %R)

14 (70 %R)

65 %R



Batch ID: 733520-27633/A042209PAH1

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

#### Polynuclear Aromatic Hydrocarbons QA/QC and Narrative Report

Matrix: Units: EPA Method:	Aqueous % 8270D	RPD %	Solid % 8270D	RPD %	Oil % 8270D	RPD %
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene Chrysene Benzo[b]fluoranthene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene Benzo[g,h,i]perylene	30-160 30-160 46-118 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160	31	30-160 30-160 31-137 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160	19 36	30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160	50 50
Surrogate (p-Terphenyl-D14)	33-141		18-137		30-160	

Samples were extracted and analyzed within holding time limits.

Instrumentation was tuned and calibrated in accordance with the method requirements.

The associated method blank(s) were free of contamination at the reporting limit.

Sample Surrogate Recoveries met the above stated criteria.

The associated matrix spike(s) and/or Laboratory Control Sample(s) met the above stated criteria. There were no exceptions in the analyses, unless noted below.

Antimony

Arsenic

Barium

Cadmium

Chromium

# LABORATORY REPORT

#### Eastern Analytical, Inc. ID#: 78343

Client: The Johnson Company Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	MVV-1	MW-2	MW-5	MW-7					
Lab Sample ID:	78343.01	78343.02	78343.03	78343.04					
Matrix:	aqueous	aqueous	aqueous	aqueous					
Date Sampled:	4/20/09	4/20/09	4/20/09	4/20/09	Analytical		Date of		
Date Received:	4/22/09	4/22/09	4/22/09	4/22/09	Matrix	Units	Analysis	Method	Analyst
Antimony	< 0.001	< 0.001	< 0.001	< 0.001	AqTot	mg/L	4/24/09	200.8	DS
Arsenic	< 0.001	0.016	0.010	0.003	AqTot	mg/L	4/24/09	200.8	DS
Barium	0.012	0.028	0.027	0.006	AqTot	mg/L	4/24/09	200.8	DS
Cadmium	< 0.001	< 0.001	< 0.001	< 0.001	AqTot	mg/L	4/24/09	200.8	DS
Chromium	< 0.001	< 0.001	< 0.001	< 0.001	AqTot	mg/L	4/24/09	200.8	DS
Lead	0.001	< 0.001	< 0.001	< 0.001	AqTot	mg/L	4/24/09	200.8	DS
Manganese	0.31	0.23	0.86	0.65	AqTot	mg/L	4/24/09	200.8	DS
Mercury	< 0.0001	< 0.0001	< 0.0001	< 0.0001	AqTot	mg/L	4/24/09	200.8	DS
Nickel	0.007	0.004	0.005	0.007	AqTot	mg/L	4/24/09	200.8	DS
Selenium	< 0.001	< 0.001	< 0.001	< 0.001	AqTot	mg/L	4/24/09	200.8	DS
Thallium	< 0.001	< 0.001	< 0.001	< 0.001	AqTot	mg/L	4/24/09	200.8	DS
Sample ID:	MW-9	MW-3	MW-Dup	MW-6					
Lab Sample ID:	78343.05	78343.06	78343.08	78343.09					
Matrix:	aqueous	aqueous	aqueous	aqueous					
Date Sampled:	4/20/09	4/20/09	4/20/09	4/20/09	Analytical		Date of		
Date Received:	4/22/09	4/22/09	4/22/09	4/22/09	Matrix	Units	Analysis	Method	Analyst

Lead	< 0.001	0.004	< 0.001	< 0.001	AqTot	mg/L	4/24/09
Manganese	1.4	0.40	1.4	1.5	AqTot	mg/L	4/24/09
Mercury	< 0.0001	< 0.0001	< 0.0001	< 0.0001	AqTot	mg/L	4/24/09
Nickel	0.004	0.003	0.004	0.002	AqTot	mg/L	4/24/09
Selenium	< 0.001	0.005	< 0.001	< 0.001	AqTot	mg/L	4/24/09
Thailium	< 0.001	< 0.001	< 0.001	< 0.001	AqTot	mg/L	4/24/09

< 0.001

0.002

0.050

< 0.001

< 0.001

< 0.001

0.002

0.046

< 0.001

< 0.001

< 0.001

0.004

0.028

< 0.001

< 0.001

AqTot

AqTot

AqTot

AqTot

AqTot

mg/L

mg/L

mg/L

mg/L

mg/L

4/24/09

4/24/09

4/24/09

4/24/09

4/24/09

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

DS

< 0.001

0.002

0.046

< 0.001

< 0.001

Eastern Analytical, Inc. ID#: 78343

Client: The Johnson Company

Sample ID:	MW-8		
Lab Sample ID:	78343.1		
Matrix:	aqueous		
Date Sampled:	4/20/09	Analytical Date of	
Date Received:	4/22/09	Matrix Units Analysis Method	Analys
Antimony	< 0.001	AqTot mg/L 4/24/09 200.	8 DS
Arsenic	< 0.001	AqTot mg/L 4/24/09 200.	8 DS
Barium	0.029	AqTot mg/L 4/24/09 200.	8 DS
Cadmium	< 0.001	AqTot mg/L 4/24/09 200.	8 DS
Chromium	< 0.001	AqTot mg/L 4/24/09 200.	8 DS
Lead	< 0.001	AqTot mg/L 4/24/09 200.	8 DS
Manganese	5.8	AqTot mg/L 4/24/09 200.	8 DS
Mercury	< 0.0001	AqTot mg/L 4/24/09 200.	8 DS
Nickel	0.005	AqTot mg/L 4/24/09 200.	8 DS
Selenium	< 0.001	AqTot mg/L 4/24/09 200.	8 DS
Thallium	< 0.001	AqTot mg/L 4/24/09 200.	8 DS

Client: The Johnson Company **Client Designation:** Richmond Creamery | 1-0346-3 **QC Report Date of Analysis** Units **Parameter Name** Blank LCS Method Antimony < 0.001 1.1 (110 %R) mg/L 4/24/09 200.8 Arsenic < 0.001 1.0 (100 %R) mg/L 4/24/09 200.8 Barium < 0.001 0.98 (98 %R) 4/24/09 mg/L 200.8 Cadmium < 0.001 0.96 (96 %R) mg/L 4/24/09 200.8 Chromium < 0.001 0.99 (99 %R) 4/24/09 200.8 mg/L Lead < 0.001 0.92 (92 %R) mg/L 4/24/09 200.8 < 0.005 1.0 (100 %R) 4/24/09 200.8 Manganese mg/L Mercury < 0.0001 0.0010 (104 %R) mg/L 4/24/09 200.8 Nickel < 0.001 0.97 (97 %R) mg/L 4/24/09 200.8 Selenium < 0.001 0.94 (94 %R) mg/L 4/24/09 200.8 Thallium 0.93 (93 %R) < 0.001 mg/L 4/24/09 200.8

Parameter Name	Matrix Spike	Matrix Spike Duplicate
Antimony	1.2 (121 %R)	1.2 (125 %R) (3 RPD)
Arsenic	1.1 (114 %R)	1.2 (115 %R) (1 RPD)
Barium	1.2 (105 %R)	1.3 (108 %R) (3 RPD)
Cadmium	1.0 (103 %R)	1.1 (106 %R) (3 RPD)
Chromium	1.0 (102 %R)	1.0 (103 %R) (1 RPD)
Lead	0.96 (96 %R)	0.99 (99 %R) (3 RPD)
Manganese	1.0 (102 %R)	1.0 (102 %R) (0 RPD)
Mercury	0.0011 (112 %R)	0.0011 (111 %R) (1 RPD)
Nickel	1.1 (95 %R)	1.1 (95 %R) (0 RPD)
Selenium	1.1 (108 %R)	1.1 (110 %R) (2 RPD)
Thallium	0.97 (97 %R)	0.98 (98 %R) (1 RPD)

#### **Batch ID:**

### Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

	Metals QA/G	C and Narrative Report	
QA/QC:	LCS	MS	MSD
Matrix:	Aqueous	Aqueous	Aqueous
Units:	. %	%	. %
EPA Method:	200.7/200.8	200.7/200.8	200.7/200.8
Aluminum	85-115	70-130	70-130
Antimony	85-115	70-130	70-130
Arsenic	85-115	70-130	70-130
Barium	85-115	70-130	70-130
Beryllium	85-115	70-130	70-130
Boron	85-115	70-130	70-130
Cadmium	85-115	70-130	70-130
Calcium	85-115	70-130	70-130
Chromium	85-115	70-130	70-130
Cobalt	85-115	70-130	70-130
Copper	85-115	70-130	70-130
Iron	85-115	70-130	70-130
Lead	85-115	70-130	70-130
Magnesium	85-115	70-130	70-130
Manganese	85-115	70-130	70-130
Mercury	85-115	70-130	70-130
Molybdenum	85-115	70-130	70-130
Nickel	85-115	70-130	70-130
Phosphorus	85-115	70-130	70-130
Potassium	85-115	70-130	70-130
Selenium	85-115	70-130	70-130
Silicon	85-115	70-130	70-130
Silver	85-115	70-130	70-130
Sodium	85-115	70-130	70-130
Thallium	85-115	70-130	70-130
Tin	85-115	70-130	70-130
Titanium	85-115	70-130	70-130
Vanadium	85-115	70-130	70-130
Zinc	85-115	70-130	70-130 ·

Samples were analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria.

There were no exceptions in the analyses, unless noted below.

RECEIVED BY: RECEIVED BY: RE	25 CHENELL DRIVE   CONCORD, NH 03301   TEL: 603.228.0525   1.800.287.0525   FAX: 603.228.4591   E-MAIL: CUSTOMER_SERVICE@EAILABS.COM   WWW.EAILABS.COM	ICE@EAILABS.CC	CUSTOMER_SERVI	91   E-MAIL:	.228.45	FAX: 603	37.0525	1.800.28	603.228.0525   1.800.287.0525   FA	503.228		CONCORD, NH 03301					5 CHE	nc.	professional laboratory services	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			FIELD READINGS: _		BY:	RECEIVED		Ime	ATE:		BY:	JISHED	ELINQU							7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		VINATION:	SUSPECTED CONTAI		1	0						_	•					P0 #:		Ouote #:
SAMPLE I.D.       SAMPLING       DATE / THE       Mark Composite       Mark Composite <td></td> <td>0</td> <td>SITE HISTORY:</td> <td>Xloxo</td> <td>S-Ala</td> <td>AN THE</td> <td>743</td> <td></td> <td></td> <td>14</td> <td><b>.</b></td> <td>EA</td> <td></td> <td>× 71</td> <td></td> <td></td> <td></td> <td>I W STORMWATER OR FIELD OR OTHER:</td> <td>GWP, OIL FUND, BROWN</td> <td>REGULAIORY P</td>		0	SITE HISTORY:	Xloxo	S-Ala	AN THE	743			14	<b>.</b>	EA		× 71				I W STORMWATER OR FIELD OR OTHER:	GWP, OIL FUND, BROWN	REGULAIORY P
SAMPLE I.D.       SAMPLAGE       SAMPLAGE       SAMPLAGE       SAMPLAGE         MW - 1       Allocity of 134       Both Fill Mark	, and	ž ž	26.7	L.	BY:	RECEIVED		Sot-	ATE.	1	BY			ן און אין				0THER:	IH MA ME WI	STATE: 7
SAMPLE I.D.       SAMPLING DATE /TIME       MATRIX (SEE BELOW)         MW - 1       Alzolog 0037       Mark Finster Borth INDOCATE BOTH NINCOLATE BOTH Starte Entry MW - 3       Mark / 2000       Mark (See BELOW)         MW - 2       Alzolog 10241       Mark (See BELOW)       Mark (See BELOW)       Mark (See BELOW)         MW - 3       Alzolog 10241       Mark (See BELOW)       Mark (See BELOW)       Mark (See BELOW)         MW - 4       Alzolog 10241       Mark (See BELOW)       Gasa/*Composite State See Below)       Gasa/*Composite State See Below)         MW - 4       Alzolog 12241       Qa       Qa       Alzolog 12241       Qa         MW - 7       Alzolog 1243       Qa       Qa       Alzolog 1243       Qa         MW - 4       Alzolog 1243       Qa       Qa       Alzolog 1443       Qa         MW - 5       Alzolog 1245       Qa       Qa       Qa       Qa       Qa         MW - 4       Alzolog 14620       Qa       Qa       Qa       Qa       Qa       Qa       Qa         MW - 5       Alzolog 14620       Qa	)C'S 8	·	For M			N ³		フピッ	1 4/20	. [	pre	Ĺ	MPLER	 \ ¥					-0346-3	Project #: _
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	n al	PAH ra:	, ,			<u></u>		с ' (								0	(a	1e 2	hnord C	Ē
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ction	or dete	Use 1		2				NO FA		с Р						5			26
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	, BILLING INFO	DETECTION LIMITS,	NOTES: (IE: SPECIAI			~		TRONIC				OR		ļ 			EXT.:		$\checkmark$	
Ample I.D.       SAMPLING THE       MATRIX (SEE BELOW) $4 = 1$ $4 = 1$ $4 = 1$ $4 = 1$ $4 = 1$ $4 = 1$ $4 = 1$ $4 = 1$ $4 = 1$ $4 = 2$ $4 = 1$ $4 = 1$ $4 = 2$ $4 = 1$ $4 = 1$ $4 = 2$ $4 = 1$ $4 = 1$ $4 = 2$ $4 = 1$ $4 = 1$ $4 = 2$ $4 = 1$ $4 = 1$ $4 = 2$ $4 = 1$ $4 = 1$ $4 = 2$ $4 = 1$ $4 = 1$ $4 = 2$ $4 = 1$ $4 = 1$ $4 = 2$ $4 = 1$ $4 = 1$ $4 = 2$ $4 = 1$ $4 = 1$ $4 = 2$ $4 = 1$ $4 = 1$ $4 = 2$ $4 = 1$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ $4 = 2$ </td <td>Yes</td> <td>FIELD FILTERED?</td> <td>DISSOLVED METALS</td> <td></td> <td></td> <td>l</td> <td></td> <td>FAX OR</td> <td>IF YES:</td> <td>0</td> <td></td> <td>6</td> <td>Þ</td> <td>J 1</td> <td>602</td> <td>20</td> <td>ZIP:</td> <td>STATE: _</td> <td></td> <td>R</td>	Yes	FIELD FILTERED?	DISSOLVED METALS			l		FAX OR	IF YES:	0		6	Þ	J 1	602	20	ZIP:	STATE: _		R
Manneer:         Rhank         Kay         Date / Three           Marrie I.D.         SAMPLING         Date / Three         Marrie / Composite           Marrie I.D.         Status Cher Both         Status Cher Both         Status Cher Both           Status Cher Both         Status Cher Both         Status Cher Both         Status Cher Both           Status Cher Both         Status Cher Both         Status Cher Both         Status Cher Both           Status Cher Both         Status Cher Both         Status Cher Both         Status Cher Both           Status Cher Both         Status Cher Both         Status Cher Both         Status Cher Both           Status Cher Both         Status Cher Both         Status Cher Both         Status Cher Both           Status Cher Both         Status Cher Both         Status Cher Both         Status Cher Both           Status Cher Both         Status Cher Both         Status Cher Both         Status Cher Both           Status Cher Both         Status Cher Both         Status Cher Both         Status Cher Both           Status Cher Both         Status Cher Both         Status Cher Both         Status Cher Both           Status Cher Both         Status Cher Both         Status Cher Both         Status Cher Both           Status Cher Both         Status Cher Both			OTHER METALS:	N	$\cap$			DRTING (	REPO		VEL	ING LE	A/QC	<u></u>				te G	ine Johns	ADDRESS:
Image: State of the state	FE, MN	Metals RCRA 13 PP	VGES	Ŵ	3				vee K		ED:	NEED	ATE		l.			Kay	IANAGER:	PROJECT N
1       524.2       524.2       524.2       BTEX       524.2       BTEX       524.2       BTEX       524.2       BTEX       524.2       BTEX       BDEP		1						N				Aor		HC				aOH; M-MEOH	-WASTE WATER H-HCL; N-HNO3; S-H2SO4; Na-N	PRESERVATIVE:
C       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V	4											\$ re				WATER;	NKING	1-SUNFACE WATER; DW-DR	R; S-SOIL; GW-GROUND WATER; SV	MATRIX: A-AI
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} $	- +											-  -				4	<u> </u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>			-+	_		+	-						5		-+	_	1.		M
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4							-				-		2					C P	M
Image: State of the state	ц U													Ρ	<u>(; )</u>		1			M
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	~														0)					M
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4											-			0、			20/09	1 4	Mu
Image: Status       Image: Status       Image: Status       Image: Status         Image: Status       Image: Status       Image: Status       Image: Status       Image: Status         Image: Status       Image: Status       Image: Status       Image: Status       Image: Status         Image: Status       Image: Status       Image: Status       Image: Status       Image: Status         Image: Status       Image: Status       Image: Status       Image: Status       Image: Status         Image: Status       Image: Status       Image: Status       Image: Status       Image: Status         Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status         Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status         Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status         Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status       Image: Status <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>6 \</td> <td></td> <td></td> <td>20/09</td> <td>7</td> <td>M</td>	4							-				-			6 \			20/09	7	M
Image: State of the second	4							-				-			6.)		 	<b>–</b>	M .	M
Image: State of the state	4											-					GN	L	2	MV
START COMPOSITE DATE / TIME BOTH F. MATRIX (SEE BELOW) GRAB /* COMPOSITE 524.2 524.2 BTEX 524.2 MTBE ONLY 824.2 BTEX 524.2 MTBE ONLY 824.2 BTEX 524.2 MTBE ONLY 824.2 BTEX 524.2 MTBE ONLY 824.2 BTEX 524.2 MTBE ONLY 8021B BTEX HALOS 8015B GRO MEGRO MAYPH 82700 625 SVTICS ABN A BN PAH TPH8100 LI L2 8015B DRO MEDRO MAPH 608 PEST/PCB PEST 8081A PCB 8082 OIL & GREASE 1664 TPH 1664 TCLP 1311 ABN METALS VOC PEST HERB DISSOLVED METALS (LIST BELOW) TOTAL METALS (LIST BELOW) TOTAL METALS (LIST BELOW) TOTAL METALS (LIST BELOW) BA CI F SO4 NO3 NO3 NO3/NO3 BOD CBOD T. ALK. TKN NH3 T. PHOS. PH T. RES. CHLORINE COD PHENOLS TOC TOTAL CTANIDE TOTAL SULFIDE REACTIVE CTAMIDE REACTIVE SULFIDE FLASHPOINT IGNITABULITY T. COLIFORM E. COLI F. COLIFORM E. COLIFIC FLASHPOINT IGNITABULITY VO CS PAH OALY \$270 C PAH OALY \$270 C PAH OALY	4	າ														+	Ę	20/09	1	Mu
SEE BELOW) COMPOSITE 24.2 MTBE ONLY VTICS DB DBCP HALOS EGRO MAVPH SVTICS PAH L2 EDRO MAEPH CB BOB2 4 TPH 1664 N METALS HERB (LIST BELOW) SPEC. CON SOL OJ/NOJ T. ALK. PHOS. DTAL SULFIDE REACTIVE SULFIDE ABULITY COLI E COUNT	# OF CONTAINERS MEOH VIAL #	Vocs F	FLASHPOINT IGNIT T. COLIFORM E. F. COLIFORM ENTEROCOCCI	COD PHENOLS TOTAL CYANIDE T			TS TSS TDS	DISSOLVED METALS	TCLP I311 AB	PEST 8081A P	<u></u>	ABN A BN	$\sim$		TTAN DTEV C	ł	MATRIX (S	TH COMPOSITE, INDICATE BOTH START & FINISH DATE/TIME		s
		etro Only	TABILITY Coli	otal Sulfide	PHOS.	02/NO3 T. ALK.	SPEC. CON!	(LIST BELOW)	N METALS Herb			PAH			24.2 MTBE ONLY VTICs		SEE BELOW)	SAMPLING DATE/TIME		
	8343		Г		YSIS.	ANAL	ESTED	Requ	IRCLE	-	PLEA		QUIR	)S RE	Field	or D	ģ		of	Page
BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.	) ) ) )	1	Fox				õ	CHAIN-OF-CUSTODY RECORD	DY R	ISTO	ç	N-OF	HAII	0						I

Rhonda Kay The Johnson Company 100 State Street Montpelier, VT 05602 eastern analytical

professional laboratory services



Subject: Laboratory Report

Eastern Analytical, Inc. ID: Client Identification: Date Received: 78344 Richmond Creamery | 1-0346-3 4/22/2009

Dear Ms. Kay:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. (EAI) certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.eailabs.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply throughout all EAI reports:

- Solid samples are reported on a dry weight basis, unless otherwise noted
- <: "less than" followed by the detection limit
- TNR: Testing Not Requested
- ND: None Detected, no established detection limit
- RL: Reporting Limits
- %R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269) and Vermont (VT1012).

This report package contains the following information: Sample Conditions summary, Analytical Results/Data and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

#### Analytical Deviation & QA/QC Documentation:

Quality Control Samples associated with this project are included in this report. At a minimum, a Method Blank and Laboratory Control Sample (LCS) are reported. Matrix Spikes and Duplicates are reported where applicable. Deviations are narrated on the QC pages.

If you have any questions regarding the results contained within, please feel free to directly contact me, or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

augunt Alto

Lorraine Olashaw, Lab DirectorDatEastern Analytical, Inc.25 Chenell Drive, Concord, NH 23301

Date

www.eailabs.com

# of pages (excluding cover letter) HE 665225 6525 E 562657 6525 EAX 6652254591



Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

#### Temperature upon receipt (°C): 2

Received or	n ice or	cold pack	s (Yes/No):	Y

Lab ID	Sample ID	Date Received	Date Sampled	Sample Matrix	% Dry Weight Exceptions/Comments (other than thermal preservation	on)
78344.01	SS-T-5 0-0.5'	4/22/09	4/20/09	soil	80.0 Adheres to Sample Acceptance Policy	
78344.02	SS-T-5 1.5-2.0'	4/22/09	4/20/09	soil	85.2 Adheres to Sample Acceptance Policy	
78344.03	SS-DP 0-0.5'	4/22/09	4/20/09	soil	71.9 Adheres to Sample Acceptance Policy	
78344.04	SS-DP 1.5-2.0'	4/22/09	4/20/09	soil	80.8 Adheres to Sample Acceptance Policy	
78344.05	SS-PT-3 0-0.5'	4/22/09	4/20/09	soil	72.3 Adheres to Sample Acceptance Policy	
78344.06	SS-PT-3 1.5-2.0'	4/22/09	4/20/09	soil	78.5 Adheres to Sample Acceptance Policy	
78344.07	SS-BB-01 0-0.5'	4/22/09	4/20/09	soil	84.0 Adheres to Sample Acceptance Policy	
78344.08	SS-BB-01 1.5-2.0'	4/22/09	4/20/09	soil	83.9 Adheres to Sample Acceptance Policy	
78344.09	SS-AST-2 0-0.5'	4/22/09	4/20/09	soil	78.6 Adheres to Sample Acceptance Policy	
78344.1	SS-AST-2 1.5-2.0'	4/22/09	4/20/09	soil	84.6 Adheres to Sample Acceptance Policy	
78344.11	SS-T-1 0-0.5'	4/22/09	4/20/09	soil	95.1 Adheres to Sample Acceptance Policy	
78344.12	SS-T-1 1.5-2.0'	4/22/09	4/20/09	soil	94.1 Adheres to Sample Acceptance Policy	
78344.13	SS-T-2 0-0.5'	4/22/09	4/20/09	soil	92.0 Adheres to Sample Acceptance Policy	
78344.14	SS-T-2 1.5-2.0'	4/22/09	4/20/09	soil	94.6 Adheres to Sample Acceptance Policy	
78344.15	SS-T-DP	4/22/09	4/20/09	soil	94.4 Adheres to Sample Acceptance Policy	
78344.16	SS-T-3 0-0.5'	4/22/09	4/20/09	soil	94.1 Adheres to Sample Acceptance Policy	
78344.17	SS-T-3 1.5-2.0'	4/22/09	4/20/09	soil	95.2 Adheres to Sample Acceptance Policy	
78344.18	SS-T-4 0-0.5'	4/22/09	4/20/09	soil	79.8 Adheres to Sample Acceptance Policy	
78344.19	SS-T-4 1.5-2.0'	4/22/09	4/20/09	soil	80.3 Adheres to Sample Acceptance Policy	
78344.2	Trip Blank	4/22/09	4/20/09	soil	100.0 Adheres to Sample Acceptance Policy	

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitibility, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater : Inorganics, 19th Edition, 1995; Microbiology, 20th Edition, 1998 3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 2nd edition, 1992

#### Eastern Analytical, Inc. ID#: 78344

#### Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	SS-T-5 0-0.5'	SS-T-5 1.5-2.0'	SS-DP 0-0.5'	SS-DP 1.5-2.0'	SS-PT-3 0-0.5'	SS-PT-3 1.5-2.0'	SS-BB-01 0-0.5'
Lab Sample ID:	78344.01	78344.02	78344.03	78344.04	78344.05	78344.06	78344.07
Matrix:	soil	soil	soil	soil	soil	soil	soil
Date Sampled: Date Received:	4/20/09 4/22/09	4/20/09 4/22/09	4/20/09 4/22/09	4/20/09 4/22/09	4/20/09 4/22/09	4/20/09 4/22/09	4/20/09 4/22/09
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Analysis:	4/30/09	4/30/09	4/30/09	4/30/09	4/30/09	4/30/09	4/30/09
Analyst:	VG	VG	VG	VG	VG	VG	VG
Method:	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Dilution Factor:	1	1	2	1	2	1	1
Methyl-t-butyl ether(MTBE) Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane(EDB) Ethylbenzene mp-Xylene o-Xylene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Naphthalene 4-Bromofluorobenzene (surr) 1,2-Dichlorobenzene-d4 (surr) Toluene-d8 (surr)	< 0.1 < 0.07 < 0.4 91 %R 105 %R 99 %R	< 0.1 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.08 <b>92 %R</b> <b>105 %R</b>	< 0.2 < 0.09 < 0.5 <b>96 %R</b> <b>103 %R</b> <b>99 %R</b>	< 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.3 <b>91 %R</b> <b>104 %R</b> <b>99 %R</b>	< 0.2 < 0.09 < 0.5 <b>99 %R</b> <b>105 %R</b> <b>99 %R</b>	< 0.1 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.08 < 0.3 <b>93 %R</b> <b>105 %R</b>	< 0.1 < 0.07 < 0.4 94 %R 103 %R 99 %R

GC/MS analysis was employed for the determination of the 8021B compound list. SS-T-5 0-0.5', SS-T-5 1.5-2.0', SS-DP 0-0.5', SS-PT-3 0-0.5', SS-PT-3 1.5-2.0', SS-BB-01 0-0.5': Reporting limits are elevated due to the % solids content of the sample or the sample mass used for analysis.

### Eastern Analytical, Inc. ID#: 78344

#### Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID: SS-I Lab Sample ID: Matrix: Date Sampled: Date Received: Units: Date of Analysis:	BB-01 1.5-2.0'	SS-AST-2					
Matrix: Date Sampled: Date Received: Units:		0-0.5	SS-AST-2 S 1.5-2.0'	SS-T-1 0-0.5'	SS-T-1 1.5-2.0'	SS-T-2 0-0.5'	SS-T-2 1.5-2.0'
Date Sampled: Date Received: Units:	78344.08	78344.09	78344.1	78344.11	78344.12	78344.13	78344.14
Date Received: Units:	soil	soil	soil	soil	soil	soil	soil
Units:	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09
	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09
Date of Analysis:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	4/30/09	4/30/09	4/30/09	4/30/09	4/30/09	4/30/09	5/1/09
Analyst:	VG	VG	VG	VG	VG	VG	VG
Method:	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Dilution Factor:	2	1	1	1	1	1	1
Methyl-t-butyl ether(MTBE)	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzene	< 0.08	< 0.06	< 0.05	< 0.05	< 0.05	< 0.06	< 0.06
1,2-Dichloroethane	< 0.08	< 0.06	< 0.05	< 0.05	< 0.05	< 0.06	< 0.06
Toluene 1,2-Dibromoethane(EDB)	< 0.08 < 0.08	<b>0.14</b> < 0.06	<b>0.05</b> < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.06 < 0.06	< 0.06 < 0.06
Ethylbenzene	< 0.08	< 0.00 0.07	< 0.03 0.37	< 0.05	< 0.05	< 0.06	< 0.06
mp-Xylene	< 0.08	1.3	2.3	< 0.05	< 0.05	< 0.06	< 0.06
o-Xylene	< 0.08	1.2	1.5	< 0.05	< 0.05	< 0.06	< 0.06
1,3,5-Trimethylbenzene	< 0.08	9.3	4.8	< 0.05	< 0.05	< 0.06	< 0.06
1,2,4-Trimethylbenzene	< 0.08	5.1	9.7	< 0.05	< 0.05	< 0.06	< 0.06
Naphthalene	< 0.5	5.1	8.4	< 0.3	< 0.3	< 0.3	< 0.4
4-Bromofluorobenzene (surr)	93 %R	190 %R	129 %R	94 %R	91 %R	95 %R	94 %R
1,2-Dichlorobenzene-d4 (surr) Toluene-d8 (surr)	104 %R 99 %R	108 %R 100 %R	105 %R 98 %R	107 %R 98 %R	105 %R 99 %R	103 %R 97 %R	102 %R 98 %R

GC/MS analysis was employed for the determination of the 8021B compound list.

SS-BB-01 1.5-2.0', SS-AST-2 0-0.5', SS-T-2 0-0.5', SS-T-2 1.5-2.0': Reporting limits are elevated due to the % solids content of the sample or the sample mass used for analysis.

SS-AST-2 0-0.5', SS-AST-2 1.5-2.0': Non target interference in the samples resulted in recovery outside of the acceptance control limits of 74-121%R for the surrogate 4-Bromofluorobenzene (surr).

Client: The Johnson Company		on Company Client Designat			on: Richmond Creamery   1-0346-3		
Sample ID:	SS-T-DP S	S-T-3 0-0.5'	SS-T-3 S 1.5-2.0'	SS-T-4 0-0.5	' SS-T-4 1.5-2.0'	Trip Blank	
Lab Sample ID:	78344.15	78344.16	78344.17	78344.18	78344.19	78344.2	
Matrix:	soil	soil	soil	soil	soil	soil	
Date Sampled: Date Received:	4/20/09 4/22/09	4/20/09 4/22/09	4/20/09 4/22/09	4/20/09 4/22/09		4/20/09 4/22/09	
Units:	mg/kg	mg/kg	mg/kg	mg/kg	i mg/kg	mg/kg	
Date of Analysis:	5/1/09	5/1/09	5/1/09	5/1/09	5/1/09	5/1/09	
Analyst:	VG	VG	VG	VG	VG	VG	
Method:	8260B	8260B	8260B	8260B	8 8260B	8260B	
Dilution Factor:	2	1	1	1	1	1	
Methyl-t-butyl ether(MTBE) Benzene	< 0.2 < 0.1	< 0.1 < 0.07	< 0.1 < 0.06	< 0.1 < 0.06		< 0.1 < 0.05	
1,2-Dichloroethane	< 0.1	< 0.07	< 0.06	< 0.06		< 0.05	
Toluene 1,2-Dibromoethane(EDB)	< 0.1 < 0.1	< 0.07 < 0.07	< 0.06 < 0.06	< 0.06 < 0.06		< 0.05 < 0.05	
Ethylbenzene	< 0.1	< 0.07	< 0.06	< 0.00		< 0.05	
mp-Xylene	< 0.1	< 0.07	< 0.06	< 0.06		< 0.05	
o-Xylene	< 0.1	< 0.07	< 0.06	< 0.06	< 0.07	< 0.05	
1,3,5-Trimethylbenzene	< 0.1	< 0.07	< 0.06	< 0.06	< 0.07	< 0.05	
1,2,4-Trimethylbenzene	< 0.1	< 0.07	< 0.06	< 0.06		< 0.05	
Naphthalene	< 0.6	< 0.4	< 0.4	< 0.3	- · · ·	< 0.3	
4-Bromofluorobenzene (surr)	97 %R	95 %R	96 %R	96 %R		94 %R	
1,2-Dichlorobenzene-d4 (surr) Toluene-d8 (surr)	101 %R 100 %R	102 %R 100 %R	101 %R 100 %R	104 %R 99 %R		100 %R 100 %R	

GC/MS analysis was employed for the determination of the 8021B compound list. SS-T-DP, SS-T-3 0-0.5', SS-T-3 1.5-2.0', SS-T-4 0-0.5', SS-T-4 1.5-2.0': Reporting limits are elevated due to the % solids content of the sample or the sample mass used for analysis.



## Eastern Analytical, Inc. ID#: 78344

#### **Batch ID:**

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

		QC Report		D	ate of Anal	/sis
Parameter Name	Blank	LCS	LCS Dup	Units		Method
Dichlorodifluoromethane	< 0.1			mg/kg	4/30/09	8260E
Chloromethane	< 0.1			mg/kg	4/30/09	8260E
Vinyl chloride	< 0.1			mg/kg	4/30/09	8260E
Bromomethane	< 0.1			mg/kg	4/30/09	8260E
Chloroethane	< 0.1			mg/kg	4/30/09	8260E
Trichlorofluoromethane	< 0.1			mg/kg	4/30/09	8260E
Diethyl Ether	< 0.05			mg/kg	4/30/09	8260E
Acetone	< 2			mg/kg	4/30/09	8260E
1,1-Dichloroethene	< 0.05	1.2 (118 %R)	0.97 (97 %R) (20 RPD)	mg/kg	4/30/09	8260E
tert-Butyl Alcohol (TBA)	< 2			mg/kg	4/30/09	8260E
Methylene chloride	< 0.1			mg/kg	4/30/09	8260E
Carbon disulfide	< 0.1			mg/kg	4/30/09	8260E
Methyl-t-butyl ether(MTBE)	< 0.1			mg/kg	4/30/09	8260E
Ethyl-t-butyl ether(ETBE)	< 0.1			mg/kg	4/30/09	8260E
Isopropyl ether(DIPE)	< 0.1			mg/kg	4/30/09	8260E
tert-amyl methyl ether(TAME)	< 0.1			mg/kg	4/30/09	8260E
trans-1,2-Dichloroethene	< 0.05			mg/kg	4/30/09	8260E
1,1-Dichloroethane	< 0.05			mg/kg	4/30/09	8260E
2,2-Dichloropropane	< 0.05			mg/kg	4/30/09	8260E
cis-1,2-Dichloroethene	< 0.05			mg/kg	4/30/09	8260E
2-Butanone(MEK)	< 0.5			mg/kg	4/30/09	8260B
Bromochloromethane	< 0.05			mg/kg	4/30/09	8260B
Tetrahydrofuran(THF)	< 0.5			mg/kg	4/30/09	8260B
Chloroform	< 0.05			mg/kg	4/30/09	8260B
1,1,1-Trichloroethane	< 0.05			mg/kg	4/30/09	8260B
Carbon tetrachloride	< 0.05			mg/kg	4/30/09	8260B
1,1-Dichloropropene	< 0.05			mg/kg	4/30/09	8260B
Benzene	< 0.05	1.2 (116 %R)	0.97 (97 %R) (18 RPD)	mg/kg	4/30/09	8260B
1,2-Dichloroethane	< 0.05	, <i>,</i>		mg/kg	4/30/09	8260B
Trichloroethene	< 0.05	1.2 (117 %R)	0.98 (98 %R) (18 RPD)	mg/kg	4/30/09	8260B
1,2-Dichloropropane	< 0.05			mg/kg	4/30/09	8260B
Dibromomethane	< 0.05			mg/kg	4/30/09	8260B
Bromodichloromethane	< 0.05			mg/kg	4/30/09	8260B
4-Methyl-2-pentanone(MIBK)	< 0.5			mg/kg	4/30/09	8260B
cis-1,3-Dichloropropene	< 0.05			mg/kg	4/30/09	8260B
Toluene	< 0.05	1.2 (122 %R)	1.0 (102 %R) (18 RPD)	mg/kg	4/30/09	8260B
trans-1,3-Dichloropropene	< 0.05	1.2 (122 /010)		mg/kg	4/30/09	8260B
1,1,2-Trichloroethane	< 0.05			mg/kg	4/30/09	8260B
2-Hexanone	< 0.05			mg/kg	4/30/09	8260B
Tetrachloroethene	< 0.05			mg/kg	4/30/09	8260B
	< 0.05 < 0.05				4/30/09 4/30/09	8260B
1,3-Dichloropropane				mg/kg mg/kg		
Dibromochloromethane	< 0.05			mg/kg mg/kg	4/30/09 4/30/09	8260B 8260B
1,2-Dibromoethane(EDB)	< 0.05			mg/kg	4/30/09	
Chlorobenzene	< 0.05	1.2 (122 %R)	1.0 (102 %R) (18 RPD)	mg/kg	4/30/09	8260B

## eastern analytical, inc.

5



## Eastern Analytical, Inc. ID#: 78344

### **Batch ID:**

Client: The Johnson Company

			-		• •	
		QC Report		D	ate of Analy	rsis
Parameter Name	Blank	LCS	LCS Dup	Units		Method
1,1,1,2-Tetrachloroethane	< 0.05			mg/kg	4/30/09	8260B
Ethylbenzene	< 0.05			mg/kg	4/30/09	8260B
mp-Xylene	< 0.05			mg/kg	4/30/09	8260B
o-Xylene	< 0.05			mg/kg	4/30/09	8260B
Styrene	< 0.05			mg/kg	4/30/09	8260B
Bromoform	< 0.05			mg/kg	4/30/09	8260B
IsoPropylbenzene	< 0.05			mg/kg	4/30/09	8260B
Bromobenzene	< 0.05			mg/kg	4/30/09	8260B
1,1,2,2-Tetrachloroethane	< 0.05			mg/kg	4/30/09	8260B
1,2,3-Trichloropropane	< 0.05			mg/kg	4/30/09	8260B
n-Propylbenzene	< 0.05			mg/kg	4/30/09	8260B
2-Chlorotoluene	< 0.05			mg/kg	4/30/09	8260B
4-Chlorotoluene	< 0.05			mg/kg	4/30/09	8260B
1,3,5-Trimethylbenzene	< 0.05			mg/kg	4/30/09	8260B
tert-Butylbenzene	< 0.05			mg/kg	4/30/09	8260B
1,2,4-Trimethylbenzene	< 0.05			mg/kg	4/30/09	8260B
sec-Butylbenzene	< 0.05			mg/kg	4/30/09	8260B
1,3-Dichlorobenzene	< 0.05			mg/kg	4/30/09	8260B
p-Isopropyltoluene	< 0.05			mg/kg	4/30/09	8260B
1,4-Dichlorobenzene	< 0.05			mg/kg	4/30/09	8260B
1,2-Dichlorobenzene	< 0.05			mg/kg	4/30/09	8260B
n-Butylbenzene	< 0.05			mg/kg	4/30/09	8260B
1,2-Dibromo-3-chloropropane	< 0.05			mg/kg	4/30/09	8260B
1,3,5-Trichlorobenzene	< 0.05			mg/kg	4/30/09	8260B
1,2,4-Trichlorobenzene	< 0.05			mg/kg	4/30/09	8260B
Hexachlorobutadiene	< 0.05			mg/kg	4/30/09	8260B
Naphthalene	< 0.1			mg/kg	4/30/09	8260B
1,2,3-Trichlorobenzene	< 0.05			mg/kg	4/30/09	8260B
4-Bromofluorobenzene (surr)	92 %R	96 %R	98 %R	% Rec	4/30/09	8260B
1,2-Dichlorobenzene-d4 (surr)	105 %R	102 %R	100 %R	% Rec	4/30/09	8260B
Toluene-d8 (surr)	99 %R	100 %R	98 %R	% Rec	4/30/09	8260B

**Batch ID:** 

#### Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

#### Volatile Organic Compounds QC limits and Narrative Summary

Matrix: Units: EPA Method	Solid % 8260B	RPD %	Aqueous % 8260B	RPD %
Surrogate Recovery 4-Bromofluorobenzene 1,2-Dichlorobenzene-D4 Toluene-d8	74-121 80-120 70-130		86-115 80-120 70-130	
Matrix Spike Recovery 1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	59-172 62-137 66-142 59-139 60-133	30 30 30 30 30	61-145 71-120 76-127 76-125 75-130	20 20 20 20 20

Samples were extracted and analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

Sample surrogate recoveries met the above stated criteria.

The associated matrix spikes and/or Laboratory Control Samples met acceptance criteria.

There were no exceptions in the analyses, unless noted.



### Eastern Analytical, Inc. ID#: 78344

#### Client: The Johnson Company

Sample ID:	SS-T-5 0-0.5'	SS-T-5 1.5-2.0'	SS-DP 0-0.5'	SS-DP 1.5-2.0'	SS-PT-3 0-0.5'	SS-PT-3 1.5-2.0'	SS-BB-01 0-0.5'	SS-BB-01 1.5-2.0'
Lab Sample ID:	78344.01	78344.02	78344.03	78344.04	78344.05	78344.06	78344.07	78344.08
Matrix:	soil	soil	soil	soil	soil	soil	soil	soil
Date Sampled:	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09
Date Received:	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep		4/29/09	4/29/09	4/29/09	4/29/09	4/29/09	4/29/09	4/29/09
Date of Analysis:	5/5/09	5/5/09	5/6/09	5/4/09	5/5/09	5/4/09	5/6/09	5/6/09
Analyst:	BML	BML	BML	BML	BML	BML	BML	BML
Method:	8270D	8270D		8270D	8270D	8270D	8270D	8270D
Dilution Factor:	1	1	3	1	1	1	2	2
Naphthalene	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
2-Methylnaphthalene	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	0.02	0.03
Acenaphthylene	0.10	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02	0.02
Acenaphthene	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Fluorene	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Phenanthrene	0.06	0.14		< 0.02	0.02	< 0.02	0.03	0.10
Anthracene Fluoranthene	0.05 0.34	0.04 0.18		< 0.02 < 0.02	< 0.02 <b>0.04</b>	< 0.02 < 0.02	< 0.02 <b>0.10</b>	0.02 0.19
Pyrene	0.34	0.16		< 0.02	0.04	< 0.02	0.10	0.19
Benzo[a]anthracene	0.18	0.10		< 0.02	< 0.04	< 0.02	0.05	0.22
Chrysene	0.22	0.08		< 0.02	0.02	< 0.02	0.06	0.12
Benzo[b]fluoranthene	0.46	0.11		< 0.02	0.04	< 0.02	0.11	0.21
Benzo[k]fluoranthene	0.16	0.04		< 0.02	< 0.02	< 0.02	0.03	0.07
Benzo[a]pyrene	0.29	0.08	0.03	< 0.01	0.02	< 0.01	0.07	0.12
Indeno[1,2,3-cd]pyrene	0.18	0.05	< 0.02	< 0.02	< 0.02	< 0.02	0.04	0.07
Dibenz[a,h]anthracene	0.04	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Benzo[g,h,i]perylene	0.17	0.05		< 0.02	< 0.02	< 0.02	0.04	0.06
p-Terphenyl-D14 (surr)	70 %R	52 %R	73 %R	48 %R	47 %R	40 %R	95 %R	102 %R

### Eastern Analytical, Inc. ID#: 78344

#### Client: The Johnson Company

Sample ID:	SS-AST-2 0-0.5'	SS-AST-2 S 1.5-2.0'	S-T-1 0-0.5'	SS-T-1 S 1.5-2.0'	SS-T-2 0-0.5'	SS-T-2 1.5-2.0'	SS-T-DP	SS-T-3 0-0.5'
Lab Sample ID:	78344.09	78344.1	78344.11	78344.12	78344.13	78344.14	78344.15	78344.16
Matrix:	soil	soil	soil	soil	soil	soil	soil	soil
Date Sampled:	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09	4/20/09
Date Received:	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09	4/22/09
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Pr		4/30/09	4/30/09	4/30/09	4/30/09	4/30/09	4/30/09	4/30/09
Date of Analysis:	5/6/09	5/6/09	5/6/09	5/4/09	5/5/09	5/4/09	5/6/09	5/5/09
Analyst:	BML	BML	BML	BML	BML	BML	BML	BML
Method:	8270D	8270D	8270D	8270D	8270D	8270D	8270D	8270D
Dilution Factor:	253	23	2	1	1	1	2	1
Naphthalene	4.1	7.3	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
2-Methylnaphthalene	38	47	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Acenaphthylene	1.8	0.55	0.12	< 0.02	0.08	< 0.02	0.06	0.10
Acenaphthene	16	2.9	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Fluorene	30	7.2	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Phenanthrene	48	11	0.07	< 0.02	0.04	< 0.02	0.05	0.06
Anthracene	< 0.8	< 0.07	0.04	< 0.02	0.03	< 0.02	< 0.02	0.05
Fluoranthene	8.5	1.5	0.41	< 0.02 < 0.02	0.23 0.28	< 0.02 < 0.02	0.23	0.30
Pyrene Reproved and three one	37 2.0	4.6 0.52	0.58 0.23	< 0.02	0.28	< 0.02 < 0.02	0.31 0.12	0.35 0.16
Benzo[a]anthracene Chrysene	2.0	0.52	0.23	< 0.02	0.15	< 0.02	0.12	0.16
Benzo[b]fluoranthene	1.3	0.40	0.20	< 0.02	0.13	< 0.02	0.13	0.18
Benzo[k]fluoranthene	< 0.8	0.40	0.00	< 0.02	0.10	< 0.02	0.00	0.13
Benzo[a]pyrene	1.3	0.39	0.10	< 0.01	0.10	< 0.01	0.10	0.15
Indeno[1,2,3-cd]pyrene		0.16	0.28	< 0.02	0.13	< 0.02	0.16	0.16
Dibenz[a,h]anthracene		< 0.07	0.05	< 0.02	0.03	< 0.02	0.03	0.03
Benzo[g,h,i]perylene	< 0.8	0.18	0.28	< 0.02	0.13	< 0.02	0.17	0.16



### Eastern Analytical, Inc. ID#: 78344

#### Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

_____

SS-T-3 1.5-2.0' SS-T-4	
Sample ID:	)-0.5' SS-T-4 1.5-2.0'
Lab Sample ID: 78344.17 783	44.18 78344.19
Matrix: soil	soil soil
Date Sampled: 4/20/09 4/	20/09 4/20/09
-	22/09 4/22/09
Units: mg/kg	ng/kg mg/kg
Date of Extraction/Prep: 4/30/09 4/	30/09 4/30/09
Date of Analysis: 5/5/09	/5/09 5/5/09
Analyst: BML	BML BML
Method: 8270D	270D 8270D
Dilution Factor: 1	1 1
2-Methylnaphthalene< 0.02	$\begin{array}{ccccccc} 0.02 & < 0.02 \\ 0.02 & < 0.02 \\ 0.011 & < 0.02 \\ 0.02 & < 0.02 \\ 0.02 & < 0.02 \\ 0.02 & < 0.02 \\ 0.14 & < 0.02 \\ 0.06 & < 0.02 \\ 0.42 & 0.04 \\ 0.20 & < 0.02 \\ 0.24 & 0.02 \\ 0.24 & 0.02 \\ 0.24 & 0.02 \\ 0.32 & 0.02 \\ 0.32 & 0.02 \\ 0.22 & < 0.02 \\ 0.21 & 0.02 \end{array}$
	8 % R 40 % R



#### Eastern Analytical, Inc. ID#: 78344

Client: The Johnson Company Client Designation: Richmond Creamery | 1-0346-3

DOR: Diluted out of calibration range.

SS-BB-01 0-0.5', SS-BB-01 1.5-2.0', SS-AST-2 1.5-2.0': The internal standard Perylene-d12 deviated low within the sample. Sample matrix interference is suspected.

SS-T-1 0-0.5', SS-T-DP: The internal standards 1,4-Dichlorobenzene-d14, Naphthalene-d8, Acenaphthene-d10, Phenanthrene-d10, Chrysene-d12, and Perylene-d12 deviated low within the sample. Sample matrix interference is suspected.

*Acenaphthene deviated below the QA/QC limit within the LCSD. This analyte is within acceptable limits within the LCS.



Batch ID: 733526-54773/S042909PAH1

#### Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

QC Report

Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Naphthalene	< 0.02	0.24 (36 %R)	0.22 (33 %R) (9 RPD)	mg/kg	30 - 160	50	8270D
2-Methylnaphthalene	< 0.02	0.27 (41 %R)	0.24 (36 %R) (13 RPD)	mg/kg	30 - 160	50	8270D
Acenaphthylene	< 0.02	0.22 (33 %R)	0.20 (30 %R) (10 RPD)	mg/kg	30 - 160	50	8270D
Acenaphthene	< 0.02	0.24 (36 %R)	* 0.20 (30 %R) (18 RPD)	mg/kg	31 - 137	19	8270D
Fluorene	< 0.02	0.26 (39 %R)	0.23 (34 %R) (14 RPD)	mg/kg	30 - 160	50	8270D
Phenanthrene	< 0.02	0.26 (39 %R)	0.23 (35 %R) (11 RPD)	mg/kg	30 - 160	50	8270D
Anthracene	< 0.02	0.24 (36 %R)	0.23 (34 %R) (6 RPD)	mg/kg	30 - 160	50	8270D
Fluoranthene	< 0.02	0.31 (46 %R)	0.28 (42 %R) (9 RPD)	mg/kg	30 - 160	50	8270D
Pyrene	< 0.02	0.31 (47 %R)	0.29 (44 %R) (7 RPD)	mg/kg	35 - 142	36	8270D
Benzo[a]anthracene	< 0.02	0.27 (40 %R)	0.25 (38 %R) (5 RPD)	mg/kg	30 - 160	50	8270D
Chrysene	< 0.02	0.30 (45 %R)	0.28 (42 %R) (7 RPD)	mg/kg	30 - 160	50	8270D
Benzo[b]fluoranthene	< 0.02	0.32 (48 %R)	0.30 (46 %R) (4 RPD)	mg/kg	30 - 160	50	8270D
Benzo[k]fluoranthene	< 0.02	0.34 (51 %R)	0.31 (46 %R) (10 RPD)	mg/kg	30 - 160	50	8270D
Benzo[a]pyrene	< 0.01	0.32 (48 %R)	0.30 (45 %R) (6 RPD)	mg/kg	30 - 160	50	8270D
Indeno[1,2,3-cd]pyrene	< 0.02	0.31 (47 %R)	0.30 (45 %R) (4 RPD)	mg/kg	30 - 160	50	8270D
Dibenz[a,h]anthracene	< 0.02	0.32 (48 %R)	0.30 (45 %R) (6 RPD)	mg/kg	30 - 160	50	8270D
Benzo[g,h,i]perylene	< 0.02	0.29 (44 %R)	0.28 (42 %R) (5 RPD)	mg/kg	30 - 160	50	8270D
p-Terphenyl-D14 (surr)	51 %R	50 %R	49 %R	mg/kg	18 - 137		8270D



Batch ID: 733526-54773/S042909PAH1

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

#### Polynuclear Aromatic Hydrocarbons QA/QC and Narrative Report

-----

Matrix: Units: EPA Method:	Aqueous % 8270D	RPD %	Solid % 8270D	RPD %	Oil % 8270D	RPD %
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[a]anthracene	30-160 30-160 30-160 46-118 30-160 30-160 30-160 30-160 26-127 30-160	31 31	30-160 30-160 31-137 30-160 30-160 30-160 30-160 35-142 30-160	19 36	30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160	50 50
Chrysene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene Benzo[g,h,i]perylene Surrogate (p-Terphenyl-D14)	30-160 30-160 30-160 30-160 30-160 30-160 30-160 33-141		30-160 30-160 30-160 30-160 30-160 30-160 30-160 18-137		30-160 30-160 30-160 30-160 30-160 30-160 30-160 30-160	

Samples were extracted and analyzed within holding time limits.

Instrumentation was tuned and calibrated in accordance with the method requirements.

The associated method blank(s) were free of contamination at the reporting limit.

Sample Surrogate Recoveries met the above stated criteria.

The associated matrix spike(s) and/or Laboratory Control Sample(s) met the above stated criteria.

There were no exceptions in the analyses, unless noted below.

*Acenaphthene deviated below the QA/QC limit within the LCSD. This analyte is within acceptable limits within the LCS.

### Eastern Analytical, Inc. ID#: 78344

#### Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	SS-T-5 0-0.5'	SS-T-5 1.5-2.0'	SS-T-1 0-0.5'	SS-T-1 1.5-2.0'					
Lab Sample ID:	78344.01	78344.02	78344.11	78344.12					
Matrix:	soil	soil	soil	soil					
Date Sampled:	4/20/09	4/20/09	4/20/09	4/20/09	Analytical		Date of		
Date Received:	4/22/09	4/22/09	4/22/09	4/22/09	Matrix	Units	Analysis	Method	Analyst
Aluminum	7600	12000	3800	3800	SolTotDry	mg/kg	4/24/09	6020	DS
Antimony	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Arsenic	3.7	7.4	2.4	4.8	SolTotDry	mg/kg	4/24/09	6020	DS
Barium	39	59	19	11	SolTotDry	mg/kg	4/24/09	6020	DS
Beryllium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Cadmium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Chromium	12	21	7.7	8.7	SolTotDry	mg/kg	4/24/09	6020	DS
Copper	12	17	8.7	11	SolTotDry	mg/kg	4/24/09	6020	DS
Cobalt	5.1	9.5	3.5	5.2	SolTotDry	mg/kg	4/24/09	6020	DS
Iron	13000	22000	9200	9600	SolTotDry	mg/kg	4/24/09	6020	DS
Lead	23	12	18	4.5	SolTotDry	mg/kg	4/24/09	6020	DS
Manganese	240	310	210	230	SolTotDry	mg/kg	4/24/09	6020	DS
Mercury	< 0.1	< 0.1	< 0.1	< 0.1	SolTotDry	mg/kg	4/24/09	6020	DS
Nickel	16	25	9.2	16	SolTotDry	mg/kg	4/24/09	6020	DS
Selenium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Silver	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Thallium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Vanadium	14	19	7.7	8.5	SolTotDry	mg/kg	4/24/09	6020	DS
Zinc	43	57	46	23	SolTotDry	mg/kg	4/24/09	6020	DS
Tin	0.56	0.52	0.46	< 0.2	SolTotDry	mg/kg	5/1/09	6020	DS

Eastern Analytical, Inc. ID#: 78344

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	SS-T-2 0-0.5'	SS-T-2 1.5-2.0'	SS-T-DP	SS-T-3 0-0.5'					
Lab Sample ID:	78344.13	78344.14	78344.15	78344.16					
Matrix:	soil	soil	soil	soil					
Date Sampled:	4/20/09	4/20/09	4/20/09	4/20/09	Analytical		Date of		
Date Received:	4/22/09	4/22/09	4/22/09	4/22/09	Matrix	Units	Analysis	Method	Analyst
Aluminum	3800	3100	3700	4000	SolTotDry	mg/kg	4/24/09	6020	DS
Antimony	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Arsenic	4.1	5.0	4.2	3.5	SolTotDry	mg/kg	4/24/09	6020	DS
Barium	17	8.3	14	16	SolTotDry	mg/kg	4/24/09	6020	DS
Beryllium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Cadmium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Chromium	8.0	8.2	8.2	10	SolTotDry	mg/kg	4/24/09	6020	DS
Copper	12	10	12	11	SolTotDry	mg/kg	4/24/09	6020	DS
Cobalt	4.8	4.9	4.2	4.4	SolTotDry	mg/kg	4/24/09	6020	DS
Iron	9100	8000	9200	9200	SolTotDry	mg/kg	4/24/09	6020	DS
Lead	11	3.2	8.5	10	SolTotDry	mg/kg	4/24/09	6020	DS
Manganese	210	220	170	210	SolTotDry	mg/kg	4/24/09	6020	DS
Mercury	< 0.1	< 0.1	< 0.1	< 0.1	SolTotDry	mg/kg	4/24/09	6020	DS
Nickel	13	16	14	13	SolTotDry	mg/kg	4/24/09	6020	DS
Selenium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Silver	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Thallium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Vanadium	7.9	6.8	7.7	8.1	SolTotDry	mg/kg	4/24/09	6020	DS
Zinc	30	18	28	31	SolTotDry	mg/kg	4/24/09	6020	DS
Tin	0.27	< 0.2	0.29	0.33	SolTotDry	mg/kg	5/1/09	6020	DS

#### Eastern Analytical, Inc. ID#: 78344

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	SS-T-3 1.5-2.0'	SS-T-4 0-0.5' S	SS-T-4 1.5-2.0'					
Lab Sample ID:	78344.17	78344.18	78344.19					
Matrix:	soil	soil	soil					
Date Sampled:	4/20/09	4/20/09	4/20/09	Analytical		Date of		
Date Received:	4/22/09	4/22/09	4/22/09	Matrix	Units	Analysis	Method	Analyst
Aluminum	3300	4500	14000	SolTotDry	mg/kg	4/24/09	6020	DS
Antimony	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Arsenic	5.0	3.1	4.1	SolTotDry	mg/kg	4/24/09	6020	DS
Barium	8.3	26	63	SolTotDry	mg/kg	4/24/09	6020	DS
Beryllium	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Cadmium	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Chromium	7.5	8.4	19	SolTotDry	mg/kg	4/24/09	6020	DS
Copper	12	11	14	SolTotDry	mg/kg	4/24/09	6020	DS
Cobalt	4.7	4.1	10	SolTotDry	mg/kg	4/24/09	6020	DS
Iron	8200	10000	24000	SolTotDry	mg/kg	4/24/09	6020	DS
Lead	3.1	20	8.0	SolTotDry	mg/kg	4/24/09	6020	DS
Manganese	240	190	480	SolTotDry	mg/kg	4/24/09	6020	DS
Mercury	< 0.1	< 0.1	< 0.1	SolTotDry	mg/kg	4/24/09	6020	DS
Nickel	15	17	26	SolTotDry	mg/kg	4/24/09	6020	DS
Selenium	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Silver	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Thallium	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	4/24/09	6020	DS
Vanadium	7.1	8.8	21	SolTotDry	mg/kg	4/24/09	6020	DS
Zinc	18	56	63	SolTotDry	mg/kg	4/24/09	6020	DS
Tin	< 0.2	0.37	0.28	SolTotDry	mg/kg	5/1/09	6020	DS

16



### Eastern Analytical, Inc. ID#: 78344

#### Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

QC Report

	QC Rep	DOFL		Date of	
Parameter Name	Blank	LCS	Units	Analysis	Method
Aluminum	< 100	400 (88 %R)	mg/kg	4/24/09	6020
Antimony	< 0.5	40 (99 %R)	mg/kg	4/24/09	6020
Arsenic	< 0.5	37 (94 %R)	mg/kg	4/24/09	6020
Barium	< 0.5	37 (92 %R)	mg/kg	4/24/09	6020
Beryllium	< 0.5	38 (95 %R)	mg/kg	4/24/09	6020
Cadmium	< 0.5	37 (92 %R)	mg/kg	4/24/09	6020
Chromium	< 0.5	36 (89 %R)	mg/kg	4/24/09	6020
Copper	< 0.5	36 (91 %R)	mg/kg	4/24/09	6020
Cobalt	< 0.5	36 (89 %R)	mg/kg	4/24/09	6020
Iron	< 100	400 (94 %R)	mg/kg	4/24/09	6020
Lead	< 0.5	36 (91 %R)	mg/kg	4/24/09	6020
Manganese	< 0.5	37 (93 %R)	mg/kg	4/24/09	6020
Mercury	< 0.1	0.4 (93 %R)	mg/kg	4/24/09	6020
Nickel	< 0.5	36 (90 %R)	mg/kg	4/24/09	6020
Selenium	< 0.5	37 (92 %R)	mg/kg	4/24/09	6020
Silver .	< 0.5	8.8 (88 %R)	mg/kg	4/24/09	6020
Tin	< 0.2	42 (104 %R)	mg/kg	5/1/09	6020
Thallium	< 0.5	35 (89 %R)	mg/kg	4/24/09	6020
Vanadium	< 0.5	37 (92 %R)	mg/kg	4/24/09	6020
Zinc	< 0.5	37 (92 %R)	mg/kg	4/24/09	6020

### Eastern Analytical, Inc. ID#: 78344

### Client: The Johnson Company

### Batch ID:

Client Designation: R

#### Richmond Creamery | 1-0346-3

	QC	Report	<b>J</b>			
MS/MSD	MS/MSD	•		Dat	te of Analy	sis
Parent ID	Parent	Matrix Spike	MSD	Units		Method
78344.14	3100	12000 (84 %R)	13000 (87 %R) (4 RPD)	mg/kg	4/24/09	6020
78344.14	< 0.5	1000 (104 %R)	1100 (109 %R) (5 RPD)	mg/kg	4/24/09	6020
78344.14	5.0	960 (95 %R)	980 (98 %R) (3 RPD)	mg/kg	4/24/09	6020
78344.14	8.3	960 (96 %R)	990 (99 %R) (3 RPD)	mg/kg	4/24/09	6020
78344.14	< 0.5	960 (96 %R)	990 (99 %R) (3 RPD)	mg/kg	4/24/09	6020
78344.14	< 0.5	960 (96 %R)	960 (96 %R) (0 RPD)	mg/kg	4/24/09	6020
78344.14	8.2	900 (89 %R)	920 (92 %R) (3 RPD)	mg/kg	4/24/09	6020
78344.14	10	820 (81 %R)	860 (85 %R) (5 RPD)	mg/kg	4/24/09	6020
78344.14	4.9	880 (88 %R)	920 (91 %R) (3 RPD)	mg/kg	4/24/09	6020
78344.14	8000	18000 (91 %R)	19000 (102 %R) (11 RPD)	mg/kg	4/24/09	6020
78344.14	3.2	920 (92 %R)	920 (92 %R) (0 RPD)	mg/kg	4/24/09	6020
78344.14	220	1100 (89 %R)	1100 (91 %R) (2 RPD)	mg/kg	4/24/09	6020
78344.14	< 0.1	1.0 (102 %R)	1.1 (105 %R) (3 RPD)	mg/kg	4/24/09	6020
78344.14	16	880 (86 %R)	890 (88 %R) (2 RPD)	mg/kg	4/24/09	6020
78344.14	< 0.5	930 (93 %R)	930 (93 %R) (0 RPD)	mg/kg	4/24/09	6020
78344.14	< 0.5	840 (84 %R)	860 (86 %R) (2 RPD)	mg/kg	4/24/09	6020
78344.14	< 0.2	41 (102 %R)	41 (102 %R) (0 RPD)	mg/kg	5/1/09	6020
78344.14	< 0.5	920 (92 %R)	930 (93 %R) (1 RPD)	mg/kg	4/24/09	6020
78344.14	6.8	930 (92 %R)			4/24/09	6020
78344.14	18	930 (91 %R)		• •	4/24/09	6020
	Parent ID 78344.14 78344.14 78344.14 78344.14 78344.14 78344.14 78344.14 78344.14 78344.14 78344.14 78344.14 78344.14 78344.14 78344.14 78344.14 78344.14	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Parent IDParentMatrix Spike $78344.14$ $3100$ $12000 (84 \% R)$ $78344.14$ $<0.5$ $1000 (104 \% R)$ $78344.14$ $5.0$ $960 (95 \% R)$ $78344.14$ $8.3$ $960 (96 \% R)$ $78344.14$ $<0.5$ $960 (96 \% R)$ $78344.14$ $<0.5$ $960 (96 \% R)$ $78344.14$ $<0.5$ $960 (96 \% R)$ $78344.14$ $8.2$ $900 (89 \% R)$ $78344.14$ $8.2$ $900 (89 \% R)$ $78344.14$ $4.9$ $880 (88 \% R)$ $78344.14$ $4.9$ $880 (88 \% R)$ $78344.14$ $3.2$ $920 (92 \% R)$ $78344.14$ $220$ $1100 (89 \% R)$ $78344.14$ $<0.1$ $1.0 (102 \% R)$ $78344.14$ $<0.5$ $930 (93 \% R)$ $78344.14$ $<0.5$ $840 (84 \% R)$ $78344.14$ $<0.2$ $41 (102 \% R)$ $78344.14$ $<0.5$ $920 (92 \% R)$	MS/MSD Parent IDMS/MSD ParentMatrix SpikeMSD78344.14310012000 (84 %R)13000 (87 %R) (4 RPD)78344.14<0.5	MS/MSD Parent IDMS/MSD ParentMatrix SpikeMSDUnits78344.14 $3100$ $12000$ (84 %R) $13000$ (87 %R) (4 RPD)mg/kg78344.14 $<0.5$ $1000$ (104 %R) $1100$ (109 %R) (5 RPD)mg/kg78344.14 $5.0$ $960$ (95 %R) $980$ (98 %R) (3 RPD)mg/kg78344.14 $8.3$ $960$ (96 %R) $990$ (99 %R) (3 RPD)mg/kg78344.14 $<0.5$ $960$ (96 %R) $990$ (99 %R) (3 RPD)mg/kg78344.14 $<0.5$ $960$ (96 %R) $990$ (99 %R) (3 RPD)mg/kg78344.14 $<0.5$ $960$ (96 %R) $920$ (92 %R) (0 RPD)mg/kg78344.14 $8.2$ $900$ (89 %R) $920$ (92 %R) (3 RPD)mg/kg78344.14 $4.9$ $880$ (88 %R) $920$ (91 %R) (3 RPD)mg/kg78344.14 $4.9$ $880$ (88 %R) $920$ (91 %R) (3 RPD)mg/kg78344.14 $3.2$ $920$ (92 %R) $920$ (92 %R) (0 RPD)mg/kg78344.14 $3.2$ $920$ (92 %R) $920$ (92 %R) (0 RPD)mg/kg78344.14 $3.2$ $920$ (92 %R) $920$ (92 %R) (0 RPD)mg/kg78344.14 $4.0$ $1100$ (89 %R) $1100$ (91 %R) (2 RPD)mg/kg78344.14 $<0.1$ $1.0$ (102 %R) $1.1$ (105 %R) (3 RPD)mg/kg78344.14 $<0.5$ $930$ (93 %R) $930$ (93 %R) (0 RPD)mg/kg78344.14 $<0.5$ $930$ (93 %R) $930$ (93 %R) (0 RPD)mg/kg78344.14 $<0.5$ $920$ (92 %R) $930$ (93 %R) (1 RPD)mg/kg </td <td>MS/MSD Parent ID         MS/MSD Parent         Matrix Spike         Date of Analys           78344.14         3100         12000 (84 %R)         13000 (87 %R) (4 RPD)         mg/kg         4/24/09           78344.14         &lt;0.5</td> 1000 (104 %R)         1100 (109 %R) (5 RPD)         mg/kg         4/24/09           78344.14         <0.5	MS/MSD Parent ID         MS/MSD Parent         Matrix Spike         Date of Analys           78344.14         3100         12000 (84 %R)         13000 (87 %R) (4 RPD)         mg/kg         4/24/09           78344.14         <0.5

#### **Batch ID:**

### Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

	Metais QA/	QC and Narrative Report	
QA/QC:	LCS	MS	MSD
Matrix:	Aqueous/Soil	Aqueous/Soil	Aqueous/Soil
Units:	. %	%	. %
EPA Method:	6010B/6020	6010B/6020	6010B/6020
Aluminum	80-120	75-125	75-125
Antimony	80-120	75-125	75-125
Arsenic	80-120	75-125	75-125
Barium	80-120	75-125	75-125
Beryllium	80-120	75-125	75-125
Boron	80-120	75-125	75-125
Cadmium	80-120	75-125	75-125
Calcium	80-120	75-125	75-125
Chromium	80-120	75-125	75-125
Chromium III	80-120	75-125	75-125
Chromium IV	80-120	75-125	75-125
Cobalt	80-120	75-125	75-125
Copper	80-120	75-125	75-125
Iron	80-120	75-125	75-125
Lead	80-120	75-125	75-125
Magnesium	80-120	75-125	75-125
Manganese	80-120	75-125	75-125
Mercury	80-120	75-125	75-125
Molybdenum	80-120	75-125	75-125
Nickel	80-120	75-125	75-125
Phosphorus	80-120	75-125	75-125
Potassium	80-120	75-125	75-125
Selenium	80-120	75-125	75-125
Silicon	80-120	75-125	75-125
Silver	80-120	75-125	75-125
Sodium	80-120	75-125	75-125
Thallium	80-120	75-125	75-125
Tin	80-120	75-125	75-125
Titanium	80-120	75-125	75-125
Vanadium	80-120	75-125	75-125
Zinc	80-120	75-125	75-125

Samples were analyzed within holding time limits.

Instrumentation was calibrated in accordance with the method requirements.

The method blanks were free of contamination at the reporting limits.

The associated matrix spikes and/or Laboratory Control Samples met the above stated criteria.

There were no exceptions in the analyses, unless noted below.

	$\left  \bigwedge \bigwedge \right $ eastern analytical.	Quote #:	REGULATORY PROGRAM: NPDES: RGP POTW STORMWATER OR GWP, OIL FUND, BROWNFIELD OR OTHER:	STATE: NH MA ME	PROTECT #: 1-03-46-3	- Mine lur	- 4-4-1-	CITY: Mantpoling Sun		PROJECT MANAGER: RIVINDA	PRESERVATIVE: H-HCL; N-HNO;; S-H;SO4; Na-NaOH; M-MEOH	MATRIX: A-AIR; S-SOIL; GW-GROUND WATER; SW-SURFACE WATER; DW-DRINKING WATER; WW-WASTE WATER	55-AST-2 1.5-20 4/20	55-AST-2 0-0.5 4/20	55-83-01 1.5-2.0 4/20	or/1, 25.0-0 10-82-55	55-87-3-1.5-2.0, 4/2	55-97-3 0-0.5, 4/2	55-10-1.5-2.0. 41:	55-DR-0-0.5, 41)	55-7-5 1.5-2-01 4/4	55-7-5 0-0.51 4	SAMPLE I.D.		Page of	~ ,
	inc.	P0 #:	eld or Other:	OTHER:	Limes 4	it can the grown	376 Million		1, 276 900	Karr	OH; M-MEOH	SURFACE WATER; DW-DRINKING WATER;	- 1410 5 G	0 1410 SW	1345 5 6	1345	20 1310 5 4	10 1310 56	20 1200 S C	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1 1130 S G	25 OSIN 09	SAMPLING <b>DATE / TIME</b> NDICATE BOTH START & FINISH DATE / TIME MATRIX (SEE BELOW GRAB/*COMPOSIT 524.2		Bold Fi	
WHITE: ORIGINAL GR	E CONCORD NH 03301 TEL: 603	Justicered y	REELWQUISHED BY: ,	RELINGUISHED BY:	SAMPLER(S): WILLOW		MA MCP	A (B) C	REPORTING LEVEL														S24.2         BTEX         S24.2         MTBE ONLY           8260B         624         VTICs         I.           1,4         DIOXAME         EDB         DBCP           8021B         BTEX         HALOS           801SB         GRO         MEGRO         MAVPH           8270C         625         SVTICs           ABN         A         BN         PAH           TPH8100         L1         L2           801SB         DRO         MEDRO         MAEPH           608         PEST/PCB         EXTOC         EXTOC	VOC SVOC	BOLD FIELDS REQUIRED. PLEASE	CHAIN-OF-COVIOUT DECO
GREEN: PROJECT MANAGER)	278 0575 1 800 287 0575 1 54×, 603 22 (1995) 1 800 287 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 22 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1995) 1 54×, 603 (1905) 1 54×, 603 (1905) 1 54×, 603 (19	09 14:34	a	DATE: TIME: AGENTED BY	Ħ	NO FAX	RONIC OPTIONS	IF YES: FAX OR PDF	REPORTING OPTIONS PRELIMS: VEL OR NO	Wells													PEST 8081A         PCB 8082           OIL & GREASE         1664         TPH 1664           TCLP 1311         ABN         METALS           VOC         PEST         HERB           DISSOLVED         METALS         (LIST BELOW)           TOTAL         METALS         (LIST BELOW)           TS         TSS         TDS           BR         CI         F         S04           NO2         NO2         NO2         NO2           BOD         CBOD         T. ALK.	TCLP METALS	PLEASE CIRCLE REQUESTED ANALYSIS	
	ED 554.   HELD READINGS:	Chur-	Jen J					DISSOLVED	ICE? (ES) NO OTHER METALS:	TEMP													DOD COOD T. ALA. TKN NH, T. Phos. pH T. Res. Chlorine COD Phenols TOC Total Cyanide Total Sulfide Reactive Cranide Reactive Sulfide FLASHOPINT Ignitability T. Collform E. Colj F. Colform		ALYSIS.	
(WHITE: ORIGINAL GREEN: PROJECT MANAGER)		SUSPECTED CONTAMINATION:		Kerk Or (1) Ketroken	ALL STATE	2017 (62 1001 100 120 C		DISSOLVED METALS FIELD FILTERED? YES NO	7ALS:	:: 8 RCRA 13 PP FE, MN PB, CU			XX 22802	XX 2 28011	× × 228006	XX 22815	XX 2 2800	r	Orage & XX	XX 2 2008	XXX 3 28019	XXX	HETEROTROPHIC PLATE COUNT HETEROTROPHIC PLATE COUNT PCC+CS VOCS PAHS PRO VGCS MC MCS # OF CONTAINERS MODE # S		∟ 78344 _	

-

professional laboratory services	$\  \langle \rangle \rangle_{\Lambda} \ $ eastern and		Quote #:		NAM: NPDES: RGP	NH MA ME	5	SITE NAME: Kichmond Creat	F.	802 22-5/0	UNT: 1210014107 . 4600	10	COMPANY: The Johnson	PROJECT MANAGER: Rhonda	PRESERVATIVE: H-HCL; N-HNO;; S-H;SO4; Na-NaOH; M-MEOH	MATRIX: A-AIR; S-SOD, GW-GROUND WATER; WW-WASTE WATER	Trip Blank HIND	5-7-4-1.5-20	0-0,5	55.7-3 1.5-2.1.	0-0.51	90-7-26	55.7.21.5-2.0	×-Y-20-0.5'	5.7-1 1.5-2.0'	55-7-1 0-0.51	SAMPLE I.D.				Page of
	analytical, inc. 25 C		P0 #:	WIFIELD OR OTHER:	POTW STORMWATER OR	OTHER:		1	1. 14 ca		STATE:	1 0	(angeny	hay	-NaOH; М-МЕОН	SW-SURFACE WATER; DW-DRINKI	0940	9/w 110	011110	1/1050	4/20   1050	1/20 1 1200	4 20 1020	4/20 / 1030	4/20/0945	Alto Ouriz	Indicate Both Start & Finish Date / Time	DATE / TIME *IF COMPOSITE,	SAMPLING		
۲. ۲	HENELL DRIVE   CO								Scomail. (m			5				ING WATER;	して	い い く	s 9	2 2	ና	26	S	5 ~	30	√ ?	MATRIX GRAB/* 524.2 524.2 BTEX 8260B 624	⁵ Сомро 524.2 МТВ VTICs	OSITE		
WHITE: ORIGINAL	25 CHENELL DRIVE CONCORD. NH 03301 TEL: 603.228.0525 1 800 287 0525 FAX: 603 228.4591 FAX: 603 228.0525 1 800 287 0525	RELINQUISHED BY:	1 Jack	- REFINOILISHED RY.	NELINUUSHED BY	Brilling Wil	SAMPLER(S): 11104	3	PRESUMPTIVE CERTAINTY		= A B	ING	- 0A/0C	DATE NEEDED:													1, 4 DIOXANE 8021B BTE 8015B GRO 8270C 625 ABN A TPH8100 L	EDB DB X HALOS MEGRO SVTICS BN PAH I L2	MAVPH		<b>v</b>
GREEN: PROIECT MANAGER)	. 603.228.0525   1.800		1051 1	+122/09 L		100	IN CANAN	2	NO FAX	ELECTROM	C IF YES: FAX OR		REPORTING	& wars													8015B DRO 608 PEST/PCB PEST 8081A OIL & GREASE 1 TCLP 1311 YOC PEST DISSOLVED META	PCB 8082 664 TPH ABN Met/ Herb	MAEPH 1664 NLS DW)	SVOC TOLP META	CHAIN-OF-CUSTODY RECO
MANAGER)	אז טבטב   ביאה נטש ט. מ	TIME: RECEIVED BY	tr34 (ite	ß	TIME: RECEIVED BY:			-	E-MAU PDF EQUIS	ELECTRONIC OPTIONS	OR PDF	on Ho															BR CI F NO2 NO3 BOD CBOD	DS SPEC. SO4 NO2/NO3 T. ALK.	Con.	IS I	
		Jun	fins-	har	<u> </u>							(YES NO															pH T. Res. C COD Phenol Total Cyanide	s TOC Total Sulfid	E	NALYSIS. NORGANICS	
		FIELD READINGS:	SUSPECTED CONTAMINATION:	1	Rift on	VOL, (8260		MJ DN	JM los	NOLES: (IE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT)	DISSOLVED METALS FIELD FILTERED?	UTHER METALS: 1	2	METALS: 8 RCRA			×	7	7	X	×	×	X	×	×		T. COLIFORM F. COLIFORM ENTEROCOCCI HETEROTROPHIC P	REACTIVE INITABILITY E. COLI LATE COUNT		MICRO OT	- 1
	_				07/1	(8260B) Petrolery	T V	- U	Iow Dull methy	tion limits, Billing Info,	FILTERED? YES		30t	13 PP FE. MN		73	オレン	4	XX	X L	Х Х У	× ~ ~	XXX	Х Х И.	メメート	-	# OF CONTAINERS	5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	vilnis	THER	78344
-AILABS.COM						10cm		ç	why?	), IF DIFFERENT)	No		j	PB. CU			1001	06	10801	bobte	TUDE	SUBET	L'HART'Y	とない	SUL	SUBER	Notes MeOH Vial #			1	



Rhonda Kay The Johnson Company 100 State Street Montpelier, VT 05602 eastern analytical

professional laboratory services



Subject: Laboratory Report

Eastern Analytical, Inc. ID: Client Identification: Date Received: 79158 Richmond Creamery | 1-0346-3 5/18/2009

Dear Ms. Kay :

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. (EAI) certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.eailabs.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply throughout all EAI reports:

- Solid samples are reported on a dry weight basis, unless otherwise noted
- <: "less than" followed by the detection limit
- TNR: Testing Not Requested
- ND: None Detected, no established detection limit
- RL: Reporting Limits
- %R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269) and Vermont (VT1012).

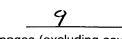
This report package contains the following information: Sample Conditions summary, Analytical Results/Data and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

### Analytical Deviation & QA/QC Documentation:

Quality Control Samples associated with this project are included in this report. At a minimum, a Method Blank and Laboratory Control Sample (LCS) are reported. Matrix Spikes and Duplicates are reported where applicable. Deviations are narrated on the QC pages.

If you have any questions regarding the results contained within, please feel free to directly contact me, or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.


Sincerely,

sumi an

Lorraine Olashaw, Lab Director Eastern Analytical, Inc. 25 Chenell Drive, Concord, NH 03301

5.27.09 Date

www.eailabs.com



# of pages (excluding cover letter) TEL 603 228-0525 1-800-287-0525 FAX 603 228-4591



Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

#### Temperature upon receipt (°C): 5

Received on ice or cold packs (Yes/No): Y

Lab ID	Sample ID	Date Received	Date Sampled	Sample % Dry Matrix Weigh	t Exceptions/Comments (other than thermal preservation)
79158.01	MW-2	5/18/09	5/15/09	aqueous	Adheres to Sample Acceptance Policy
79158.02	MW-7	5/18/09	5/15/09	aqueous	Adheres to Sample Acceptance Policy
79158.03	MW-5	5/18/09	5/15/09	aqueous	Adheres to Sample Acceptance Policy
79158.04	MW-9	5/18/09	5/15/09	aqueous	Adheres to Sample Acceptance Policy
79158.05	MW-6	5/18/09	5/15/09	aqueous	Adheres to Sample Acceptance Policy
79158.06	MW-8	5/18/09	5/15/09	aqueous	Adheres to Sample Acceptance Policy
79158.07	MW-Dup	5/18/09	5/15/09	aqueous	Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitibility, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater : Inorganics, 19th Edition, 1995; Microbiology, 20th Edition, 1998
3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 2nd edition, 1992

eastern analytical, inc.

www.eailabs.com

Eastern Analytical, Inc. ID#: 79158

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	MW-2	MW-7	MW-5	MW-9	MW-6	MW-8	MW-Dup	
Lab Sample ID:	79158.01	79158.02	79158.03	79158.04	79158.05	79158.06	79158.07	
Matrix:	aqueous							
Date Sampled:	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	
Date Received:	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	
Units:	ug/l							
Date of Extraction/Prep:	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	
Date of Analysis:	5/20/09	5/22/09	5/22/09	5/22/09	5/22/09	5/22/09	5/22/09	
Analyst:	BML							
Method:	8270D							
Dilution Factor:	1	1	1	1	1	1	1	
Phenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
2-Chlorophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
2,4-Dichlorophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
2,4,5-Trichlorophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
2,4,6-Trichlorophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
Pentachlorophenol	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
2-Nitrophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
4-Nitrophenol	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
2,4-Dinitrophenol	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
2-Methylphenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
3/4-Methylphenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
2,4-Dimethylphenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
4-Chloro-3-methylphenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
4,6-Dinitro-2-methylphenol	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
Benzoic Acid	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
2-Fluorophenol (surr)	55 %R	22 %R	50 %R	*13 %R	*0 %R	*5 %R	*9 %R	
Phenol-d6 (surr)	29 %R	12 %R	27 %R	10 %R	*2 %R	*4 %R	*7 %R	
2,4,6-Tribromophenol (surr)	84 %R	44 %R	65 %R	38 %R	*0 %R	*0 %R	29 %R	

* The surrogate deviated below the QA/QC limit within the sample. Sample matrix interference is suspected.

Eastern Analytical, Inc. ID#: 79158

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	MW-2	MW-7	MW-5	MW-9	MW-6	MW-8	MW-Dup	
Lab Sample ID:	79158.01	79158.02	79158.03	79158.04	79158.05	79158.06	79158.07	
Matrix:	aqueous							
	•	-	-			-	•	
Date Sampled:	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	
Date Received:	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	
Units:	ug/l							
Date of Extraction/Prep:	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	
Date of Analysis:	5/20/09	5/22/09	5/22/09	5/22/09	5/22/09	5/22/09	5/22/09	
Analyst:	BML							
Method:	8270D							
							02700	
Dilution Factor:	1	1	1	1	1	1	1	
I-Nitrosodimethylamine	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
-Nitroso-di-n-propylamine	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
-Nitrosodiphenylamine	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
is(2-Chloroethyl)ether	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
is(2-chloroisopropyl)ether	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
is(2-Chloroethoxy)methane	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
,3-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
,4-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
,2-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
,2,4-Trichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
-Chloronaphthalene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
-Chlorophenyl-phenylether	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
-Bromophenyl-phenylether	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
lexachloroethane	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
lexachlorobutadiene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
lexachlorocyclopentadiene	< 5	< 5	< 5	< 5	< 5 < 1	< 5	< 5	
lexachlorobenzene	< 1 < 1	< 1	< 1 < 1	< 1 < 1	< 1	< 1 < 1	< 1 < 1	
-Chloroaniline	< 5	< 1 < 5	< 5	< 5	< 5	< 5	< 5	
-Nitroaniline -Nitroaniline	< 1	< 1	< 1	< 1	< 1	< 1	< 5 < 1	
-Nitroaniline	<1	< 1	< 1	< 1	< 1	< 1	< 1	
enzyl alcohoł	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
litrobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
sophorone	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
.4-Dinitrotoluene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
,6-Dinitrotoluene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
enzidine	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
,3'-Dichlorobenzidine	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
yridine	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
zobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
arbazole	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
imethylphthalate	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
iethylphthalate	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
i-n-butylphthalate	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
utylbenzylphthalate	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
is(2-Ethylhexyl)phthalate	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
i-n-octylphthalate	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
ibenzofuran	< 1	< 1	< 1	< 1	< 1	< 1	< 1	



Eastern Analytical, Inc. ID#: 79158

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	MW-2	MW-7	MW-5	MW-9	MW-6	MW-8	MW-Dup	
Lab Sample ID:	79158.01	79158.02	79158.03	79158.04	79158.05	79158.06	79158.07	
Matrix:	aqueous							
Date Sampled:	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	
Date Received:	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	
Units:	ug/l							
Date of Extraction/Prep:	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	
Date of Analysis:	5/20/09	5/22/09	5/22/09	5/22/09	5/22/09	5/22/09	5/22/09	
Analyst:	BML							
Method:	8270D							
Dilution Factor:	1	1	1	1	1	1	1	
Naphthalene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
2-Methylnaphthalene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Acenaphthylene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Acenaphthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Fluorene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Phenanthrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Anthracene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Pyrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Benzo[a]anthracene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Chrysene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Benzo[b]fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Benzo[k]fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Benzo[a]pyrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	
Indeno[1,2,3-cd]pyrene	< 0.1 < 0.1							
Dibenz[a,h]anthracene	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1	
Benzo[g,h,i]perylene		< 0.1 74 %R	< 0.1 73 %R	< 0.1 74 %R	< 0.1 76 %R	< 0.1 74 %R	< 0.1 66 %R	
Nitrobenzene-D5 (surr)	88 %R 72 %R	74 %R 95 %R	73 %R 96 %R	74 %R 96 %R	103 %R	74 %R 91 %R	89 %R	
2-Fluorobiphenyl (surr) p-Terphenyl-D14 (surr)	106 %R	95 %R 91 %R	92 %R	95 %R	97 %R	91 %R	91 %R	

### Batch ID: 733548-46239/A051909BaseN1

#### Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

**QC Report** 

Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Phenol	< 1	9 (37 %R)	9 (37 %R) (0 RPD)	ug/l	12 - 110	42	8270D
2-Chlorophenol	< 1	21 (85 %R)	21 (83 %R) (2 RPD)	ug/ł	27 - 123	40	8270D
2,4-Dichlorophenol	< 1			ug/i			8270D
2,4,5-Trichlorophenol	< 1			ug/l			8270D
2,4,6-Trichlorophenol	< 1			ug/i			8270D
Pentachlorophenol	< 5	18 (73 %R)	18 (71 %R) (3 RPD)	ug/l	9 - 103	50	8270D
2-Nitrophenol	< 1			ug/l			8270D
4-Nitrophenol	< 5	11 (44 %R)	9 (36 %R) (20 RPD)	ug/l	10 - 80	50	8270D
2,4-Dinitrophenol	< 5			ug/l			8270D
2-Methylphenol	< 1			ug/l			8270D
3/4-Methylphenol	< 1			ug/l			8270D
2,4-Dimethylphenol	< 1			ug/l			8270D
4-Chloro-3-methylphenol	< 1	20 (81 %R)	19 (77 %R) (5 RPD)	ug/l	23 - 97	42	8270D
4,6-Dinitro-2-methylphenol	< 5			ug/l			8270D
Benzoic Acid	< 5			ug/l			8270D
2-Fluorophenol (surr)	69 %R	63 %R	62 %R	% Rec	21 - 110		8270D
Phenol-d6 (surr)	37 %R	37 %R	35 %R	% Rec	10 - 94		8270D
2,4,6-Tribromophenol (surr)	88 %R	94 %R	89 %R	% Rec	10 - 123		8270D



Batch ID: 733548-46239/A051909BaseN1

#### Client: The Johnson Company

Client Designation: QC Report

Richmond Creamery | 1-0346-3

Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
N-Nitrosodimethylamine	< 1			ug/l			8270D
n-Nitroso-di-n-propylamine	< 1	22 (86 %R)	22 (87 %R) (1 RPD)	ug/l	41 - 116	38	8270D
n-Nitrosodiphenylamine	< 1			ug/l			8270D
bis(2-Chloroethyl)ether	< 1			ug/l			8270D
bis(2-chloroisopropyl)ether	< 1			ug/l			8270D
bis(2-Chloroethoxy)methane	< 1			ug/l			8270D
1,3-Dichlorobenzene	< 1			ug/l			8270D
1,4-Dichlorobenzene	< 1	15 (62 %R)	16 (62 %R) (0 RPD)	ug/l	36 - 97	28	8270D
1,2-Dichlorobenzene	< 1			ug/l			8270D
1,2,4-Trichlorobenzene	< 1	17 (67 %R)	17 (68 %R) (1 RPD)	ug/ł	39 - 98	28	8270D
2-Chloronaphthalene	< 1			ug/i			8270D
4-Chlorophenyl-phenylether	< 1			ug/l			8270D
4-Bromophenyl-phenylether	< 1			ug/l			8270D
Hexachloroethane	< 1			ug/l			8270D
Hexachlorobutadiene	< 1			ug/l			8270D
Hexachlorocyclopentadiene	< 5			ug/l			8270D
Hexachlorobenzene	< 1			ug/l			8270D
4-Chloroaniline	< 1			ug/l			8270D
2-Nitroaniline	< 5			ug/l			8270D
3-Nitroaniline	< 1			ug/l			8270D
4-Nitroaniline	< 1			ug/l			8270D
Benzyl alcohol	< 1			ug/l			8270D
Nitrobenzene	< 1			ug/l			8270D
Isophorone	< 1			ug/l			8270D
2,4-Dinitrotoluene	< 1	20 (80 %R)	21 (85 %R) (6 RPD)	ug/l	24 - 96	38	8270D
2,6-Dinitrotoluene	< 1			ug/l			8270D
Benzidine	< 5			ug/l			8270D
3,3'-Dichlorobenzidine	< 1			ug/l			8270D
Pyridine	< 5			ug/l			8270D
Azobenzene	< 1			ug/l			8270D
Carbazole	< 1			ug/l			8270D
Dimethylphthalate	< 1			ug/l			8270D
Diethylphthalate	< 1			ug/l			8270D
Di-n-butylphthalate	< 5			ug/l			8270D
Butylbenzylphthalate	< 1			ug/l			8270D
bis(2-Ethylhexyl)phthalate	< 5			ug/l			8270D
Di-n-octylphthalate	< 1			ug/l			8270D
Dibenzofuran	< 1			ug/l	20 400	50	8270D
Naphthalene	< 0.1	19 (75 %R)	19 (77 %R) (3 RPD)	ug/l		50	8270D
2-Methylnaphthalene	< 0.1	16 (66 %R)	17 (67 %R) (2 RPD)	ug/l	30 - 160	50	8270D
Acenaphthylene	< 0.1	18 (72 %R)	18 (74 %R) (3 RPD)	ug/l		50 24	8270D
Acenaphthene	< 0.1	18 (74 %R)	19 (75 %R) (1 RPD)	-	46 - 118	31 50	8270D
Fluorene	< 0.1	18 (71 %R)	18 (73 %R) (3 RPD)	-	30 - 160	50	8270D
Phenanthrene	< 0.1	20 (79 %R)	20 (80 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Anthracene	< 0.1	21 (82 %R)	21 (83 %R) (1 RPD)	ug/l	30 - 160	50	8270D

### eastern analytical, inc.

6



### Batch ID: 733548-46239/A051909BaseN1

#### Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

## QC Report

	Disala						
Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Fluoranthene	< 0.1	19 (75 %R)	19 (76 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Pyrene	< 0.1	22 (86 %R)	21 (84 %R) (2 RPD)	ug/l	26 - 127	31	8270D
Benzo[a]anthracene	< 0.1	21 (84 %R)	21 (83 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Chrysene	< 0.1	22 (88 %R)	21 (86 %R) (2 RPD)	ug/l	30 - 160	50	8270D
Benzo[b]fluoranthene	< 0.1	20 (79 %R)	20 (80 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Benzo[k]fluoranthene	< 0.1	19 (77 %R)	20 (78 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Benzo[a]pyrene	< 0.1	19 (74 %R)	19 (76 %R) (3 RPD)	ug/l	30 - 160	50	8270D
Indeno[1,2,3-cd]pyrene	< 0.1	20 (81 %R)	20 (82 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Dibenz[a,h]anthracene	< 0.1	20 (81 %R)	20 (80 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Benzo[g,h,i]perylene	< 0.1	23 (92 %R)	23 (92 %R) (0 RPD)	ug/l	30 - 160	50	8270D
Nitrobenzene-D5 (surr)	90 %R	88 %R	87 %R	% Rec	35 - 114		8270D
2-Fluorobiphenyl (surr)	71 %R	70 %R	69 %R	% Rec	43 - 116		8270D
p-Terphenyl-D14 (surr)	102 %R	92 %R	92 %R	% Rec	33 - 141		8270D

### eastern analytical, inc.



Batch ID: 733548-46239/A051909BaseN1

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

#### Acid and Base/Neutral Extractable Compounds QA/QC and Narrative Report

Matrix: Units: EPA Method:	Aqueous % RPD 8270D	Solid % RPD 8270D	Aqueous % 625(mod)
Acid Extractables Surrogates: 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	21-110 10-94 10-123	25-121 24-113 19-122	21-110 10-94 10-123
Base/Neutral Extractables Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl p-Terphenyl-d14	35-114 43-116 33-141	23-120 30-115 18-137	35-114 43-116 33-141
Acid Extractables Spikes: Phenol 2-Chlorophenol Pentachlorophenol 4-Nitrophenol 4-Chloro-3-methylphenol	12-110 42 27-123 40 9-103 50 10-80 50 23-97 42	26-90 35 25-102 50 17-109 47 11-114 50 26-103 33	
<b>Base/Neutral Extractables Spikes:</b> N-Nitroso-di-n-propylamine 1,4-Dichlorobenzene 1,2,4-Trichlorobenzene 2,4-Dinitrotoluene Acenaphthene Pyrene	41-116 38 36-97 28 39-98 28 24-96 38 46-118 31 26-127 31	41-126 38 28-104 27 38-107 23 28-89 47 31-137 19 35-142 36	

Samples were extracted and analyzed within holding time limits.

Instrumentation was tuned and calibrated in accordance with the method requirements.

The associated method blank(s) were free of contamination at the reporting limit.

The associated (MS) matrix spike(s) and/or (LCS) Laboratory Control Sample(s) met the above stated criteria. There were no exceptions in the analyses, unless noted.

DOR: Diluted out of calibration range.

MI: Matrix interference.

(mod): EPA method 3510C and 8270D employed.

Professional laboratory services (WHITE: ORIGINAL	Mantpelier St Suite 600 REPORTINGL Mantpelier St Suite 600 REPORTINGL (802) 229-5876 EXT. DS602 A B (802) 229-5876 EXT. MAN (802) 229-5876 EXT. MAN ME: Richmond Creamery MAN ME: Richmond Creamery SMMPLER(S):	MAGER: Rhonde Kay	MATRIX: A-AIR; S-SOIL; GW-GROUND WATER; SW-SURFACE WATER; DW-DRINKING WATER; WW-WASTE WATER PRESERVATIVE: N-HKL: N-HND.; S-H-SO.; Na-NaOH- M-MEOH	$\frac{1}{1000} = \frac{1}{100} = 1$	8	MW-2 5-15-07/1009 GN 6 X	SAMPLE .D. SAMPLE .D. START & FLOMPOSITE DATE / TIME DATE / TIME MATRIX (SEE BELOW) GRAB /* COMPOSITE 524.2 524.2 BTEX 524.2 BTEX 525.5 SYTICS 525.5 SYTICS 52	
25 Chenell Drive   Concord, NH 03301   Tel: 603.228.0525   1.800.287.0525 / Fax: 603.228.4591   E-Mail: customer_service@eailabs.com   www.eailabs.com (WHITE: Original GREEN: Project Manager)	QA/QC     REPORTING OPTIONS     ICE?     No     OTHER METALS:       A     B     C     PRELIMS: YES OR NO     ICE?     No     OTHER METALS:       A     B     C     IF YES: FAX OR PDF     IF YES: FAX OR PDF     DISSOLVED METALS FIELD FLITERED?     YES     No       MA     MCP     ELECTRONIC OPTIONS     ELECTRONIC OPTIONS     NOTES: (IE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT)       PRESUMPTIVE CERTAINTY     No FAX     E-MAIL     PDF     EQUIS	EEDED: ASAC - Sday per MPS 5/18/09 200 METALS: 8 RCRA 13 PP FE, MN PB, CU					Rest       A       BN       PAH         TPH8100       L1       L2         8015B       DRO       MEDRO       MAEPH         608       PEST/PCB       PEST       BOBIA       PCB       8082         011. & GREASE       1664       TPH 1664         TCLP       1311       ABN       METALS         VOC       PEST       HEBB       DISSOLVED       METALS         DISSOLVED METALS       (LIST BELOW)       TOTAL       TOTAL       METALS         TOTAL       METALS       (LIST BELOW)       TOTAL       METALS       METALS         BA       C1       F       SO4       NO2       NO3       NO3       NO4         BOD       CBOD       T. ALK.       T. ALK.       TKN       NH3       T. PHOS.         PH       T. RES. CHLORINE       COL       TOTAL       SULFIDE       REACTIVE CYANIDE       REACTIVE SULFIDE         REACTIVE CTANIDE       TOTAL SULFIDE       REACTIVE CUANIDE       REACTIVE SULFIDE       REACTIVE CUANIDE       REACTIVE SULFIDE         REACTIVE CTANIDE       TOTAL SULFIDE       REACTIVE CUANIDE       REACTIVE CUANIDE       REACTIVE CUANIDE         RETENDICOCCI       HETEROTADOPHIC PLATE COUNT       HET	CHAIN-OF-CUSTODY RECORD 79158 Required. Please Circle Requested Analysis. C SVOC TCIP METALS INORGANICS MICRO OTHER 0

7



Rhonda Kay The Johnson Company 100 State Street Montpelier, VT 05602 eastern analytical

professional laboratory services



Subject: Laboratory Report

Eastern Analytical, Inc. ID: Client Identification: Date Received: 79158 Richmond Creamery | 1-0346-3 5/18/2009

Dear Ms. Kay :

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. (EAI) certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.eailabs.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply throughout all EAI reports:

- Solid samples are reported on a dry weight basis, unless otherwise noted
- <: "less than" followed by the detection limit
- TNR: Testing Not Requested
- ND: None Detected, no established detection limit
- RL: Reporting Limits
- %R: % Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269) and Vermont (VT1012).

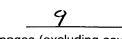
This report package contains the following information: Sample Conditions summary, Analytical Results/Data and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

### Analytical Deviation & QA/QC Documentation:

Quality Control Samples associated with this project are included in this report. At a minimum, a Method Blank and Laboratory Control Sample (LCS) are reported. Matrix Spikes and Duplicates are reported where applicable. Deviations are narrated on the QC pages.

If you have any questions regarding the results contained within, please feel free to directly contact me, or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample(s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.


Sincerely,

sumi aan

Lorraine Olashaw, Lab Director Eastern Analytical, Inc. 25 Chenell Drive, Concord, NH 03301

5.27.09 Date

www.eailabs.com



# of pages (excluding cover letter) TEL 603 228-0525 1-800-287-0525 FAX 603 228-4591



Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

#### Temperature upon receipt (°C): 5

Received on ice or cold packs (Yes/No): Y

Lab ID	Sample ID	Date Received	Date Sampled	Sample % Dry Matrix Weigh	t Exceptions/Comments (other than thermal preservation)
79158.01	MW-2	5/18/09	5/15/09	aqueous	Adheres to Sample Acceptance Policy
79158.02	MW-7	5/18/09	5/15/09	aqueous	Adheres to Sample Acceptance Policy
79158.03	MW-5	5/18/09	5/15/09	aqueous	Adheres to Sample Acceptance Policy
79158.04	MW-9	5/18/09	5/15/09	aqueous	Adheres to Sample Acceptance Policy
79158.05	MW-6	5/18/09	5/15/09	aqueous	Adheres to Sample Acceptance Policy
79158.06	MW-8	5/18/09	5/15/09	aqueous	Adheres to Sample Acceptance Policy
79158.07	MW-Dup	5/18/09	5/15/09	aqueous	Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitibility, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater : Inorganics, 19th Edition, 1995; Microbiology, 20th Edition, 1998
3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 2nd edition, 1992

eastern analytical, inc.

www.eailabs.com

Eastern Analytical, Inc. ID#: 79158

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	MW-2	MW-7	MW-5	MW-9	MW-6	MW-8	MW-Dup	
Lab Sample ID:	79158.01	79158.02	79158.03	79158.04	79158.05	79158.06	79158.07	
Matrix:	aqueous							
Date Sampled:	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	
Date Received:	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	
Units:	ug/l							
Date of Extraction/Prep:	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	
Date of Analysis:	5/20/09	5/22/09	5/22/09	5/22/09	5/22/09	5/22/09	5/22/09	
Analyst:	BML							
Method:	8270D							
Dilution Factor:	1	1	1	1	1	1	1	
Phenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
2-Chlorophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
2,4-Dichlorophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
2,4,5-Trichlorophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
2,4,6-Trichlorophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
Pentachlorophenol	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
2-Nitrophenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
4-Nitrophenol	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
2,4-Dinitrophenol	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
2-Methylphenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
3/4-Methylphenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
2,4-Dimethylphenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
4-Chloro-3-methylphenol	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
4,6-Dinitro-2-methylphenol	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
Benzoic Acid	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
2-Fluorophenol (surr)	55 %R	22 %R	50 %R	*13 %R	*0 %R	*5 %R	*9 %R	
Phenol-d6 (surr)	29 %R	12 %R	27 %R	10 %R	*2 %R	*4 %R	*7 %R	
2,4,6-Tribromophenol (surr)	84 %R	44 %R	65 %R	38 %R	*0 %R	*0 %R	29 %R	

* The surrogate deviated below the QA/QC limit within the sample. Sample matrix interference is suspected.

Eastern Analytical, Inc. ID#: 79158

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	MW-2	MW-7	MW-5	MW-9	MW-6	MW-8	MW-Dup	
Lab Sample ID:	79158.01	79158.02	79158.03	79158.04	79158.05	79158.06	79158.07	
Matrix:	aqueous							
	•	-	-			-	•	
Date Sampled:	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	
Date Received:	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	
Units:	ug/l							
Date of Extraction/Prep:	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	
Date of Analysis:	5/20/09	5/22/09	5/22/09	5/22/09	5/22/09	5/22/09	5/22/09	
Analyst:	BML							
Method:	8270D							
							02700	
Dilution Factor:	1	1	1	1	1	1	1	
I-Nitrosodimethylamine	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
-Nitroso-di-n-propylamine	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
-Nitrosodiphenylamine	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
is(2-Chloroethyl)ether	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
is(2-chloroisopropyl)ether	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
is(2-Chloroethoxy)methane	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
,3-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
,4-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
,2-Dichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
,2,4-Trichlorobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
-Chloronaphthalene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
-Chlorophenyl-phenylether	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
-Bromophenyl-phenylether	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
lexachloroethane	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
lexachlorobutadiene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
lexachlorocyclopentadiene	< 5	< 5	< 5	< 5	< 5 < 1	< 5	< 5	
	< 1 < 1	< 1	< 1 < 1	< 1 < 1	< 1	< 1 < 1	< 1 < 1	
-Chloroaniline	< 5	< 1 < 5	< 5	< 5	< 5	< 5	< 5	
-Nitroaniline -Nitroaniline	< 1	< 1	< 1	< 1	< 1	< 1	< 5 < 1	
-Nitroaniline	<1	< 1	< 1	< 1	< 1	< 1	< 1	
enzyl alcohoł	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
litrobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
sophorone	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
.4-Dinitrotoluene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
,6-Dinitrotoluene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
enzidine	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
,3'-Dichlorobenzidine	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
yridine	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
zobenzene	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
arbazole	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
vimethylphthalate	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
iethylphthalate	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
i-n-butylphthalate	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
utylbenzylphthalate	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
is(2-Ethylhexyl)phthalate	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
i-n-octylphthalate	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
ibenzofuran	< 1	< 1	< 1	< 1	< 1	< 1	< 1	



Eastern Analytical, Inc. ID#: 79158

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

Sample ID:	MW-2	MW-7	MW-5	MW-9	MW-6	MW-8	MW-Dup	
Lab Sample ID:	79158.01	79158.02	79158.03	79158.04	79158.05	79158.06	79158.07	
Matrix:	aqueous							
Date Sampled:	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	5/15/09	
Date Received:	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	5/18/09	
Units:	ug/l							
Date of Extraction/Prep:	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	5/19/09	
Date of Analysis:	5/20/09	5/22/09	5/22/09	5/22/09	5/22/09	5/22/09	5/22/09	
Analyst:	BML							
Method:	8270D							
Dilution Factor:	1	1	1	1	1	1	1	
Naphthalene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
2-Methylnaphthalene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Acenaphthylene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Acenaphthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Fluorene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Phenanthrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Anthracene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Pyrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Benzo[a]anthracene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Chrysene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Benzo[b]fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Benzo[k]fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Benzo[a]pyrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	
Indeno[1,2,3-cd]pyrene	< 0.1 < 0.1							
Dibenz[a,h]anthracene	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1	
Benzo[g,h,i]perylene		< 0.1 74 %R	< 0.1 73 %R	< 0.1 74 %R	< 0.1 76 %R	< 0.1 74 %R	< 0.1 66 %R	
Nitrobenzene-D5 (surr)	88 %R 72 %R	74 %R 95 %R	73 %R 96 %R	74 %R 96 %R	103 %R	74 %R 91 %R	89 %R	
2-Fluorobiphenyl (surr) p-Terphenyl-D14 (surr)	106 %R	95 %R 91 %R	92 %R	95 %R	97 %R	91 %R	91 %R	

### Batch ID: 733548-46239/A051909BaseN1

#### Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

**QC Report** 

Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Phenol	< 1	9 (37 %R)	9 (37 %R) (0 RPD)	ug/l	12 - 110	42	8270D
2-Chlorophenol	< 1	21 (85 %R)	21 (83 %R) (2 RPD)	ug/ł	27 - 123	40	8270D
2,4-Dichlorophenol	< 1			ug/i			8270D
2,4,5-Trichlorophenol	< 1			ug/l			8270D
2,4,6-Trichlorophenol	< 1			ug/i			8270D
Pentachlorophenol	< 5	18 (73 %R)	18 (71 %R) (3 RPD)	ug/l	9 - 103	50	8270D
2-Nitrophenol	< 1			ug/l			8270D
4-Nitrophenol	< 5	11 (44 %R)	9 (36 %R) (20 RPD)	ug/l	10 - 80	50	8270D
2,4-Dinitrophenol	< 5			ug/l			8270D
2-Methylphenol	< 1			ug/l			8270D
3/4-Methylphenol	< 1			ug/l			8270D
2,4-Dimethylphenol	< 1			ug/l			8270D
4-Chloro-3-methylphenol	< 1	20 (81 %R)	19 (77 %R) (5 RPD)	ug/l	23 - 97	42	8270D
4,6-Dinitro-2-methylphenol	< 5			ug/l			8270D
Benzoic Acid	< 5			ug/l			8270D
2-Fluorophenol (surr)	69 %R	63 %R	62 %R	% Rec	21 - 110		8270D
Phenol-d6 (surr)	37 %R	37 %R	35 %R	% Rec	10 - 94		8270D
2,4,6-Tribromophenol (surr)	88 %R	94 %R	89 %R	% Rec	10 - 123		8270D



Batch ID: 733548-46239/A051909BaseN1

#### Client: The Johnson Company

Client Designation: QC Report

Richmond Creamery | 1-0346-3

Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
N-Nitrosodimethylamine	< 1			ug/l			8270D
n-Nitroso-di-n-propylamine	< 1	22 (86 %R)	22 (87 %R) (1 RPD)	ug/l	41 - 116	38	8270D
n-Nitrosodiphenylamine	< 1			ug/l			8270D
bis(2-Chloroethyl)ether	< 1			ug/l			8270D
bis(2-chloroisopropyl)ether	< 1			ug/l			8270D
bis(2-Chloroethoxy)methane	< 1			ug/l			8270D
1,3-Dichlorobenzene	< 1			ug/l			8270D
1,4-Dichlorobenzene	< 1	15 (62 %R)	16 (62 %R) (0 RPD)	ug/l	36 - 97	28	8270D
1,2-Dichlorobenzene	< 1			ug/l			8270D
1,2,4-Trichlorobenzene	< 1	17 (67 %R)	17 (68 %R) (1 RPD)	ug/ł	39 - 98	28	8270D
2-Chloronaphthalene	< 1			ug/i			8270D
4-Chlorophenyl-phenylether	< 1			ug/l			8270D
4-Bromophenyl-phenylether	< 1			ug/l			8270D
Hexachloroethane	< 1			ug/l			8270D
Hexachlorobutadiene	< 1			ug/l			8270D
Hexachlorocyclopentadiene	< 5			ug/l			8270D
Hexachlorobenzene	< 1			ug/l			8270D
4-Chloroaniline	< 1			ug/l			8270D
2-Nitroaniline	< 5			ug/l			8270D
3-Nitroaniline	< 1			ug/l			8270D
4-Nitroaniline	< 1			ug/l			8270D
Benzyl alcohol	< 1			ug/l			8270D
Nitrobenzene	< 1			ug/l			8270D
Isophorone	< 1			ug/l			8270D
2,4-Dinitrotoluene	< 1	20 (80 %R)	21 (85 %R) (6 RPD)	ug/l	24 - 96	38	8270D
2,6-Dinitrotoluene	< 1			ug/l			8270D
Benzidine	< 5			ug/l			8270D
3,3'-Dichlorobenzidine	< 1			ug/l			8270D
Pyridine	< 5			ug/l			8270D
Azobenzene	< 1			ug/l			8270D
Carbazole	< 1			ug/l			8270D
Dimethylphthalate	< 1			ug/l			8270D
Diethylphthalate	< 1			ug/l			8270D
Di-n-butylphthalate	< 5			ug/l			8270D
Butylbenzylphthalate	< 1			ug/l			8270D
bis(2-Ethylhexyl)phthalate	< 5			ug/l			8270D
Di-n-octylphthalate	< 1			ug/l			8270D
Dibenzofuran	< 1			ug/l	20 400	50	8270D
Naphthalene	< 0.1	19 (75 %R)	19 (77 %R) (3 RPD)	ug/l		50	8270D
2-Methylnaphthalene	< 0.1	16 (66 %R)	17 (67 %R) (2 RPD)	ug/l	30 - 160	50	8270D
Acenaphthylene	< 0.1	18 (72 %R)	18 (74 %R) (3 RPD)	ug/l		50 24	8270D
Acenaphthene	< 0.1	18 (74 %R)	19 (75 %R) (1 RPD)	-	46 - 118	31 50	8270D
Fluorene	< 0.1	18 (71 %R)	18 (73 %R) (3 RPD)	-	30 - 160	50	8270D
Phenanthrene	< 0.1	20 (79 %R)	20 (80 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Anthracene	< 0.1	21 (82 %R)	21 (83 %R) (1 RPD)	ug/l	30 - 160	50	8270D

### eastern analytical, inc.

6



### Batch ID: 733548-46239/A051909BaseN1

#### Client: The Johnson Company

Client Designation:

Richmond Creamery | 1-0346-3

## QC Report

	Disala						
Parameter Name	Blank	LCS	LCSD	Units	Limits	RPD	Method
Fluoranthene	< 0.1	19 (75 %R)	19 (76 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Pyrene	< 0.1	22 (86 %R)	21 (84 %R) (2 RPD)	ug/l	26 - 127	31	8270D
Benzo[a]anthracene	< 0.1	21 (84 %R)	21 (83 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Chrysene	< 0.1	22 (88 %R)	21 (86 %R) (2 RPD)	ug/l	30 - 160	50	8270D
Benzo[b]fluoranthene	< 0.1	20 (79 %R)	20 (80 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Benzo[k]fluoranthene	< 0.1	19 (77 %R)	20 (78 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Benzo[a]pyrene	< 0.1	19 (74 %R)	19 (76 %R) (3 RPD)	ug/l	30 - 160	50	8270D
Indeno[1,2,3-cd]pyrene	< 0.1	20 (81 %R)	20 (82 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Dibenz[a,h]anthracene	< 0.1	20 (81 %R)	20 (80 %R) (1 RPD)	ug/l	30 - 160	50	8270D
Benzo[g,h,i]perylene	< 0.1	23 (92 %R)	23 (92 %R) (0 RPD)	ug/l	30 - 160	50	8270D
Nitrobenzene-D5 (surr)	90 %R	88 %R	87 %R	% Rec	35 - 114		8270D
2-Fluorobiphenyl (surr)	71 %R	70 %R	69 %R	% Rec	43 - 116		8270D
p-Terphenyl-D14 (surr)	102 %R	92 %R	92 %R	% Rec	33 - 141		8270D

### eastern analytical, inc.



Batch ID: 733548-46239/A051909BaseN1

Client: The Johnson Company

Client Designation: Richmond Creamery | 1-0346-3

#### Acid and Base/Neutral Extractable Compounds QA/QC and Narrative Report

Matrix: Units: EPA Method:	Aqueous % RPD 8270D	Solid % RPD 8270D	Aqueous % 625(mod)
Acid Extractables Surrogates: 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol	21-110 10-94 10-123	25-121 24-113 19-122	21-110 10-94 10-123
Base/Neutral Extractables Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl p-Terphenyl-d14	35-114 43-116 33-141	23-120 30-115 18-137	35-114 43-116 33-141
Acid Extractables Spikes: Phenol 2-Chlorophenol Pentachlorophenol 4-Nitrophenol 4-Chloro-3-methylphenol	12-110 42 27-123 40 9-103 50 10-80 50 23-97 42	26-90 35 25-102 50 17-109 47 11-114 50 26-103 33	
<b>Base/Neutral Extractables Spikes:</b> N-Nitroso-di-n-propylamine 1,4-Dichlorobenzene 1,2,4-Trichlorobenzene 2,4-Dinitrotoluene Acenaphthene Pyrene	41-116 38 36-97 28 39-98 28 24-96 38 46-118 31 26-127 31	41-126 38 28-104 27 38-107 23 28-89 47 31-137 19 35-142 36	

Samples were extracted and analyzed within holding time limits.

Instrumentation was tuned and calibrated in accordance with the method requirements.

The associated method blank(s) were free of contamination at the reporting limit.

The associated (MS) matrix spike(s) and/or (LCS) Laboratory Control Sample(s) met the above stated criteria. There were no exceptions in the analyses, unless noted.

DOR: Diluted out of calibration range.

MI: Matrix interference.

(mod): EPA method 3510C and 8270D employed.

7

**APPENDIX 7** 

FIELD FORMS

#### THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, VT 05602 USA

IVI	ontpen	er, v 1 0500		1 11/- 1 - 1/-		100		www.je	onnsonco.co	om
Pr	oiect'N	ame: Rid	hand	und Water Monito			3116. 2 W	vell ID: <u>M</u>	<u>W - I</u>	
Si	te Loca	tion: Ri	chmond	<u>VT</u> <u>cloudy, wi</u>	Si	$\frac{10}{10} = 10 = 10$	H.KES	Date:	4/20	109
w	eather (	Conditions:	partly	cloudy, with	du . 40-	50°F	Time On Si	te: 08	40	<u> </u>
1.	WATI	ER LEVEL	DATA: (from 2	roc)	· ] ·				*	
				Top of PVC casir		Depth				
То	otal wel	ll depth (ft):_	15.78	Well diameter (in	-				-	
G	allons p	per foot ¹ :	0.16	Well vo	olume (gal): _	0.624	Ł			
				Peristaltic Pump				pth:	)	
Ρι	urge Vo	olume @	1well vo	lume: 2.36	)(1	Liters) Purge	Rate: 20	Ò	(ml/mi	n)
Ра	aramete	er equipment	:YSI , T	urbidimeter						
Time		Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Turb. (NTU)
091	0	11.88	0	0	Start					
091	Š	11.9	1.0	200	6.85	57	10.10	7.03	235,2	14
0920	0	11.89	2.0	200	6.84	586	10.14	6,93	234,6	14
092	5	11.9	3.0	200	6.80	592	9,99	6.83	234,1	10
093	30	11,9	4.0	200	6.83	594	10,12	6.85	232,8	8.8
09	35	11.89	5.0	200	6.84	606	10.2	6.79	232.9	4.4
09:	37_	San	pled							<u></u>
									<u> </u>	
	_									
								-		
										ļ
L#							<u> </u>			<u> </u>
										┼───
										2.4
										<u> </u>

SAMPLE COLLI	ECTION: Method:	P. P.		Sample	Time: <u>0937</u>
Sample Matrix	Chain-of-Custody#	Shipper ID#	Container Qty/type	Preservation	Analytical method/La
GW	1 of 1		2 40mL Ve	HC1	Petes / FA
	1		4 02	HN03	VGES Metals / EA)
4	V		I L Am	ber -	PAHS
¹ well volur	nes for various diameters	in gal./ft.	1		
0.50" = 0.0 2.00" = 0.1					
1 Gallon =	3.785 Liters				

• ----

. .

P:\STANDARD\JCO Forms\MW GW sample form - Purcell NH.doc

.

Time Off Site 0950

100 State	HNSON CO e Street, Suit lier, VT 0560	2 USA	• •				Fax: (8	802) 229-46 802) 229-58 ohnsonco.co	76
			and Water Monito	5	-	V	/ell ID:	N-2	_
			Creamery_		roject #: <u>/- c</u>			. 1 /	
		-	<u>'T</u>		ampler:K			0	
Weather	Conditions:_	PARTLY (	londy ~ 5	50°F		Time On Si	te: /000	_	
1. WAT	ER LEVEL	DATA: (from T	<b>OC)</b>			12			
Descript	ion of measu	ring point (MP)	Top of PVC casir	ng	Depth	to water below	MP (ft):	0.63	
Total we	ell depth (ft):_	17.09	_Well diameter (in	): <b>2</b>	Length of w	ater column in	well (ft):	5.46	
Gallons	per foot ¹ :	0.16	Well vo	olume (gal): _	1.03				:
2. PURG	ING DATA:	Method:	Peristaltic Pump	<u> </u>	Stabi	lized intake de	pth:/6'		
			ume: <u>3.90</u>		Liters) Purge				n)
Paramete	er equipment	:YSI, T	urbidimeter	an shake a second s			-		
				/					
Time	Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Turb. (NTU)
1012	10.63	0	0	Start		\			
1017	10.75	1	200	8.55	584	3.37	6.64	-56.3	6.6
1022	10.79	2	200	8.53	594	3.16	6.69	-66.9	6.3
1027	10.78	3	200	8.42	610	2,89	6.73	-72.6	7.2
10.32	10.78	4	200	8,59	625	2.70	6.75	-75.1	4.9
10.37	10.78	5	200	8.52	629	2.59	6.73	-76	3.0
1042	10.78		200	8.56	637	2.48	6.76	-78	3.0
10 44	San	pled							
		4							
							- <u></u>		
10									•••
									-di <b>b</b>
					-				
·									·
									·

Purge Water Disposal Method <u>Ground</u> Comments (e.g. color / odor): <u>No Color</u> / <u>5/1ight petro odor</u>

3. SAMPLE COLLECTION: Method: P.P.

______ Sample Time: 10 44

····**·**· . .

. ......

Chain-of-Custody#	Shipper ID#	Container Qty/type	Preservation	Analytical method/Lab
1061		2 40mLWA	HCI	82608 /EAI
		4 oz.	HN02	VGES Metals /EAI
$\checkmark$		1 L Amber		8270C /EAI
			Ŧ	•
				,
	1 of 1		Qty/type lof l 2 40mLWA 4 oz.	Qty/type 1 of 1 2 40mLWA HCI 4 oz. HN03

.

¹well volumes for various diameters in gal./ft.

۰.

0.50" = 0.01	0.75" = 0.023	1.00" = 0.041	1.25" = 0.064	1.50" = 0.09
2.00" = 0.16	3.00" = 0.32	3.50" = 0.50	4.00" = 0.65	6.00" = 1.47

1 Gallon = 3.785 Liters

Comments:

P:\STANDARD\JCO Forms\MW GW sample form - Purcell NH.doc

Time Off Site ///0

	100 State	HNSON CO e Street, Suit ier, VT 0560						Fax: (8	02) 229-46 02) 229-58 hnsonco.co	76
			Grou	ind Water Monito	oring Well Sa	mple Collectio	n Record			
	Project N	Name: R.	chmond C	reamery	P	roject #: <u> - (</u>	1 <u>346-3</u>	/ell ID: <u>Ml</u>	<u>v-s</u>	-
				ΙΤ	S	roject #: <u>1- (</u> ampler: <u>7</u>	EH	Date:	4/20/0	<u>19</u>
	Weather	Conditions:_	Partly ch	ondy 50's			Time On Si	te: <u>//5</u> 5		
	1. WAT	ER LEVEL	DATA: (from T	<b>OC)</b>						
	Descript	ion of measu	ring point (MP)_	Top of PVC casir	ıg	Depth	to water below	MP (ft):	8.53	
	Total we	ll depth (ft):_	19.4	_Well diameter (in	):2	Length of w	ater column in	well (ft):	.87	
	Gallons	per foot ¹ :	0.16	Well vo	olume (gal): _	0.87 0 TEH 4/2010	<u>. ]4</u>			:
				Peristaltic Pump			lized intake dep			
	_			ime: 0.53	(	Liters) Purge	Rate: JC	0	(ml/mi	n)
	Paramete	er equipment	: <u>YSI</u> , Ti							
	Time	Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Turb. (NTU)
	1158	18.53	0	0	Start					
	Purged	dry at	100 mL/m	in wait f	or rech	arge to	sample.			
TEH 4/20/09	13- 1405	WL=	18.55,	Sampled				·		
4/20/01										
										h
		<u> </u>								
									·	
							<u> </u> _			<u></u>
										<u> </u>
										· ·

**;**.

Purge Water Disposal Method _____ Ground_ Comments (e.g. color / odor): _____ No color / no color

-----

......

3. SAMPLE COLLECTION: Method:

_____Sample Time:_____405____

Sample Matrix	Chain-of-Custody#	Shipper ID#	Container Qty/type	Preservation	Analytical method/Lab
GW	1 0 + 1		2x40 mL VOA	HCI	8260B/EAI
GW	1081		1x toz	HN03	VGES /EAI

¹well volumes for various diameters in gal./ft.

0.50" = 0.01	0.75" = 0.023	1.00" = 0.041	1.25" = 0.064	1.50" = 0.09
2.00" = 0.16	3.00" = 0.32	3.50" = 0.50	4.00" = 0.65	6.00" = 1.47

1 Gallon = 3.785 Liters

Comments: Limited volume only sampled VOC3 + Metals

P:\STANDARD\JCO Forms\MW GW sample form - Purcell NH.doc

Time Off Site 1425

100 S	JOHNSON CC tate Street, Sui pelier, VT 0560	02 USA					Fax: (8	02) 229-46 02) 229-58 hnsonco.co	76
Ducio			ind Water Monito	-	mple Collectio	V	/ell ID:	J-4	
			T		ampler:		Date [.]	4/20/0	a
			dy 50's					• •	
		DATA: (from T	•						
•		-	Top of PVC casir	ופ	Depth	to water below	MP (ft):	7.12	
			_Well diameter (in		-				
		•	Well vo						
	-		Peristaltic Pump				 pth: 17.59		ê
			ume:0.23				`		in)
•			urbidimeter						,
				r			 []		
Time	Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Turb. (NTU)
1230	17.12	0	0	Start		<			
Purged	dy @1	DO ML/Min	wait for	recharge	to same	le.	• •		
1445	1.	· ·	17.15		, · · · · · · · · · · · · · · · · · · ·				
	`								
					ļ				
							<u>.</u>		ļ
			·						
									·~·*·

. . . . .

Ground Comments (e.g. color / odor): ne color / ne color

P. P. 3. SAMPLE COLLECTION: Method:____

Sample Time: <u>(445</u>

Sample Matrix	Chain-of-Custody#	Shipper ID#	Container Qty/type	Preservation	Analytical method/Lab
GW	1.41		2×40mLV0A	Hci	8260B/EA1
	_				
					· · · · · · · · · · · · · · · · · · ·
ⁱ well vol	umes for various diameters	in gal./ft.			
0.50" = 0 2.00" = 0		1.00" = 0.041 3.50" = 0.50		)" = 0.09 )" = 1.47	
t Gallon	= 3.785 Liters				
			.l		•
omments:	imited volum	Voc's	1	<u> </u>	· ·
omments: [	imited volum	voc's	only		•
omments: L	imited volum	<u>v</u> Vo <i>c's</i>	1		· · ·
omments: L	imited volum	<u>voc's</u>	1		· ·
omments: L	imited volum	<u>v</u> Vo <i>c's</i>	1		•
omments: L	imited volum	<u>v</u> Vo <i>c's</i>	1		· ·
omments: /	imited volum	<u>v</u> <u>Vo</u> c's	1		· ·
	imited volum	<u>v</u> <u>Vo</u> c's	1		· ·
omments:	imited volum		1		· ·
			1		
			1		

P:\STANDARD\JCO Forms\MW GW sample form - Purcell NH.doc

Time Off Site 1510

100 State St Montpelier,	reet, Suite						•	02) 229-40 02) 229-58 hnsonco.co	76
			nd Water Monito	ring Well Sar	nple Collection	Record	ell ID: <u>MV</u>		
		- 8	reamery		oject #: <u>1-0</u>	<u>346-3</u> "	ell ID: <u>/////</u> Date:_		
		hmond,			mpler: <u>K</u>	<u> </u>	Date:	4/20	169
Weather Cor	nditions:@	cloudy,	breezy	,~50	F	Time On Sit	e: ///	5	
1. WATER	LEVEL I	DATA: (from TO	ÓC)						
			Top of PVC casin						
Total well d	epth (ft):	15.59	Well diameter (in)	:	Length of w	ater column in	well (ft):	.23	
Gallons per	foot ¹ :	0.16	Well vo	lume (gal):	1.48				:
2. PURGINO	G DATA: N	Method:	Peristaltic Pump		Stabil	ized intake dep	oth: <u>14.</u>	<u>5′</u>	
			me: <u>5.59</u>						n)
Parameter e	quipment:	YSI , Tu	urbidimeter						
	Depth ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Turb. (NTU)
1123 6	.36	0	0	Start					
1128 7	·57	l	200	7.56	421	3.57	6.42	-20	7.3
11338	1.3	2	200	7.75	450	2.94	6.40	-27	6.6
11 38 9	1.3	3	200	7.80	467	2.42	6.43	-36	7.0
11 43 9	.71	4	200	7.86	473	2.55	6.44	-39	8.2
11 48 1	0.29	5	200	7.95	489	2.59	6.46	-46	10
11 53 /	6.52	5,75	150	8.04	509	2.57	6.48	-53	15
11 58 1	0,79	6.50	150	8.06	-	2.36	6.48	-54	17
12031	0.97	7.25	150	8.24		2.2	6.49		15
12031	1.23	8.0	150	8.26	560	Z.64			9.8
17131	1.34	8.75	150	8.63	543			-62	14
1218	11.43	9.50	150	8.38	558	2.66	6.52		
1221	San	pled							
		· · · · · · · · · · · · · · · · · · ·					<u> </u>		
						<u> </u>			
							ì		<u> </u>

Purge Water Disposal Method _____ Ground _ Comments (e.g. color / odor): <u>No color / No odor</u>

3. SAMPLE COLLECTION: Method: P.P.

______ Sample Time: <u>1221</u>

Sample Matrix	Chain-of-Custody#	Shipper ID#	Container Qty/type	Preservation	Analytical method/Lab
GW	1 of 1		240 ml VOA	HC1	8260B/EA1
	1		402	HNO3	8260B/EAI
V	V		1 L Amber	-	8270C/EAI
				· ·	
				· -	

¹well volumes for various diameters in gal./ft.

0.50" = 0.01	0.75" = 0.023	1.00'' = 0.041	1.25'' = 0.064	1.50" = 0.09	
2.00" = 0.16	3.00" = 0.32	3.50" = 0.50	4.00" = 0.65	6.00" = 1.47	•,

1 Gallon = 3.785 Liters

Comments: • ۰. مر . ....

P:\STANDARDUCO Forms\MW GW sample form - Purcell NH.doc

Time Off Site 1240

	100 Stat	HNSON CO e Street, Suit ier, <u>VT</u> 0560	2 USA					Fax: (8	802) 229-46 802) 229-58 9hnsonco.co	76
			Grou	ind Water Monito	oring Well Sa	mple Collectio	n Record W	ell ID: Mh	1-6	
	Project N	Name: <u>Ric</u>	hmond Cre	amen	P	roject #: <u>(~ 0</u>	346-3		<u> </u>	
	Site Loca	ation: <u>R</u> :c	hmond, VT	Camery	s	ampler:	EH	Date:	4/20/0	29
	Weather	Conditions:_	Overcast	50°F			Time On Si	te: <u>1520</u>	)	
				OC)			1	•	*	<i>4</i> .
	Descript	ion of measu	ring point (MP)_	Top of PVC casir	ig	Depth	to water below	MP (ft):	.30	
	Total we	ll depth (ft):	13.24	_Well diameter (in	):2	Length of w	ater column in	• well (ft):	<u>.94</u>	
				Well vo						
	2. PURG	ING DATA:	Method:	Peristaltic Pump		Stabi	lized intake de	oth: ~ 12.3		•
				ime: 4.20				•		n)
				urbidimeter						,
	Time	Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Turb. (NTU)
	1533	6.30	0	0	Start					
	1538	7.67		200	7.03	417	0.79	6.34	- 97	45
	1543	8.31	2	200	7.03	412	0.83	6.35	-99	37
	1548	8.83	3	200	7.19	397	1.50	6.40	-103	22
	1553	9.03	3.75	150	7.35	387	2.05	6.44	-98	21
	1558	9.13	4.5	150	7.38	394	2.38	6.44	-94	17
TEH 4/20/09	1603 <del>1603</del>	9.18	5.25	150	7.50	399	1.81	6.40	-96	15.
10101	1608	9.21	6.0	150	7.59	402	1.84	6.40	-97	11
	1613	9.18	6.75	150	7.63	410	1.70	6.39	-99	10
	1618	9.17	7.5	150	7.64	404	1.69	6.41	-99	9.7
	1620	Samo								
					<u> </u>					
- y la fair fair ann an Ann				······································			· · · ·			
de cale e de cale de la constante de										
ander a film										· · · · · · · · · · · · · · · · · · ·
er on a la child a child where we										•
								v		

:

Purge Water Disposal Method _____ Ground_ Comments (e.g. color / odor): no color / no odor

# 3. SAMPLE COLLECTION: Method:____

P. P. _____ Sample Time: 1620

Sample Matrix	Chain-of-Custody#	Shipper ID#	Container Qty/type	Preservation	Analytical method/Lab
GW	1.661		45 2240mh	HCI	8260B/EA1
1	1		1x 402	HNOS	NGES / EAI
¥	¥		Ix IL Ambe	rnone	8276 / EAI

¹well volumes for various diameters in gal./ft.

0.50" = 0.01	0.75" = 0.023	1.00" = 0.041	1.25" = 0.064	1.50" = 0.09	·····
2.00" = 0.16	3.00" = 0.32	3.50" = 0.50	4.00" = 0.65	6.00" = 1.47	

• • • .

.

1 Gallon = 3.785 Liters

Comments:

P:\STANDARD\JCO Forms\MW GW sample form - Purcell NH.doc

Time Off Site 1640

.

100 St	OHNSON CO ate Street, Suit selier, <u>VT</u> 0560	2 USA					Fax: (8	602) 229-46 602) 229-58 9hnsonco.co	76
		Gro	und Water Monito	ring Well Sa	mple Collectio	n Record W	ell ID:	J7	
			causery		roject #: <u>/ -</u>	0346-3			
Site Lo	ocation: Rive	chmond, V	٢	s	ampler:	EH	Date:	4/20/0	9
Weath	er Conditions:_	Partly class	dy, 50's			Time On Si	te: <del>1350</del>		
1. WA	TER LEVEL	DATA: (from 1	( <b>ÓC</b> )				TE	H 4-20-0	
Descri	ption of measu	ring point (MP)_	Top of PVC casin	ig	Depth	to water below	MP (ft):	.45	
Total	well depth (ft):_	9.35	_Well diameter (in	):2	Length of w	ater column in	well (ft):	2.9	
Gallor	s per foot ¹ :	0.16	Well vo	olume (gal): _	0.46				
			Peristaltic Pump				oth: ~ 8.3		
			ume: 1.76						n)
			urbidimeter						
			T						
Time	Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Turb. (NTU)
1301	6A5	0	0	Start					
1306	6.67	l	200	8.13	164	2.82	6.69	- 91	7.3
1311	6.73	2	200	7.69	143	2.29	6.65	- 86	3.9
1316	6.74	3	200	7.61	157	1.66	6.63	-75	4.2
1321	6.75	4	200	7.51	172	1.07	6.64	-78	3.8
1326	6.76	5	200	7.53	190	0.83	6.63	-81	4.1
1331	6.77	6	200	7.33	208	0.70	6.63	-82	3.6
1336	6.78	7	200	7.38	26	0.80	6.62	- 84	3.3
1341	6.80	હ	200	7.26	220	0.77	6.63	-85	3.4
1343	Sampl	ed							
	,								

Ľ,

Purge Water Disposal Method _____ Ground Comments (e.g. color / odor): _____ he color / he odor

P.P. 3. SAMPLE COLLECTION: Method:_____

_____ Sample Time:____343

Sample Matrix	Chain-of-Custody#	Shipper ID#	Container Qty/type	Preservation	Analytical method/Lab
GW	1051		2 40 mL VOA	HCI	8260B/EAI
			402	HN03	VGES METALS
A			1 L Amber	none	8270c
				4	

¹well volumes for various diameters in gal./ft.

0.50" = 0.01	0.75" = 0.023	1.00" = 0.041	1.25'' = 0.064	1.50" = 0.09	··· ~··
2.00'' = 0.16	3.00" = 0.32	3.50" = 0.50	4.00" = 0.65	6.00" = 1.47	••

1 Gallon = 3.785 Liters

Comments:

. v •				
* <b>*</b>		•		
			·	
				·

P:\STANDARDUCO Forms\MW GW sample form - Purcell NH.doc

Time Off Site 1355

	100 State	HNSON CO Street, Suit ier, VT 0560	2 USA					Fax: (8	802) 229-46 802) 229-58 phnsonco.c	376
		ø) v	e 1 .	ind Water Monito	-		v	vell ID: <u>M</u>	W-8	B
		_		Reamen	/	roject #: <u>/-0.</u>	576-5			,
		-	<u>chmond</u> ,		Sa	ampler:K	ES		4/20/	09
	Weather	Conditions:_	cloudy,	breezy			Time On Si	ite:	35	
	1. WATI	ER LEVEL	DATA: (from T	OC) ·					101	
	Descripti	on of measu	ring point (MP)_	Top of PVC casin	g	Depth	to water below	MP (ft):	. 76	
	Total we	ll depth (ft):_	8.0	_Well diameter (in	):	Length of w	ater column in	well (ft):	.04	
	Gallons p	per foot ¹ :	0.16	Well vo	lume (gal): _	0.45				:
	2. PURGI	ING DATA:	Method:	Peristaltic Pump		Stabi	lized intake de	pth: 7		
				ume: <u>/.84</u>						in)
	Paramete	er equipment	: <u>YSI , Ti</u>	urbidimeter						
<b></b>		D (1								
Time	;	Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Turb. (NTU)
14	45	4.96	0	0	Start					
14	50	5.66		200	7.17	416	6.74	6,55	49	3.3
14	55	6.45	2	200	6.68	420	3,23	6.44	42	2.3
15	00	7.08	3	200	7.56	433	5.10	6.51	35	6.3
15	505	7.46	3.75	150	6.77	428	2.01	6.41	28	2.4
	510		4.50	150	- Purge	d dry	waiting	for rech	arge to	sample
16	55	WL=	5.85' :	ampled	<u> </u>		0		0	El
				5						
										ħ.,
								-		1

÷

Purge Water Disposal Method <u>Ground</u> Comments (e.g. color / odor): <u>As color</u> / <u>As ador</u>	Purge Water Disposal Method	<u>Ground</u> Comments (e.g. color / odor):	no color / no or	dor
----------------------------------------------------------------------------------------------------------	-----------------------------	---------------------------------------------	------------------	-----

3. SAMPLE COLLECTION: Method: P.P.

Sample Time: 1655

Sample Matrix	Chain-of-Custody#	Shipper ID#		Containe Qty/type		Preservation	Analytic method/	cal Lab
GW	10+1			2 Aoml	Voa	HCI	82603/	EAI
				402		HN03	VGES / Metals /	EAI
V	V			IL Am	ber	_	8270c /	EAI
¹ well volu	umes for various diameters	in gal./ft.						
0.50" = 0 2.00" = 0		1.00" = 0.041 3.50" = 0.50		5" = 0.064 0" = 0.65		0" = 0.09 0" = 1.47		
1 Gallon	= 3.785 Liters							
r Guildin	5.705 Eners.						*	
Comments:			_				_	
<u>_</u>								1
				2				
					•			
					_			
	ormsVMW GW sample form - Purce		_			me Off Site	720	

100 State	HNSON CO e Street, Suit ier, VT 0560	2 USA					Fax: (8 www.jo	02) 229-46 02) 229-58 hnsonco.co	76
	Δ.		nd Water Monito	ring Well Sai	mple Collection	n Record W	ell ID: MU	V-9	
Project N	lame: <u>KiČ</u>	nmond (	reamery	_ Pr	mple Collection oject #: <u>/-C</u>	<u>346-3</u>			-
Site Loca	ation: <u>KI</u>	chmond,	VT	Sa	ampler: 🔨	とつ	Date:	9/20/	09
Weather	Conditions:_	cloudy,	windy,	<u>~50°}</u>	<b>a</b>	Time On Si	te: <u>130</u>		
		DATA: (from T	9					، ، ج	
Descript	ion of measur	ring point (MP)	Top of PVC casin	g	Depth	to water below	MP (ft):_6	.56	
			_Well diameter (in)						
			Well vo					-	
			Peristaltic Pump			lized intake de	oth: 14.	5′	•
			ime: <u>5.36</u>						n)
					Siters) Turge	Kate.		(110/111	,
Paramete	er equipment	: <u>YSI, T</u>							
Time	Depth (ft.)	volume removed	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm)	Dissolved Oxygen	p.H. (Std)	ORP (mV)	Turb. (NTU)
	(	(liters)	(mL/min)	(20)	@25EC	(mg/L)		(	()
1305	6.56	0	0	Start					
1310	7.55		200	7.67	446	1.78	6.26	-15	16
1315	8.11	2	200	7.74	437	Z.00	6.25	-12	15
1320	8.51	3	200	7.58	430	2.87	6.23	-5	10
1325	8.80	4	200	7.46	419	3.68	6.19	0	8.3
1330	8.98	5	200	7.42	420	3.47	6.19	-1.5	8.6
1335	9.13	6	200	7.44	420	Change and		-4	
1340	9.25	7	200	7.56	420 423	2.83	6.21	-9.5	6.3
1345	9.35	8	200	7.35	425	2.67	6.21	-10.6	7.1
1347	San	pled							
									-2140.5
			· · · · ·						·

Purge Water Disposal Method Ground Comments (e.g. color / odor): No Color / No odor

# 3. SAMPLE COLLECTION: Method: P.P.

Sample Matrix Chain-of-Custody# Shipper ID# Container Preservation Analytical method/Lab Qty/type GW ofl 240 mL VOA HCI HNOZ 4 oz I L Amber 82

¹well volumes for various diameters in gal./ft.

0.50" = 0.01	0.75" = 0.023	1.00" = 0.041	1.25" = 0.064	1.50" = 0.09
2.00" = 0.16	3.00" = 0.32	3.50" = 0.50	4.00" = 0.65	6.00" = 1.47

1 Gallon = 3.785 Liters

Collected Duplicate (MW-Dup @ 1200) Comments:

P:\STANDARD\JCO Forms\MW GW sample form - Purcell NH.doc

Time Off Site 1410

1347 Sample Time:

. .....

The Johnson Company, Inc. 100 State Street, Suite 600 Montpelier, VT 05602	Company eet, Suite ( /T 05602	, Inc. 500							•	•		μ	Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com	229-4600 229-5876 onco.com
	<b>YSI C</b>	<b>YSI CALIBRATION SHEET</b>	<b>DN SHEET</b>					Job Name:	Job Name: Richmond Creamery	Creamery	Job # :		1-0346-3	
Equipment ID :	# ISY	Ч					Serial # : (	0702008	08 AC					
Brand of Standard	dard		Cole Parmer	ISY	Oakton	Oakton	Oakton	Oakton	ISY	ISY		ISY	I	Oakton
Lot #			١	۱	2606432	2707448	2708653	2806240	2107448 2708653 2806240 08C 1006 A	١	I	1		2810901
Expiration Date	te		)	١	6-09	7-09	8-09	12-09	01-10	J	)	}		10-09
Date	T ime	Initials	Certified thermometer	YSI Temp		00 T Hu	nH 4.01	pH 10.00	ORP-Zobell Solution (200-275mV)	Barometric Pressure (mmHg)		100% D.O.		Zero O ₂ Solution (mg/L)
				°C	1.413 ms/cm @ 25°C							(%)	(mg/L)	
4/20/09	0730	TEH	lo	10.14	1.413	7.00	4.01	10.00	250.5	759.6		99.8	10.53	0.48
							-							
						_								

FP.STANDARDUCO Forms/ysicalsheet.doc

I he Johnson Company 100 State Street, Suite Montpelier, VT 05602	1 he Johnson Company, Inc. 100 State Street, Suite 600 Montpelier, VT 05602	:				Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com
				TURBIDITY	METER CALI	TURBIDITY METER CALIBRATION SHEET
Job Name:	Richmond	Job Name: Richmond Creamen				Job #: 1-0346-3
Equipment ID:	D: JCo#3	-				Serial #: 2521-1501
Brand of Standard	ndard		AMCO	AMco	1	
Lot #			P89144	P840791	]	
Expiration Date:	ate:		9/09	60/6	١	Comments
Date	Time	Initials	1.0 NTU Value	10.0 NTU Value	NTU Value	
4/20/09	0820	Ē	ſ.o	10.0		
-						
	*					
		4				

P:\STANDARD\JCO Forms\Turbidity Calsheet.doc

· ł

.

:

YSI CALIBRATION SHEET       Equipment ID : YSI # 5       Equipment ID : YSI # 5       Lot #       Lot #       Lot #       Expiration Date       Expiration Date       Date       Time       Initials       Initials       Initials       Initials       Initials       Initials       Initials	N SHEET Cole Parmer										
ment ID : YSI # 5           of Standard           ition Date           Time           Initials           20-09         0731	ole Parmer					Job Name: 4	P	Creamery	Job # : /-	1-0346-3	N
of Standard ation Date ation Date Time Initials	ole Parmer				Serial # : C	085101252	1252	• ۲			
rtion Date		ΥSI	Oakton	Oakton	Oakton	Oakton	ISY	ISY		ISY	Oakton
ation Date Time Initials	ſ	1	2802432	2707448	2708653	2806240	2707448 2708653 2806240 08D100367	١		l	2810701
Time Initials 20-09 073   KES	١	١	7-09	7-09	8-09	12-09	4-10	١		١	10-09
2009 0731 KES	Certified 1				oH 4.01		ORP-Zobell Solution (200-275mV)	Barometric Pressure (mmHg)	10	100% D.O.	Zero O ₂ Solution (mg/L)
	Temp °C	ے پ	0.25°C						(%)	(mg/L)	
	0	10,36 1,413		7.00	4.01	10.00	250.5	758.0	1001	1 11.51	0.22
			1								
							-				

FP/STANDARDUCO Forms/ysicalsheet.doc

TURBIDITY METER CALIBRATION SHEET         Job Name: $R[chmond Creamery]       Job #: /-034/6-3         Equipment ID: JCO - 4       Job #: /-034/6-3       Serial #: 2505-150/         Band of Sandard AMCO       AMCO       AMCO       -         Band of Sandard AMCO       AMCO       -       Serial #: 2505-150/         Band of Sandard AMCO       AMCO       -       -         Expiration Date:       -       9-09       9-09       -         Date       Inne       10.0 NTU       Value       -       -         4-20-09       08 IS       KES       1/0       -       -       -         4-20-09       08 IS       KES       1/0       -       -       -       -         100 NTU       Value       Value       -       -       -       -       -       -       -         110 NTU       10.0 NTU       Value       -       -       -       -     $	The Johnson Company 100 State Street, Suite ( Montpelier, VT 05602	The Johnson Company, Inc. 100 State Street, Suite 600 Montpelier, VT 05602	ť				Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com	229-4600 229-5876 onco.com
$\frac{nd}{rcom} \frac{r}{r} \frac{1}{2} $					TURBIDITY	METER CALI	<b>BRATION SHEET</b>	
1CO = 4MCO = AMCO = - $1CO = 4MCO = 7$ $8q/44/7 PSq67q/7 = -$ $9-09 = 9-09 = -$ $9-09 = 9-09$ $1.0 NTU = 10.0 NTU = Value Value Value Value Value Value =$	ob Name: 1	Richmon	nd Cre	ameri	h			
$ICO$ AMCOAMCO $ 891444$ $7896791$ $ 9-09$ $9-09$ $ 9-09$ $7-09$ $ 10$ NTU $10.0$ NTU $10.0$ NTUValue $10.0$ NTU $\sqrt{N10}$ $KES$ $i.0$ $i.0$ $KES$ <t< td=""><td>cquipment I</td><td>D: JCO</td><td>-4</td><td></td><td>ſ</td><td></td><td>   </td><td></td></t<>	cquipment I	D: JCO	-4		ſ			
$89/44/1$ $89679/1$ $ 9-09$ $9-09$ $ 9-09$ $9-09$ $ 100$ NTU $100$ NTU $\sqrt{alue}$ Value $Value$ $\sqrt{alue}$ $KES$ $1,0$ $0,0$ $100$ $10,0$ $0,0$ $KES$ $1,0$ $10,0$ $100$ $10,0$ $0,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ $10,0$ $10,0$ $100$ <	srand of Sta	ndard AM	00	AMCO	AMCO			
Article         9-09         9-09         -           Initials         1.0 NTU         10.0 NTU         Value         Value           XES         1.0         700         700         Value         Value           KES         1.0         700         700         -         -         -           NTU         Value         Value         Value         -         -         -         -           NTU         10.0         10.0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""><td>Lot #</td><td></td><td></td><td>891441</td><td>PB96791</td><td>I</td><td></td><td></td></td<>	Lot #			891441	PB96791	I		
Initials     I.0 NTU     I0.0 NTU       Value     Value     Value       KES     1.00     10.0       NC     10.0     10.0       Nalue     1.00       Initials     1.00       Initial     1.00	Expiration D	ate:		9-09	9-09		Comments	
10.0 10.0	Date	Time	Initials	1.0 NTU Value	10.0 NTU Value	NTU Value		
	1-20-09	08 18	kes	1.0	10.0	-		

· ·

,

P:\STANDARDUCO Forms\Turbidity Calsheet.doc

1

:

.

41 Date_ Project / Client Location _ Date 5/15/09 11.78' TEH 5/15/09 Project / Client 1 - 0346-3 Richmond Cremery TEH, PMK Offsite at -1500 Time on site 0840 TEH, PMK Location Richmond VT Well depth to the Time 3 13.52, 0359 4 16.93 0901 5 6.30 0908 6 7.25 0913 7 5.93 0905 8 4.92 0920 9 7.11 0916 0913 0220 WM-1 778, 0852 2060 0905 TEH, PMK 2 10.62, 0856 William . 40

# THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, VT 05602 USA

Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com

Ground Water Monitoring	Well Sample Coll	ection Record	rell ID: MW-2
Project Name: Richmond Creamery	Project #:	1-0346-3	
Site Location: Richmond, Vermont	Sampler:	TEH	Date: 5/15/09
Weather Conditions: <u>Sunny</u> , 60-70		Time On Sit	e: 0930
1. WATER LEVEL DATA: (from TOC)	Not make in	( <u>)</u> ( <del>)</del> ( ) (	U_
Description of measuring point (MP) Top of PVC casing	D	epth to water below	MP (ft):/0.62
Total well depth (ft): <b>/7.09</b> Well diameter (in):	Length	of water column in	well (ft): <u>6.47</u>
Gallons per foot ¹ :O.16Well volume	e (gal):/.04		
2. PURGING DATA: Method: Peristaltic Pump		Stabilized intake dep	th:
Purge Volume @well volume:3.92	(Liters) Pr	urge Rate: 2	00 (ml/min)
Parameter equipment: YSI, Turbidimeter	the second	i na banda aniw	tel construction lineal

Time	Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Turb. (NTU)
0942	10.62	0	0	Start		151131	1.647.4.9.000		
0947	10.74	1	200	8.90	589	4.75	6.26	-41	2.6
09 52	10.74	2	200	8.85	592	4.39	6.16	-42	2.0
0957	10.74	3	200	9.03	597	3.86	6.11	-42	1.5
1002	10.75	4	200	8.96	620	3.62	6.05	-41	1.4
1007	10.75	5	200	8.96	625	3.74	6.04	-39	1.0
1009	Sampl	ed							
20	· ·								
		5 i							
								1	
								*:	
							7. 5.		
				an a shaaraa ahaa ahaa ahaa ah	· · · · · · · · · · · · · · · · · · ·				·
	1 D.J. John	123.642			a a serveral de la	n Correction sheets	20.52 4	of Classes	12/1
				*					

Purge Water Disposal Method _____ Ground Comments (e.g. color / odor):_____ no color / no odor

3. SAMPLE COLLECTION: Method: P. P.

Sample Time: /009

Sample Matrix	Chain-of-Custody#	Shipper ID#	Container Qty/type	Preservation	Analytical method/Lab
GW	1 of 1	Courier	1 L Amber	(ice) none	8270C /EAI
in the			Ton select a	t sh trave pebut	an to actuar sett
11 h			at the second stands	76.53	House Hear Line
	-		en en dat	A1. (m. 1	An transmotist
	·		amond seators and	-	2.10.02530.04.25
din bat	card a second of		C. C. C. Strate		Polean Victoria 67

¹well volumes for various diameters in gal./ft.

00" = 0.16	0.75" = 0.023 3.00" = 0.32	1.00" = 3.50" =		'= 0.65 6.0	0" = 0.09 0" = 1.47		
Gallon = 3.785	Liters						
- A Second	mal.	122	8 24	00Ç.	1	ACTAN	74.80
	5.78 P	7-15-77	1			to see as i	5210
						10.76	
6.04	15 T 64	The second	1 30.81	teril.		20.25	505
	Gallon = 3.785	Gallon = 3.785 Liters	Gallon = 3.785 Liters	Gallon = 3.785 Liters			

#### THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, VT 05602 USA

8.15

8.50

8.76

9.00

9.25

9.41

9.50

9.60

9.65

9.67

Sampled

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com

5.44

5.48

5.51

5.51

5.58

5.60

5.59

5.57

5.59

5.57

0.80

0.75

0.77

0.67

0.61

0.69

0.74

0.90

0.95

1.02

93

79

65

52

37

31

14

10

6

2024

73

48

44

43

31

31

20

17

19

Project 1	Name: <u>R</u>		und Water Monite		ample Collectio	No. Method.	Vell ID: <u>M (</u>	1-5	d.
			nt		Sampler:		Date	5/15/0	9
Weather	Conditions:	Sunny .	~ 70°F			Time On S	ite: <u>  0</u>	8	11
1. WAT	ER LEVEL	DATA: (from T	OC)	5 A.		1 - Ara		643	
Descript	tion of measu	ring point (MP)_	Top of PVC casin	ng	Depth	to water below	/ MP (ft): <u>(</u>	6.30	
Total we	ell depth (ft):	15.59	_Well diameter (in	ı): <u>2</u>	Length of v	vater column in	well (ft):	1.29	
Gallons	per foot ¹ :	0.16	Well vo	olume (gal):	1.49		فحر .	epidelijan	
2. PURG	GING DATA:	Method:	Peristaltic Pump		Stab	ilized intake de	pth: ~ 4	.6	
Purge V	olume @	1well volu	ume:5.	6	(Liters) Purge	Rate:/	00	(ml/m	in)
Paramet	er equipment	: YSI, T	urbidimeter		al des ni er	ana in 200120	niFrame of		
ime	Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Turb. (NTU)
118	6.30	0	0	Start			1 4 60 Y 12 - 1994 		
123	7.71	0.5	/00	9.02	499	0.96	5.41	102	99

9.13

9.00

9.10

9.02

8.87

8.96

9.09

9.12

9.20

9.28

100

100

100

100

100

100

100

100

100

100

499

502

504

512

520

522

525

534

538

541

TEH 5/15/09 1128

1133

1138

1143

1148

1152

1158

1202

1208

1212

1214

2628 TEH S/15/09

Initially clouded with rust color particulates

Purge Water Disposal Method _____ Ground Comments (e.g. color / odor): hp color / no odor

3. SAMPLE COLLECTION: Method:__

P.P

Sample Time: 1214

Sample Matrix	Chain-of-Custody#	Shipper ID#	Container Qty/type	Preservation	Analytical method/Lab
GW	1 of 1	Courier	I L amber	(ite) none	8270C / EAI
	and and and and and		e water stande		na he collectores l
n suite			Commender 1963)	and less of	Contact three later
			iti ettistit.	1.0	Soften addit
- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	<ul> <li>Acceptended of Sector</li> </ul>		Peristellie Foins	Linghold (	1240.7670.02151
	A.A. 1010.2			Terra 1	The study of street

¹well volumes for various diameters in gal./ft.

		= 0.01 = 0.16	0.75" = 0.023 3.00" = 0.32	1.00" = 0 3.50" = 0			.50" = 0.09 .00" = 1.47		
	1 Gall	lon = 3.785 1	Liters					6.30	
Com	ments:	12.6	18.0	776	6.8	160	2.5	157	8.6.11
							0.)		8211
1.1	• 837 -	516.72		9-02-1			-	07 81	2(1) 2(1)
4.			-T. Y. 10		21.2				88.0
-	53	5.87		512	1.02		2.5	0.0.7	1.5.1
				0.212		c = a		a.a. 9	
	12			1.1.RC		100			67.
	The second		1. 482.00	7.05	949	16.6		1.50	1.3.1
	3.5	58.7	Lava I	1.57	51.02			9.6.6	<u></u>
				134		6-0 )			
	ો	12.7	34.1.1		5.5.1	6.72	2.2	100	83.1
								1974 C	214
							}		
								Off Site 122	

P:\STANDARDUCO Forms\MW GW sample form - Richmond Creamery.doc

Time Off Site 1227

#### THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 ( Montrolier, VT 05602 USA

Montpe	lier, VT 056						www.j	ohnsonco.c	om
		Gro	und Water Monit	oring Well S	ample Collectio		Vell ID: M	W-6	
Project 1	Name: <u>R</u>	ichmond Creame	ry	F	Project #:1	0746 7			
Site Loc	ation: <u>R</u>	tichmond, Vermo	int	5	Sampler:	EH	Date	5/15	09
Weather	Conditions:	- Junny	70's						
								$\langle n \rangle \langle n \rangle$	
						to water below	v MP (ft):	.25	-
Total we	ell depth (ft):	13.24	Well diameter (ir	1): <u>2</u>	Length of w	ater column in	well (ft):	5.99	
						lized intake de	oth: ~12	.2	
									in)
Tatanet		<u></u>			1				
e	Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Turb. (NTU)
58 58	7.25	0	0	Start		50 ²⁵	i 68\ c ⊕n0)	947-12	
03	8.89	1	200	8.52	451	0.90	5.35	-12	8.4
08	8.95	1.5	100	9.19	419	0.82	5.23	-5	10
13	9.03	2.0	100	9.46	415	0.88	5.17	-4	8.7
18	9.06	2.5	100	9.45	415	0.72	5.15	-5	8.5
20	Samp	led		-					
									2
-									
-	· · · · · · · · · · · · · · · · · · ·			a series and a series of the series of the		1			
_					1		1		
•			I share and some second in the						
						· · .			
	-		a an an a staine tha bail a san tao a						
		3 hajjul	2		and the second second	in the orthogram	an taimine	NN0820P	1 and
	Project I Site Loc Weather 1. WAT Descript Total we Gallons 2. PURG Purge V Paramet 5 5 8 5 3 0 8 1 3 / 8 20	Project Name:       R         Site Location:       R         Weather Conditions:       I         I. WATER LÉVEL       Description of measu         Description of measu       Total well depth (ft):         Gallons per foot ¹ :          2. PURGING DATA:       Purge Volume @         Parameter equipment $5\%$ 7.25 $0.3$ $8.89$ $0.8$ $8.95$ $1.3$ $9.6.3$ $1.8$ $9.0.6$ $2.0$ Samp	Project Name:Richmond CreameSite Location:Richmond, VermoWeather Conditions: $5unny$ 1. WATER LÉVEL DATA:(from TDescription of measuring point (MP)Total well depth (ft): $13.24$ Gallons per foot ¹ : $0.16$ 2. PURGING DATA:Method:Purge Volume @1well volParameter equipment:YSI, TYSI, TST7.25O3S.891088.951.39.632.0Samp ed	Ground Water Monit         Project Name:	Ground Water Monitoring Well S.         Project Name:       Richmond Creamery       I         Site Location:       Richmond, Vermont       S         Site Location:       Richmond, Vermont       S         Weather Conditions: $5 \text{ unny}$ 70'S         1. WATER LEVEL DATA:       (from TOC)         Description of measuring point (MP)       Top of PVC casing         Total well depth (ft):       13.24       Well diameter (in):       2         Gallons per foot ¹ :       0.16       Well volume (gal):       2         Gallons per foot ¹ :       0.16       Well volume (gal):       2         Purge Volume @       1       well volume:       3.63       9         Purge Volume @       1       well volume:       3.63       9         Parameter equipment:       YSI, Turbidimeter       100       9       100       100         57       7.25       0       0       Start       13       9.05       1.55       100       9.19         13       9.05       1.55       100       9.46       18       9.45       1.45       100       9.45         20       Samp ed       100       9.45       100       9.45       1.45 <td>Ground Water Monitoring Well Sample Collection         Project Name:       Richmond Creamery       Project #:</td> <td>Ground Water Monitoring Well Sample Collection Record         Project Name:       Richmond Creamery       Project #:       1-0346-3         Site Location:       Richmond, Vermont       Sampler:       TEH         Weather Conditions:       $5uany$       70'S       Time On S         1. WATER LÉVEL DATA:       (from TOC)       Description of measuring point (MP)       Top of PVC casing       Depth to water below         Total well depth (ft):       13.24       Well diameter (in):       2       Length of water column in         Gallons per foot¹:       0.16       Well volume (gal):       0.96         Purge Volume @       1       well volume:       3.63       (Liters)       Purge Rate:       20         Parameter equipment:       YSI, Turbidimeter       Temp       Spec Cond. (uS/cm)       Dissolved Oxygen (mg/L)         5%       7.25       0       0       Start           0.3       8.89       1       200       8.52       451       0.90         0.3       8.95       1.5       100       9.46       415       0.88         13       9.06       2.5       100       9.45       415       0.72         20       Sample A       100</td> <td>Ground Water Monitoring Well Sample Collection Record         Project Name:       Richmond Creamery       Project #:       1-0346-3         Site Location:       Richmond, Vermont       Sampler:       $TEH$       Date:         Weather Conditions:       Sumy       70'S       Time On Site:       1345         I. WATER LEVEL DATA:       (from TOC)       Description of measuring point (MP)       Top of PVC casing       Depth to water below MP (ft):       T         Total well depth (ft):       13.24       Well diameter (in):       2       Length of water column in well (ft):       Gallons per foot¹:       0.16       Well volume (gal):       0.96         2. PURGING DATA:       Method:       Peristaltic Pump       Stabilized intake depth:       $-1/2$         Purge Volume @       1       well volume:       3.63       (Liters)       Purge Rate:       200 -&gt; 100         Parameter equipment:       YSI, Turbidimeter             0.3       8.89       1       200       8.52       451       0.90       5.35         0.8       9.95       1.5       100       9.46       415       0.88       5.17         0.3       8.89       1.5       100       9.45       4</td> <td>Ground Water Monitoring Well Sample Collection Record       Well ID:</td>	Ground Water Monitoring Well Sample Collection         Project Name:       Richmond Creamery       Project #:	Ground Water Monitoring Well Sample Collection Record         Project Name:       Richmond Creamery       Project #:       1-0346-3         Site Location:       Richmond, Vermont       Sampler:       TEH         Weather Conditions: $5uany$ 70'S       Time On S         1. WATER LÉVEL DATA:       (from TOC)       Description of measuring point (MP)       Top of PVC casing       Depth to water below         Total well depth (ft):       13.24       Well diameter (in):       2       Length of water column in         Gallons per foot ¹ :       0.16       Well volume (gal):       0.96         Purge Volume @       1       well volume:       3.63       (Liters)       Purge Rate:       20         Parameter equipment:       YSI, Turbidimeter       Temp       Spec Cond. (uS/cm)       Dissolved Oxygen (mg/L)         5%       7.25       0       0       Start           0.3       8.89       1       200       8.52       451       0.90         0.3       8.95       1.5       100       9.46       415       0.88         13       9.06       2.5       100       9.45       415       0.72         20       Sample A       100	Ground Water Monitoring Well Sample Collection Record         Project Name:       Richmond Creamery       Project #:       1-0346-3         Site Location:       Richmond, Vermont       Sampler: $TEH$ Date:         Weather Conditions:       Sumy       70'S       Time On Site:       1345         I. WATER LEVEL DATA:       (from TOC)       Description of measuring point (MP)       Top of PVC casing       Depth to water below MP (ft):       T         Total well depth (ft):       13.24       Well diameter (in):       2       Length of water column in well (ft):       Gallons per foot ¹ :       0.16       Well volume (gal):       0.96         2. PURGING DATA:       Method:       Peristaltic Pump       Stabilized intake depth: $-1/2$ Purge Volume @       1       well volume:       3.63       (Liters)       Purge Rate:       200 -> 100         Parameter equipment:       YSI, Turbidimeter             0.3       8.89       1       200       8.52       451       0.90       5.35         0.8       9.95       1.5       100       9.46       415       0.88       5.17         0.3       8.89       1.5       100       9.45       4	Ground Water Monitoring Well Sample Collection Record       Well ID:

n				1	
Purge Water Disposal Method	Ground	Comments (e.g. color / odor):_	No	color	no oder

3. SAMPLE COLLECTION: Method: P.P.

Sample Time: 1420

Sample Matrix	Chain-of-Custody#	Chain-of-Custody# Shipper ID# Conta Qty/		Preservation	Analytical method/Lab
GW	1.0f1	Courier	1 L amber	(ice) None	02700 (EAI
7.25	radia ang sang at			Mi tuine estim	ion in solitionall
<u> </u>			Secondariants (Inst)	AC FL	el dirente transferente
		al P. O. Strategie	o the At	1997 - 195 1997 - 1995	Gallion coollab.
2 51 -			Parkadi Albania	houtsty	and states are a
Gintin Late	and seals there	and decide	C. E. Smith	- Hote - T	Burne Victore

¹well volumes for various diameters in gal./ft.

	0" = 0.01 0" = 0.16	0.75" = 0.023 3.00" = 0.32	1.00" = ( 3.50" = (			.50" = 0.09 5.00" = 1.47		
10	Gallon = 3.785	Liters						
Comments:	2.85	64.5	124	8.52	di e C		18.89	403
		5.8.0	11.44			·3./	1. 8.	20 t1
	y-1 74		1218	1.0.1		<u></u>	5 3 S	<u>, 1997</u>
		a. 72	29-		5.01	2.5		
			,			his	Same 2	15.5 4
-								
P:\STANDARD	JCO Forms\MW G	W sample form - Richn	nond Creamery.d	loc		Time O	ff Site	
					1			

# THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, VT 05602 USA

Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com

Ground Water Monitoring V	Vell Sample Colle	ection Record		MW-7
Project Name: Richmond Creamery	Project #:	1-0346-3		
Site Location: Richmond, Vermont	Sampler:	TEH	Da	nte: 5/15/09
Weather Conditions: Sunny , ~ 70°F		Time O	n Site: / O	25
1. WATER LEVEL DATA: (from TOC)	S. Should a			1460
Description of measuring point (MP) Top of PVC casing	De	epth to water be	elow MP (ft):	5.93
Total well depth (ft): 9.35 Well diameter (in):	2Length	of water colum	n in well (ft):_	3.42
Gallons per foot ¹ : <u>O. 16</u> Well volume (	gal):0.55	5		
2. PURGING DATA: Method: Peristaltic Pump	S	stabilized intake	e depth: ~ 8.	3
Purge Volume @	(Liters) Pu	irge Rate:	200	(ml/min)
Parameter equipment: YSI, Turbidimeter	July 2 (	वे साल कहाती जुल	view rol comple	
		-		

Time	Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Turb. (NTU)
1035	5.93	0	0	Start		17,537	12283 A. * 1933 		
1040	6.61	1	200	9.83	326	1.50	5.85	-27	18.8
1045	6.58	2	200	9.67	328	1.44	5.79	-22	8.85
1050	6.61	3	200	9.68	330	1.54	5.73	-18	4.53
1055	6.64	4	200	9.59	332	1.45	5.70	-17	4.92
1057	Samp	ed							
		8.				*			
		and the second				· · · · · · · · · · · · · · · · · · ·	1		
	I.,		18						
3		i.		-					
The States							-		
					1				
		normality of the second se		-		And the goal from the second			
	1.2.0., APA	sy other .			elterentre Oberer	an terreter de parties	ali e Chernard	OLGENGU:	18-1
				1	1				
		L			1	L	I		

Ground_ Comments (e.g. color / odor): <u>no color</u>

Purge	Water	Disposal	Method	
uigo	w uloi	Disposul	1victilou	

3. SAMPLE COLLECTION: Method: P. P.

_ Sample Time: _/057

Sample Matrix	Chain-of-Custody#	Shipper ID#	Container Qty/type	Preservation	Analytical method/Lab
GW	1061	Courier	( L Amber	(ice) none	82700 / EA1
27 T			il in calcing in	un internetie	Di matana M
2 42 5	ante di pinte ante	а	of the second second second	-19-31-9	Contensivations to item.
	-	Re n. d. d. d. d.	<u>s - 660 (</u>	0.3	Callman in their
2.3	di samu shana a ti	80°	ne tott although and	tion bar	TACHICONTRACT
	Same Same		The State Section	100 C 100	

¹well volumes for various diameters in gal./ft.

	0" = 0.01 0" = 0.16	0.75" = 0.023 3.00" = 0.32	1.00" = 3.50" =		'= 0.65 6.0	0" = 0.09 0" = 1.47		
10	allon = 3.785	Liters						
Comments:	35.85		356	52.8	5 65	1	14.N	10-0
		1.44		9.67				
1.581	58 %	in the second		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	
17				9.65				
						) Letter	Same	124
1								
						a na sana a sana a sa	1	
		1						
								10.00 mm (17.5 particul 10.0007.3

# THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, VT 05602 USA

Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com

		Gro	ound Water Monito	ring Well S	ample Collection	on Record	Well ID: M	W-8	D.Åc.
Project	t Name: I	Richmond Cream	ery	_	Project #: <u>1</u>				
Site Lo	ocation: 1	Richmond, Vermo	ont	-	Sampler: <u>7</u>	EH	Date:	5/15/0	19
Weath	er Conditions:	Sunny,	70's			Time On S	ite: /2:	30	
1, WA	TER LEVEL	DATA: (from	ГОС)			$(-1)^{\alpha}$			
Descri	ption of meas	uring point (MP)	Top of PVC casin	g	Depth	to water below	v MP (ft):	.92	
Total v	well depth (ft)	8.0	_Well diameter (in)	:2`'	Length of v	vater column in	well (ft):;	3.08	
Gallon	s per foot ¹ :	0.16	Well vol	lume (gal):	0.49				
2. PUR	GING DATA:	Method:	Peristaltic Pump		Stab	ilized intake de	pth: ~7.5	<u> </u>	
Purge	Volume @	1well vol	ume: 1.87		(Liters) Purge	Rate: 2	00->100	<u>o (</u> ml/m	in)
Param	eter equipmen	t: <u>YSI, T</u>	urbidimeter		Blan (c. c)	ariou d'uren	ra <mark>th e</mark> stantioy I		
Time	Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Tu (N
1235	4.92	0	0	Start		8124	1561.4 9 002	191	

Time	Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Turb. (NTU)
1235	4.92	0	- 0	Start		8353	1-5-61-52 1092		
1240	6.60	1	200	8.36	470	1.82	5.35	217	6.4
12 45	6.99	1.5	/00	8.90	464	1.76	5.30	209	4.3
1250	7.35	2.0	100	9.07	462	1.83	5.31	146	5.4
1254	Well	purged d	cy						
1437	WL=	5.52'	0						
1440	Jamp	led rech	arge		-	-			
			U			-			-
	· · · · · · · · · · · · · · · · · · ·								
		3		8. 					
						8 (j		E.	
			t eta alfai e a del care esse ace gost - el						
			а. С						
a l'anna an taona			1999  1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199						- A.A A.
	Gentaria.	9701401 I			de (rarval) lans	aat () oo ah shinga	ali Witness	200,100 (553).	1994

Purge Water Disposal Method _____ Ground __ Comments (e.g. color / odor):_____

PP

no color 1 no odor

3. SAMPLE COLLECTION: Method:_

Sample Time: 1440

Sample Matrix	Chain-of-Custody#	Shipper ID#	Container Qty/type	Preservation	Analytical method/Lab
GW	1 of 1	Courier	I L amber	(i'ce) Mone	8270C / EA
n ki la	e na la contrat versión mên		- and the second of	14) thin within	een oo galaanseen
1. 24 C		i donen 1	i in second to be the		n de la llage han?
		Phones and an	a the state of the	3126	in all the section.
		312	alard ardinated	The God	याच्या चर्टा व्यक्तिहास
illedies 5 6 4.	- 260 G - 400	a de Gradet	TR. (	These of the	Second States

¹well volumes for various diameters in gal./ft.

0.50" = 0.01 0.75" = 0.023 1.00" = 0.041 1.25" = 0.064 1.50" = 0.09 2.00" = 0.16 3.00" = 0.32 3.50" = 0.50 4.00" = 0.65 6.00" = 1.47

1 Gallon = 3.785 Liters

Comments:	Well	was	purged	dry,	Sampled	recou	iery	6.60	565
A. Pos				53. 6			- ( A -	1 P	
<u>el 12.1</u>	3.2	1		station of the	<u>.</u>		17 G	25 5 5	
			4			6-1	hogy of a contra		
						n ga da	and cee	lay sited	0 ku
						ĺ			
		CW L C	- Didward C				Time (	)ff Site / 5	05
P:\STANDARD\JO	CO Forms\MW	GW sample for	m - Richmond Cr	eamery.doc			Time (	Off Site / 5	05

# THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, VT 05602 USA

Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com

Se F		Gro	und Water Monito	oring Well Sa	ample Collection	on Record	Well ID:M	W-9	5
Project 1	Name: 1	Richmond Creame	ery	F	Project #: <u>1</u>	-0346-3			
Site Loc	ation:	Richmond, Vermo	ont	5	Sampler: <u>7</u>	Ен	Date	<u>_5/15/</u>	09
Weather	r Conditions	Souny	70's			Time On S	ite: 125	55	
1. WAT	TER LEVEL	DATA: (from	TOC)	*\•'r	. 6.	1 90		613	
Descript	tion of meas	uring point (MP)_	Top of PVC casin	ıg	Depth	to water below	v MP (ft):	7.11	
Total we	ell depth (ft)	15.41	Well diameter (in	):2	Length of v	vater column in	well (ft):	8.3	
Gallons	per foot ¹ :	0.16	Well vo	olume (gal):	1.33				
2. PURG	GING DATA:	Method:	Peristaltic Pump		Stab	ilized intake de	opth: ~ 14	5	
Purge V	olume @	1 well vol	ume: 5.0	3 (	Liters) Purge	Rate: 2	00-710	<u>o (</u> ml/m	lin)
Paramet	ter equipmen	t: <u>YSI, T</u>	urbidimeter		A day n es	stannaù suora.	enel sumulov		
9	Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Tu (N
৽ঽ	7.11	0	0	Start		9761) 	$1 \le k_{1,1} = 0.0$	30 - 2	
10	8.73	/ e6.0 G	200	7.81	499	0.74	5.46	- 19	1.
15	8.69	1.5	100	8.22	491	0.44	5.47	-21	0.

Time	Depth (ft.)	volume removed (liters)	Flow Rate (mL/min)	Temp (EC)	Spec Cond. (uS/cm) @25EC	Dissolved Oxygen (mg/L)	p.H. (Std)	ORP (mV)	Turb. (NTU)
1305	7.11	0	0	Start		esoli 	1 ch. ( = 00)		
(310	8.73	/ eng) (as	200	7.81	499	0.74	5.46	- 19	1.3
1315	8.69	1.5	100	8.22	491	0.44	5.47	-21	0.6
1320	8.70	2.0	100	8.39	491	0.56	5.50	-25	0.9
1322	Same	led							
	Duplic	te collec	ted (MW	Dup @	(200)			U.	-
								Annual of provide the second	
						1			-
			14						
- Les destructions									
		×							
			·····		a dan dinana di sana dalam da lan				- a
	1 2,3	80 cm (			Congression Change	Sol and the Ref.	- Contractorial	10.01904 10.01904	12.35
					-				
		<u> </u>	L	l		L	1	L	

Purge Water Disposal Method _____ Ground Comments (e.g. color / odor): _____ Ao color / no odor

P. P.

3. SAMPLE COLLECTION: Method:_

Sample Time: 1322

Sample Matrix	Chain-of-Custody#	Shipper ID#	Container Qty/type	Preservation	Analytical method/Lab
GW	1 - f 1	Courier	1 L amber	(ice) none	8270C / EA1
<u>r1</u>		-m		123 mine service	non la nalmise
	still a sudden som			ris pi	n Runn Hau Inter
		S.S. Geolegen		11 E	Shad we realled
	2. othershammer besette		energi se Calendaria.	hadtete	THE OPTION
10 10 1 1 10 1 10 10 10 10 10 10 10 10 1	s-ant met.	and the second		-Tenze	No stankaV sour

0.50" = 0.01 0.75" = 0.023 1.00" = 0.041 1.25" = 0.064 1.50" = 0.09 3.00" = 0.32 2.00" = 0.16 3.50" = 0.50 4.00" = 0.65 6.00" = 1.47

1 Gallon = 3.785 Liters

Collected Duplicate sample (MW-Dup @ 1200 Comments:

P:\STANDARDUCO Forms\MW GW sample form - Richmond Creamery.doc

Time Off Site 1347

The Johnson Company, Inc. 100 State Street, Suite 600 Montpelier, VT 05602	1 Company reet, Suite ( VT 05602	, Inc. 600										Phone: (802) 229-4600 Fax: (802) 229-5876 www.iohnsonco.com	10ne: (802) 229-4600 Fax: (802) 229-5876 www.iohnsonco.com
	) ISY	YSI CALIBRATION SHEET	<b>NSHEET</b>					Job Name:	Richmond Creamery	requery	Job#: 1-0346-3	46-3	
Equipment ID :	# ISY	Pine Rental	16350	-			Serial #:	024 1013					
Brand of Standard	ıdard		Cole Parmer	ISY	Galton	-dakton	Oakton	Oakton	ISY	ISY		YSI	Oakton
Lot #			١	١	6634	28 05117	LEESO82	]	1125	1			1
Expiration Date	ate		1	١	Po/01	4/10	5/10	1	10/13	)			1
Date	Time	Initials	L	YSI Temp	Specific Conductivity 1.413 ms/cm	pH 7.00	pH 4.01	pH 10.00	ORP-Zobell Solution (200-275mV)	Barometric Pressure (mmHg)	100	100% D.O.	Zero O ₂ Solution (mg/L)
			l'emp °C	ပွ							(%)	(mg/L)	
5/15/09	0715	TEH	ì	4.99	1.413	7.00	4.00	(	340	767	101	10.58	l
							•						
									T				
				-					Ŕ				
				-				The state of the second					
				÷									
			•										

FP\STANDARDUCO Forms\ysicalsheet.doc

#### THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, VT 05602

Soil	Sample Collection	Record

Soil Sample Location ID: <u>55-NR-O\</u>	
Project Name: Richman & (regner 1)	Project #: 1-0346-3
Site Location: Richmandy VT	Date: 3/23/09
Weather Conditions: (03) 5-12-12	Time on Site:
Sampler: MJM	

#### 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

Description of soil sampling location: 'Non Thailroad'	associated sampy
GPS coordinates of sampling location:	_Coordinate system:
Sample collection method: Have A-gu	
Sample depth range (ft): 0-0-5', '.5-1.0'	

#### 2. SAMPLE INFORMATION:

Sample depth (ft)	Sample type (analyte(s))	Field or fixed lab analysis	Type of container	Collection time	Sample notes, observations, comments
0-0.5	PAN	195	402	1415	
1.5-2.0.	4	6	4		
0-2.0'	XRF	Field	Ziplac	N/2	

General	comments /	notes:
---------	------------	--------

Lab Designation:

Chain of Custody #:______Shipper Tracking #:_____

#### THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, VT 05602

Soil Sample Collection Record	
Soil Sample Location ID:	
Project Name: Richmond Cranes	Project #: 1-0346-3
Site Location: Richmond, UT	Date: 3123 (09
Weather Conditions: SUNNY, ( 00	Time on Site: 0 800
Sampler:	

### 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

Description of soil sampling location: Nov	RR Somple
GPS coordinates of sampling location:	Coordinate system:
Sample collection method: Had	\$V
Sample depth range (ft): 0-0.5	

#### 2. SAMPLE INFORMATION:

Sample depth (ft)	Sample type (analyte(s))	Field or fixed lab analysis	Type of container	Collection time	Sample notes, observations, comments
0-0.5	196 G	PAH	4.2	1450	
1.5-20	PAH	Lab	\$		
0-20	XRF	Feld	Z-plac	<b>\$</b>	

General comments / notes:					
Lab Designation:					
Chain of Custody #:	Shipper Tracking #:				

Reviewed by: TRO, MBM F. STANDARD JCO Forms Soil Sample Log. 082203 doc CRI Vugust 22, 2003

٠.

and the second se

THE JOHNSON COMPANY, INC.
100 State Street, Suite 600
Montpelier, VT 05602

Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com

Soil Sample Collection Record	
Soil Sample Location ID: 57 - FF - 0	
Project Name: Sich Mand (Slome ( a)	Project #: 1-0346-3
Site Location: R= ch Mond, VT	Date: 312369
Weather Conditions: (au 201	Time on Site: 0 800
Sampler: M.J.M	

#### 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

Description of soil sampling location: RR 2 per M	real Prop. brown day
GPS coordinates of sampling location:	Coordinate system:
Sample collection method: Had Fuer	·
Sample depth range (ft): $0 - 0.5$ $1.5 - \lambda$	.0'

#### 2. SAMPLE INFORMATION:

Sample depth (ft)	Sample type (analyte(s))	Field or fixed lab analysis	Type of container	Collection time	Sample notes, observations, comments
0-0.5 D-0.5 1.5-2-0 D-20	904	146	yor	1025	Sandy loan
0-0.5	Achestos		Ziplor		
1.5-2.0	HA9		422	A I	wet 14 bran sa k
0-20	XBE	fiers	Ziploc	\$	
			•		
					,
			-		

General comments / notes: Sample retained for XRF

Lab Designation:

Chain of Custody #:_____

_____Shipper Tracking #:_____

· A Tray

Review of py - IRO, MBM F_STANDARD ICO Forms Soil Sample Log: 182203 doc _____ CRF ____ August 22, 2003

#### THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, VT 05602

Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com

Soil Sample Collection Record	
Soil Sample Location ID: 55- RP-02	
Project Name: Richmand (Manury)	Project #: 1-0346-3
Site Location: Richmond, VT	Date: 3123(09
Weather Conditions: (00) 9-10-	Time on Site: 0 900
Sampler:	

### 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

Description of soil sampling location:	BR Spur	; bothern of	berm, neur	Formlad pip. wards ,
GPS coordinates of sampling location	:	Coordinate sy	stem:	
Sample collection method:	& Augr			
Sample depth range (ft): $\dot{V} - \dot{V}$ .	5-1.5-2	.0		

#### 2. SAMPLE INFORMATION:

Sample depth (ft)	Sample type (analyte(s))	Field or fixed lab analysis	Type of container	Collection time	Sample notes, observations, comments
6-0.5	PAH	las	402	1040	Sondy W/ black Chang
1.5-2.0	PAU	100	462	1	Sondy W black Chang Hormon Sady some Bon Ille May
0-2.0	49X	Fierz	Ziploc		lile righ
General comme	nts / notes: Sm	e cirdr 16	alle ap	5:11-1.We	mating noted
<u>^1</u>	Simple	e cindr 16			

Lab Designation:

Chain of Custody #:______Shipper Tracking #:_____

Reviewed by TRO, MBM F. STANDARD JCO Forms Soil Sample Log. 082203.doc CRF August 22, 2003

THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, VT 05602	Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com
Soil Sample Collection Record	
Soil Sample Location ID: <u>55-RR-03</u>	
Project Name: Richmond Crimery	Project #: 1-0346-3
Site Location: Rilhand, VT	Date: 3123100
Weather Conditions: ( ) June 2	Time on Site: 0800
Sampler: MSM	
, 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:	

Description of soil sampling location: bottom of	RR bern, new abadand well
GPS coordinates of sampling location:	Coordinate system:
Sample collection method: Had Aug	
Sample depth range (ft): 0-0.5' 1.5-2.0	

#### 2. SAMPLE INFORMATION:

-Sample depth (ft)	Sample type (analyte(s))	Field or fixed lab analysis	Type of container	Collection time	Sample notes, observations, comments
0-0.5	PAN	lar	402	1100	Sondy 14 brown
0-0.5° 1.5-2.0° 0-2.0°	\$	4	462		Sondy It bown Wet brun withed claypy son
0-1.0	XEE	Field	402	4	
**					

General	comments	ť	notes:	

Lab Designation:

1,000

Chain of Custody #:______Shipper Tracking #:_____

.

THE JOHNSON COMPANY, INC.
100 State Street, Suite 600
Montpelier, VT 05602

white the second

Soil Sample Colle	ection Record
-------------------	---------------

Soil Sample Location ID: 55-RR-04	
Project Name: Richard (round	Project #:
Site Location: Richmand, M	Date: 313804
Weather Conditions: (00) Sund	Time on Site: 6 100
Sampler:	

#### 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

Description of soil sampling location:	New active RR Kor tacks
GPS coordinates of sampling location:	Coordinate system:
Sample collection method:	And the second s
Sample depth range (ft): 0 -0.	

## 2. SAMPLE INFORMATION:

Sample depth (ft)	Sample type (analyte(s))	Field or fixed lab analysis	Type of container	Collection time	Sample notes, observations, comments
0-0.5'	MA9	1.0	4.2	1115	Sad wishe what change
1.5-2.0'	HAS		4		Sud where which changes
0-0.5.	Aspens	•	Ziploc		
0-20-	XRF	Elefs	4	V	
General comme	nts / notes: out	Smile 1	dach app	prused to	be RR JIII
Matoia	L'i upper so	nge had s	me Cirdor	-line mad	wing 1
	۰ ۱:				
Chain of Custod	ly #:		Shippe	er Tracking #:	
Reviewed by, TRO, ME F, SLANDARD ICO F,		doc CRF	August 27, 2003		

#### THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, VT 05602

Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com

Soil Sample Collection Record	
Soil Sample Location ID: 5> - RE - 05	
Project Name: Richmund (reaners)	Project #: 1-0341-3
Site Location: Richard, VT	Date: 312309
Weather Conditions: Cool Store	Time on Site: 0800
Sampler: MTM	

#### 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

Description of soil sampling location:	Along CHIMCH &	101.	188 S	Q.S	se map
GPS coordinates of sampling location:_		Coordinate system	n:		
Sample collection method: $\frac{1}{0-0.5}$	Augs 1.5-2.0	C. Done	<i>cinder</i>		handerich 1
2. SAMPLE INFORMATION:		,			noted in both Somples

#### 2. SAMPLE INFORMATION:

Sample depth (ft)	Sample type (analyte(s))	Field or fixed lab analysis	Type of container	Collection time	Sample notes, observations, comments
0-0.5	RAN	lab	4.2	1155	
4	Asbestos		Zipoc		
1.5-2.0	PAH		402		
1.5-2.0	XRF	Field	Ziplac	↓ ↓	
General comments / notes: COLUCIES SS-RR-DUR 1200 0-0.5					
General comments notes: COLUCIES SS-RR-DUR 1200 0-0.5					
Lab Designation:					
Chain of Custody #:Shipper Tracking #:					

Reviewed by: FRO, MBM F. STANDARD JCO/Forms Soil Sample Log. (82203 doc CRF August 22, 2003

Project #: 1-0346-3
Date: 3130
Time on Site: 0800

# 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

Description of soil sampling location: Former RR	Spur / Sel map
GPS coordinates of sampling location:	Coordinate system:
Sample collection method: Hand Aug F	
Sample depth range (ft): D-0.5; 1.5-2	0.5-1.0'

## 2. SAMPLE INFORMATION:

Sample depth (ft)	Sample type (analyte(s))	Field or fixed lab analysis	Type of container	Collection time	Sample notes, observations, comments	
0-0.5	BU H	164	402	1220		
1-5-2-0-				E-	Refuse 10 Sustan	
0-2-0	XEF	Field	Ziplac			
					· · · · · · · · · · · · · · · · · · ·	
General comments	s/notes: CECU	761@>	urface du	r to loc	ne (grave)	
No	lower ,	ligh >	neu to	wr,		
Lab Designation:						
Chain of Custody #:Shipper Tracking #:						
Reviewed by TRO, MBM 1. STANDARD JCO Forms Soil Sample Log 1982203.doc CRF August 22, 2003						

***CO2***

#### THE JOHNSON COMPANY, INC. 100 State Street, Suite 600 Montpelier, VT 05602 $\mathbf{x}$

Soil Sample Collection Record	
Soil Sample Location 1D: 55-88-07	
Project Name: Richmond Creaser a	Project #: 1-0341-3
Site Location: Richmand, UT	Date: 323/09
Weather Conditions: Cool sand	Time on Site: 0900
Sampler:	

#### 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

Description of soil sampling location: Alune Re Sport					
GPS coordinates of sampling location:	_Coordinate system:				
Sample collection method: Hand Angle					
Sample depth range (ft): 0-0.5' 1.5	×-0`				

## 2. SAMPLE INFORMATION:

	Sample depth (ft)	Sample type (analyte(s))	Field or fixed lab analysis	Type of container	Collection time	Sample notes, observations, comments
0510	0-0.5	RAH	126	yoz	1240	
	15-2.0	4	4	4	6	Ref-501@ 1.0
	0-2-0	XRF				
					<b>_</b>	
	General comments	s/notes: ReF. C. (Mec He	<u>al@1.</u> 6.5-1.	o dres	gravel (so	ch lower
	Lab Designation:_					
Chain of Custody #:Shipper Tracking #:						
Reviewed by, TRO, MBM F. STANDARD JCO Forms Soil Sample Log. 082203 doc CRF August 22, 2003						

Soil Sample Collection Record

Soil Sample Location ID: 5-PP-08	
Project Name: Richmond (FCGMStig	Project #: 1.0346.3
Site Location: Rochmond UT	Date: 3 3 3
Weather Conditions: (OD) Surry	Time on Site: 0900
Sampler:	

## 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

Description of soil sampling location: Alune RR	Spr 1 bed
GPS coordinates of sampling location:	Coordinate system:
Sample collection method: 14-1 Aver	
Sample depth range (ft):	

## 2. SAMPLE INFORMATION:

Sample depth (ft)	Sample type (analyte(s))	Field or fixed lab analysis	Type of container	Collection time	Sample notes, observations, comments	
0-0.5	41.99	lay	402	1310		
0	Asbestos	1	ZIPLOC			
1.5-20	PAH	4	402	47		
0-2.0	XQF	Field	Zipou	×		
1						
General comments	s/notes: Dc-l	, black	Possible	RRA	natisial	
Lab Designation:						
Chain of Custody #:Shipper Tracking #:						
Reviewed by TRO, MBM F. STANDARD JCO Forms Soil Sample Log. 082203.doc CRF August 22, 2003						

Soil Sample Collection Record	
Soil Sample Location ID: <u>SS-RR - DM</u>	
	Project #: 1-034(-3
Site Location: Richmand VT	Date: 3 23 04
Weather Conditions: 62 Sun	Time on Site: 0400
Sampler:	

## 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

Description of soil sampling location:	Alena	RR	SAT BUL	sei	MP	
GPS coordinates of sampling location:			_Coordinate system:	·		
Sample collection method:	Augs		· ·			
Sample depth range (ft): 0-0.5	<u>` ' + 5</u>	, = 2.	0-'m			
	(					

#### 2. SAMPLE INFORMATION:

Sample depth (ft)	Sample type (analyte(s))	Field or fixed lab analysis	Type of container	Collection time	Sample notes, observations, comments	
0-0.5 ·	DO H	14.49	402	1330		
0.0.5	Asbestos		Zieloc			
1-5-1.0	PAH=	4	402		Im	
0-2005	XAF	Field	Zipioc	X		
	·	- <u>1</u>				
		4 . 19 00			1	
Géneral comments	s/notes: 205	SAL @	0.5' 2	ue to	had pach	
Fond base gravely Rock						
Lab Designation:						
Chain of Custody #:Shipper Tracking #:						
Reviewed by TRO, MBM F. STANDARD JCO Forms Soil Sample Log /082203 doc. CRF August 22, 2003						

Phone: (802) 229-4600 Fax: (802) 229-5876 www.johnsonco.com

Soil Sample Collection Record	
Soil Sample Location ID:	
Project Name: R'-CMMAL CECANU -	Project #: 1-0546.2
Site Location: Richmand VT	Date: 3123 09
Weather Conditions: (03) Sung	Time on Site: D&06
Sampler:	

## 1. SAMPLE LOCATION AND COLLECTION METHODOLOGY INFORMATION:

Description of soil sampling location: alms former	Cail Sour location
GPS coordinates of sampling location:	_Coordinate system:
Sample collection method: Had Auge	<u>·</u> ·
Sample depth range (ft): $0 - 0.5$	·

#### 2. SAMPLE INFORMATION:

Sample depth (ft)	Sample type (analyte(s))	Field or fixed lab analysis	Type of container	Collection time	Sample notes, observations, comments
0-0.5	PA9	lab	402	1340	
Q-0.5	Astastas		Zipian		- (noastros
0.2.0	XRF	field	Ziploc	1340	
1.5-2.0	PAH	100	Ziploc Yoz	1340	
	· · · · · ·				
General commen	ts / notes:	: -1/2			

4	. Marine and the second s	

Lab Designation:

Chain of Custody #:_____

_Shipper Tracking #:_____

Reviewed by: TRO, MBM F-S1 ANDARD JCO Forms Soil Sample Log, #82203 doc CRF

August 22, 2003

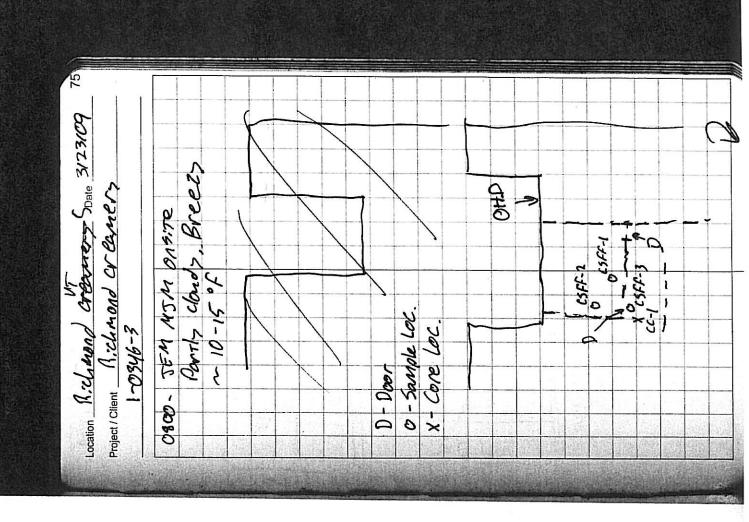
The Johnson Company 100 State Street, Suite Montpelier, VT 05602	The Johnson Company, Inc. 100 State Street, Suite 600 Montpelier, VT 05602	ų				Phon Fa	Phone: (802) 229-4600 Fax: (802) 229-5876 www.iohnsonco.com
				TURBIDITY	METER CAL.	TURBIDITY METER CALIBRATION SHEET	
Job Name:	Job Name: Richmond Creamery	Creamery				Job #: 1- 0346-3	
Equipment ID: Pine	D: Pine R	Rental ID 07457	1457			Serial #: ME 10617	
Brand of Standard	ndard		LaMotte	LaMotte			
Lot #	-			4			
Expiration Date:	ate:					Comments	
Date	Time	Initials	1.0 NTU Value	10.0 NTU Value	NTU Value		
5/15/09	064S	TEH	0.99	10.00			
		~					
		-					

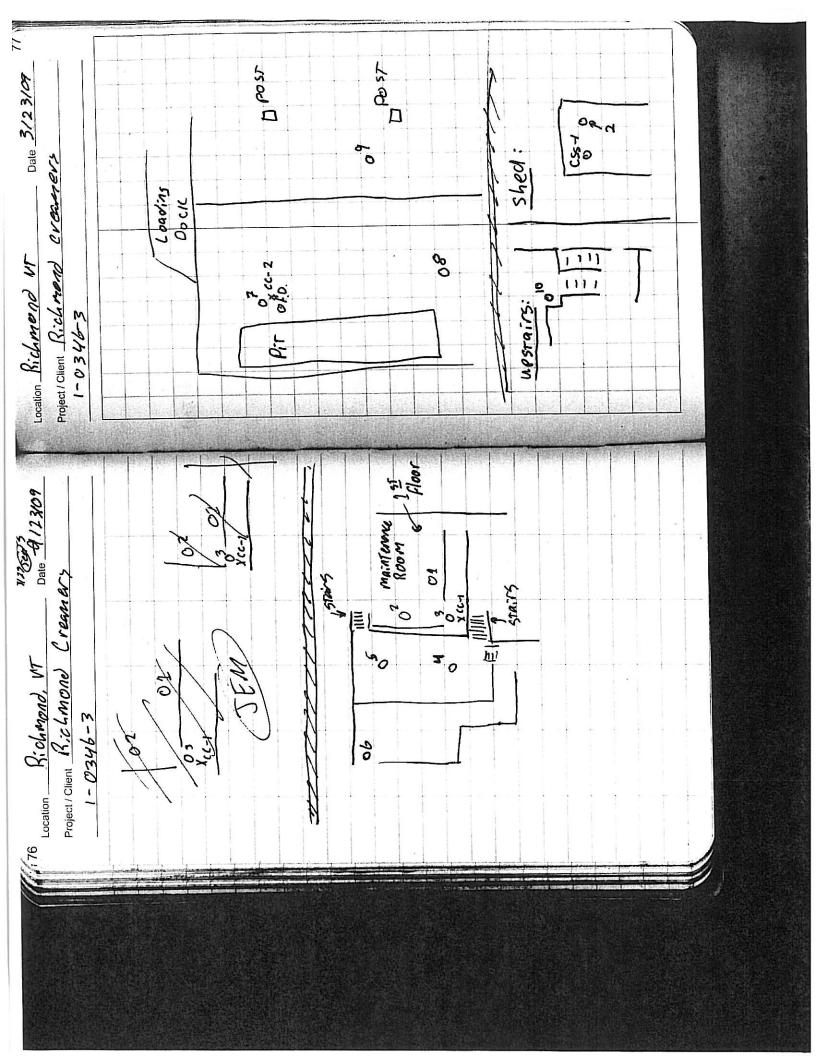
ł

P:\STANDARDVCO Forms\Turbidity Calsheet.doc

Date 312310M Project / Client Richmark (reared) Location in ich much VT A Seo > 5 5-929-100 t mym, Seth, Ruil (A-ye - C R . Dop on Site review Have Date 3123/00 Jerny starts Lacret my 3 starts Pit excavin Site wallower , Premark For Mrush >5- F13- AIM ACM - 03 BCM-01 HCM-0-1.4 1. unime x x 1.07 >> .02.03 PLOMEL 50- 22 · 55 H0-22-55 90-22.55 55 RR-03 Sinders 1:05 CO-22-55 · NR-0 55- RR -01 -2- NR -22 2 · RR - 04 55 - RR - 10 -23 -25 50 10-50-55 Prive on Sing 55,00 Location RVhmard, VT F.JS 1 2 2 PC & support Project / Client Crchmund 01/004 oller t (0)100t Wary w! + sts いってのい - 03W Ruch in Surger 4 4 4 9 2 2 1 0200 0 85 800 1025 13 40 1100 al arms 1040 1 36 1115 1310 05-21 15 25 1010 محدا 1435 14 50 500 000 X 619

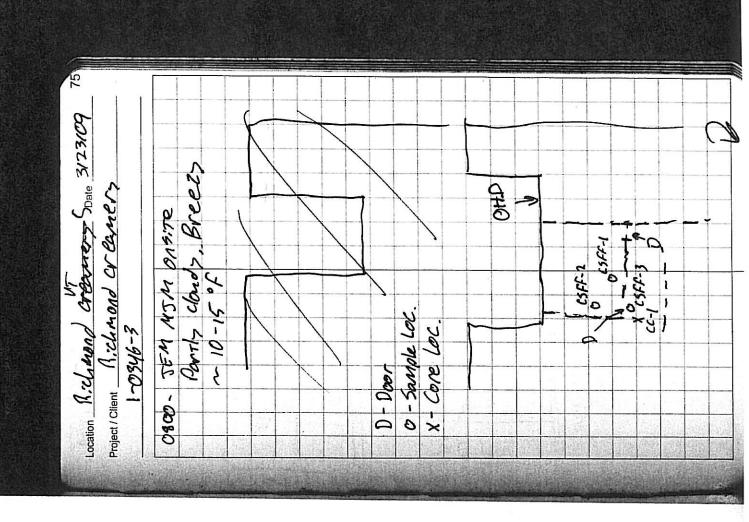
Color Furner Durch mis Current Somple (W. run # # 101.41) (295 all BR locitures, Prist Prist, locit Þ, Lossep-parton thingh of ) Collect Part mers new 110-14-5 | they PID Taiding @ 31] Date \$ [ 24 | JA ASS (X1 Sample RCB Xwall's al soils 5744- Jung shed is 5-55-9(13-01 Observe Rit & ward sump in Collect samples. Fur KRF NO UST detected with しいしょう bloch of F " us + " area Collect RC & Somple> ret w/ Prevision Project / Client Richmond ( ramery Through 03) mb 1- UZULO-3 MJM JEM SIGN ROT PANLES retal detector Vermu: 612, clar s.H Location Richmerd, VT Park UP Site 0700 Brive an 0140 0755 0330 07-10 1500 10 20 Sher 1530 0000 シエニ 0また/ 48

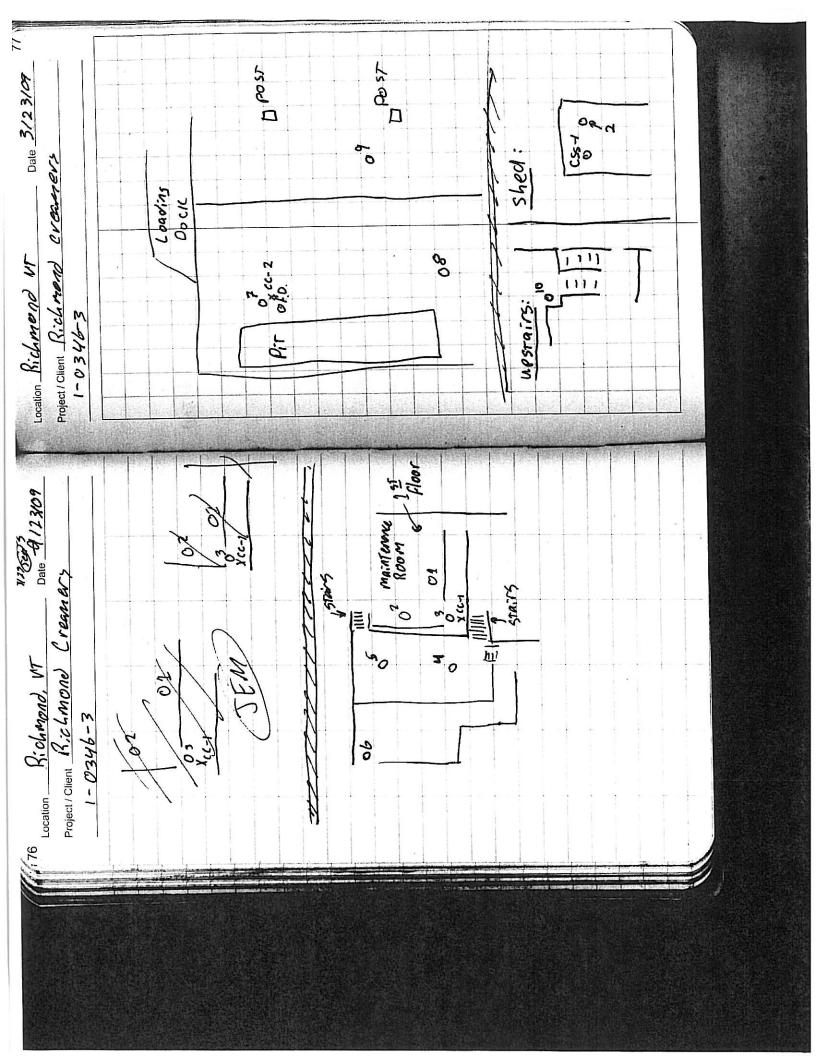

59 Date 4 14 ON W-4 16.92 15.50 Develop wells MW-17.59 M3M, KTU, 4-K, ENPRO 1440 Dr:11 MW -5 1550 Do:1115 Reput aire 5-75 -01 х S 1600 Masure W.L. Location Richmund, VT Depart Project / Client CC K C 2 1220 1605 tau loration) yes to wall was to wall and collar to somple then sump) map LUOCS, SUDCS, UCCES Metals) Date 4/14/01 at ry de Richney + Measure from ( O PID CRAINS, but that a bird by formed to access (which Drill MW-1 LWell near Dove by L! Paracas the of existing well, 19. Wather: Suny, ~ 30°F Revew Halth 155514 Rby W Jo: M.M. KTL, MARKEN [ATULO] ENPED PILLS 0730 Arrive on Sile Stort Driling MW-2 collect sample vAST - 1 (21 Fall I was sur fall UWN ATCH & AF. ILUTS Space) no war D-:11 MW 3 Location Clickmend VT h-MU Calibak PID いたいして Project / Client CCCP 7-:11 ۲ م ( 250 LINER NIN 201 1340 25 02 21 0160 1045 0300 2420 2001


6 Odor samples Date 4/15/09 22120 Map of area w Petroleum Project / Clent CC RRC -Richmand Crowery かいうつ S-MW. 1430 Pevelop Wells MW-6, MW-7, MW-8 MJM, ENPEU LIAK 9 - MW 1615 Deput six River Location Richmond, VT MW-8 A Month EST SUPERIE Jan of 105 Town Hall 20.201 0 1/ M3M, ENPRD, Uak (UUM achaeologue) ( town you is the tactory ) Attempt S wells near idensymbol to preserve of petroleur odes Date 4/15/0 Drillers Depart S.K. Note : collected add' I somple and PID reading in area Start Dr. 11. M. W. 6 Counsulation wasking hur Stort dr. 11. M. M. 7 Project , Clent CLER L . R. chand Collenge boild builder + AST 3 hit ledge 1 5 - 2.0 feet at all locates dangraduat (towers River) for VOL > (50-03) de Wattur : Juray, coal, 35° Calibal PID Lawing) D--11 MM-6 for we are site S'MW 1:0 Location Richmuk, VT 521 Lim ( 0220 075 0520 20100 10 20 120 1425 200 00

63 Date 4 20 Day Project / Clent (CRPC - Richmad Creme ) midwes tots MOM collect soil serper Warbor: breezy, wil, smill Harb + servy brief. MAM WE FRANSS RACHASS 17.14 9-MW 18.56 AL I 10.60 4.28 5.52 6.42 27.0 Dereus mure Arise on site YEH, UES Develup 5740 0 203 Location Richmond, VT MJM, TCH, 455 July Control e hto 0400 0803 MM-1 ID A-WW MW-B MM-9 1740 MW-2 J-MW S-MW sit o 0380 MW46 00000 Date U IS ON 51/17 + 1-1/15 17.51 ar Project / Client Cit was brown Depth to Nater Iquels t W & 11 total Deptus Location Z 16 home , UT 16.92 8t.11 6.20 19.04 6.24 5.43 6.00 r K DI 713M MW-3-MW-4-S-MW D-WM MW-7-0 G-WW MW-1 62

R57 ( 20.00 plilder and 52-08 (102 - 1.4-3, hole (no R.D) (102 mole (no R.D)) 95 CCI A 18110 5-20-0 55-25-2 Ð 5-2.0 (reme! (~ is wy a) between 55-A57-1 F 25 F 1345 (0/4C+ 55 BB-010.0.2 B-WW D St. B. Color Indered ( PD CRUNS ( 75-30-01 o MM.9 Date ME DUQ (5-7005 ובוקל וביות PID Stading Land - -- 0.0 2.5 e.e. yest To the street Dogoved 450m Sty 1.1.0-Project / Client · spine -Location Tor A (01104 55.7.5 0-0.5.1 1.5. + 10) 0.2-2.1/1.2-0 H-7-25 gans pera apy. extrat ut (0)(16(+ 55-7-3 0-0.5'+ 55-7-54) (0) (0) (0) (0) (0) (0) (ollect 55- T-100,5 + 1,5-2.0' (010c+ 52-7-2 0 0-5-1-5-2, 1) 5-2-55 F. 2. 5 4 (1) 2. 4 - 5. 5 - 7 - 5. 5 Calibrale Mini Cal Screen Soils @ 8 locations Hand Auge (PID 55-87-1 to 2.5' to RUD=0 Hand Auge (PID 55-27-2, to 2.3 to 815 0.0 Prop. Burke & 1-51 5 - Igit (0/1817 50000 55-07. 30-0. Date 1-1-2 RR XS I-MWALS--2.1.5 そっかしつ C ollect Project / Client 5 Lucation SXT-4 og 42 0151 1380 0501 OHEI 1070 611 0101 022 20501 211 3


67 01.P-9-4.10 Date 4 30 04 It't Sti (X)2.59 (700 Finish Sompring ( Puch UD Revery ICRPC - 15- 14. 5- 7 MW-8-8-60 04-10 S NH. N. T r kO 10.53 mm - S Su 120 Kis tradid oft H-MW 25.0 Location Richman VT Regiect / Client Kic hand MM- H AS AS 224 40 -mu Date 4 20 01 1410 Collect SS-AST-2 0-0 5 (PID read. 72.4) 55-05T-2 1.5-2.0 (PID reading 19.9 Project / Client Richmand Warder / CRRC up fur survey. 10.2 とこう MW-2 4.78 3.14 Location Richmond, VT 6 J-MW Q 46.6 A 0-2-1-25 Set up 2 Se ≮ Z 1500 99






62 30 Didn's Bet -6-2" 11.4K @ 911 The Way fone silts Sand m/ rounded (small) gravel Date 3/23/08 - 23" material come up us cores placed in 2 Jars - no soming / sheen lodor 700 - JEM/MSM offs.Te COAC ~ 1.25 FE Rick - conc ~ 4" Phick Project / Client R. Churry Crearery - moist & ray below conc cl-2: @ 1335 CC-1: @ 1130 Location A. Chmond, VT C 1330 Conc 1-0346-3 PCB Dup e 1200 (Lake Ting) 9 staining, near Drum : "Oldoil" Location Richmond Creamers Date 3123109 Nores Tine 1-0346-3 1242 1105 1535 1225 1229 1538 1054 1307 1313 Project / Client _ 3 9 Samolo CSFF-1 3 C-55-1 C-55-2 76 78

5014212 1145 - Placed Concrete block over hole in Ditroof => 105 ppm ul spa sas E. El mond Creamers 1130 - Calibrate PLD (MSN) 1-0346-3 1125 - Maure Pit: - 2 6'deep => 0.4 Ambrent 1260-SEM Offsize - 0.2 PPMV RICLIAGE UT ר י 3/24/08 0720- USED MARTAL DETECTUR TO SEALL OFUS for USTS: NO NESULT OF3Q= SET up CONER, CHANLE 6:75, ETC Much debris in bottom (see 546 - 51ab 50:1 Samples - PCB9, VOC, , PRG, NURA15 Can't collect Sauples=> 700 0900 to core complete, collect immediate Refusal Richmond Creamers Sample | Time | NOTES Rich and NT 0715- JEM ONSITE (521 ND:0 Samples 1025 1-0346-3 Sub-5/ab-2 Sub-Slab-1





62 30 Didn's Bet -6-2" 11.4K @ 911 The Way fone silts Sand m/ rounded (small) gravel Date 3/23/08 - 23" material come up us cores placed in 2 Jars - no soming / sheen lodor 700 - JEM/MSM offs.Te COAC ~ 1.25 FE Rick - conc ~ 4" Phick Project / Client R. Churry Crearery - moist & ray below conc cl-2: @ 1335 CC-1: @ 1130 Location A. Chmond, VT C 1330 Conc 1-0346-3 PCB Dup e 1200 (Lake Ting) 9 staining, near Drum : "Oldoil" Location Richmond Creamers Date 3123109 Nores Tine 1-0346-3 1242 1105 1535 1225 1229 1538 1054 1307 1313 Project / Client _ 3 9 Samolo CSFF-1 3 C-55-1 C-55-2 76 78

5014212 1145 - Placed Concrete block over hole in Ditroof => 105 ppm ul spa sas E. El mond Creamers 1130 - Calibrate PLD (MSN) 1-0346-3 1125 - Maure Pit: - 2 6'deep => 0.4 Ambrent 1260-SEM Offsize - 0.2 PPMV RICLIAGE UT ר י 3/24/08 0720- USED MARTAL DETECTUR TO SEALL OFUS for USTS: NO NESULT OF3Q= SET up CONER, CHANLE 6:75, ETC Much debris in bottom (see 546 - 51ab 50:1 Samples - PCB9, VOC, , PRG, NURA15 Can't collect Sauples=> 700 0900 to core complete, collect immediate Refusal Richmond Creamers Sample | Time | NOTES Rich and NT 0715- JEM ONSITE (521 ND:0 Samples 1025 1-0346-3 Sub-5/ab-2 Sub-Slab-1